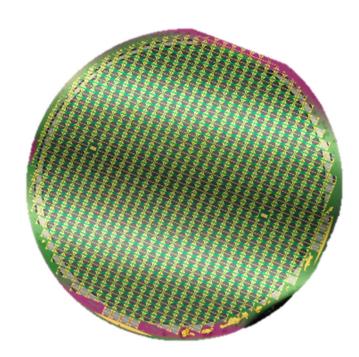


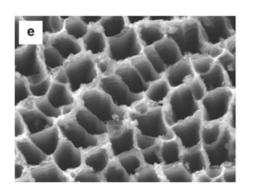
U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – ARMY RESEARCH LABORATORY

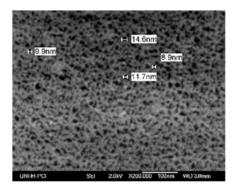
Energetic Porous Silicon for On-Chip Microfabrication of CAD/PAD Igniters

Daniel Jean, PhD Erin Gawron-Hyla, PhD Wayne Churaman, PhD Army Research Lab, Adelphi, MD 12 July 2022

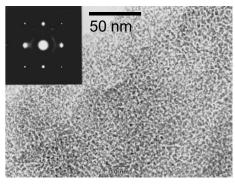
Distribution A: Approved for Public Release


Distro A


- Background
- Porous silicon fabrication (2 mask cleanroom process)
- Activation (addition of oxidizer)
- Initiation / testing
- Porous silicon ink

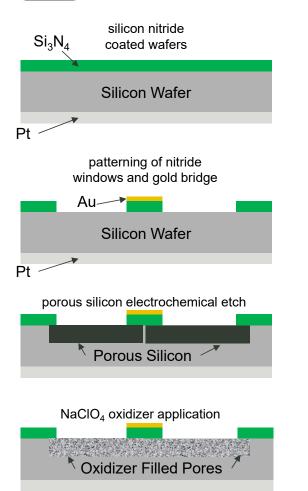


Porous Silicon

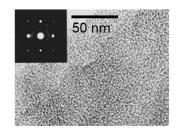


Macroporous

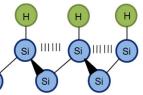
Mesoporous


Microporous

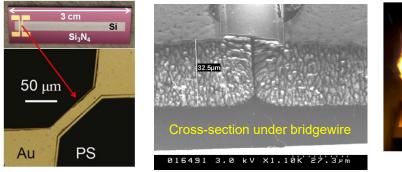
IUPAC Definition	Porosity (%)	Pore Diameter	Pore Density (mm ⁻²)	Surface Area (m²/g)	Surface to Bulk Si Atom Ratio
Macroporous	50	1 µm	5 x 10 ⁵	1.7	0.0003
Mesoporous	50	10 nm	5 x 10 ⁹	170	0.03
Microporous	50	1 nm	5 x 10 ¹¹	1700	0.3


Canham, L. (2014). Tunable Properties of Porous Silicon. In Handbook of Porous Silicon. https://doi.org/10.1007/978-3-319-05744-6

Porous Silicon Fabrication at ARL



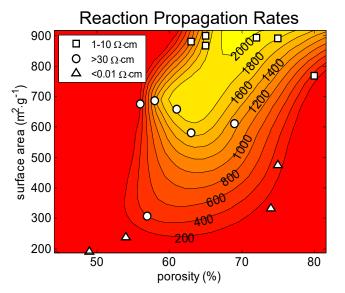
Patterned and etched regions of high nanoscale porosity in Si (e.g. 2-5 nm pores, 70% porous, 800-1000 m²/g)

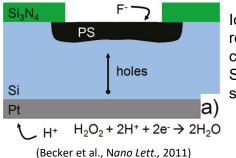

Hydrogen termination

Product of the HF etch; important for rapid reaction propagation and high energy density. Improved shelf-life stability.

Δ

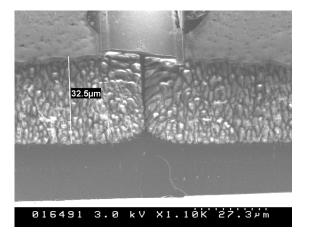
Surface area makes PS a *powerful fuel*. Oxidizer (e.g. NaClO₄) application to pores forms an energetic. Microfabrication of energetics = unequaled design precision at scale





Tunable Pore Formation

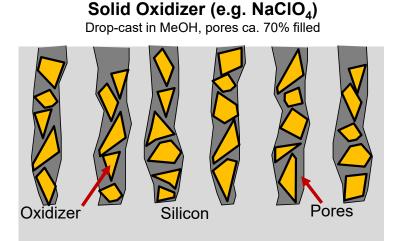
- Si₃N₄ used to mask areas of Si
- Electrochemical etching in HF solution
- Localized areas self-passivate, leading to tunneling etch pattern
- Variable pore sizes (macro sized openings leading to nano pores)
- 2-5 nm pores, 70% porous, 800-1000 m²/g



N.W. Piekiel, et al., Combustion and Material Characterization of Highly Tunable On-Chip Energetic Porous Silicon. Propellants, Explosives, Pyrotechnics. (2014).

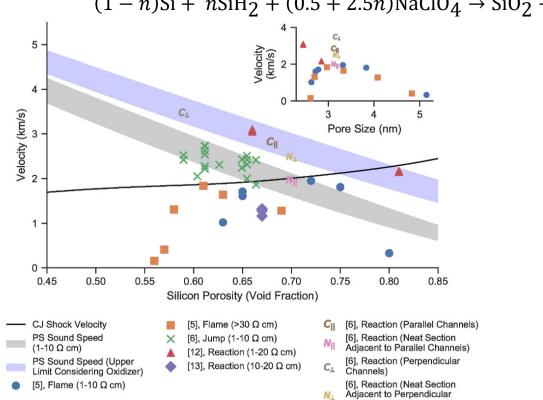
Galvanic Etching

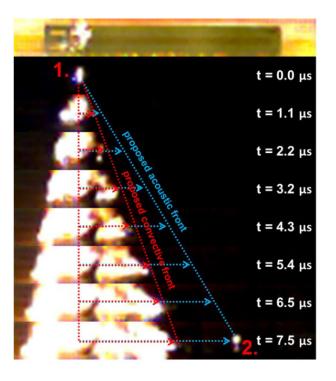
Ionic charge reduction at Pt cathode, oxidation at Si anode, current is self-generated.



Oxidizer to Activate Igniter

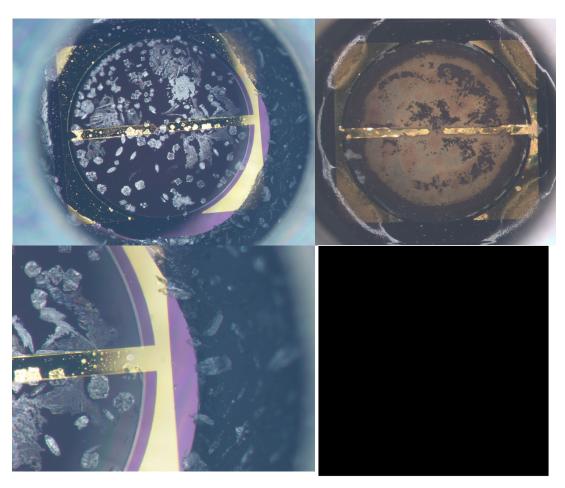
- NaClO₄ (dissolved in methanol)
- Dispensed into pores, then dried
- Sealed to protect from humidity
- ~15.5% of pore volume filled with oxidizer, remaining volume is air




Porous Silicon Reaction

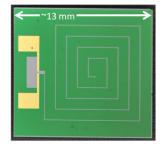
- · Oxidation reaction with very high surface area
- Triggered by heat or shock loading

(1 - n)Si + nSiH₂ + (0.5 + 2.5n)NaClO₄ \rightarrow SiO₂ + (0.5 + 2.5n)NaCl + nH₂O + ΔE



Philip Guerieri, Brian Fuchs, and Wayne A. Churaman, "Feasibility of Detonation in Porous Silicon Nanoenergetics," Propellants, Explosives, and Pyrotechnics, 2021


Porous Silicon Igniter

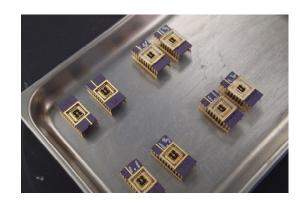


High Propagation Rates (Tunable)

3 m/s

N.W. Piekiel, et al., Combustion and Material Characterization of Highly Tunable On-Chip Energetic Porous Silicon. Propellants, Explosives, Pyrotechnics. (2014).

Heat Pellet Ignition Testing

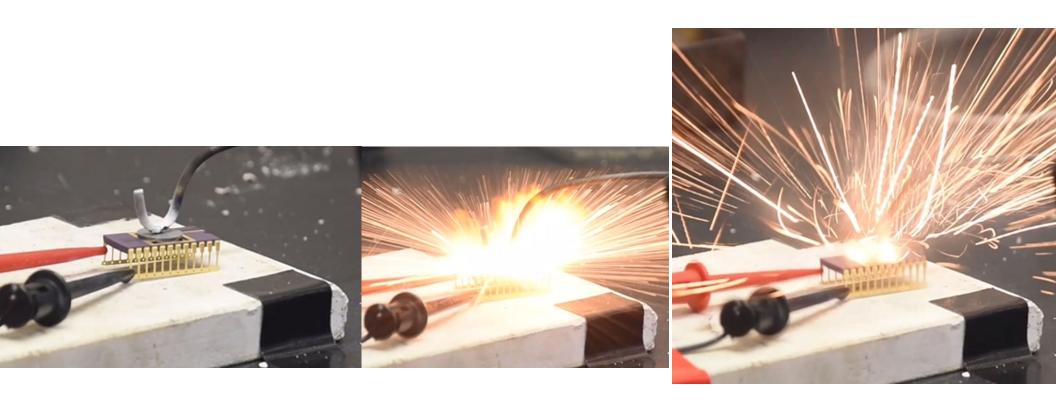


- Several initiators were tested against various heat pellets (84/16 Fe/KCIO₄)
 - Different densities

- Different standoff gaps
- Un-sealed
- Chip configuration: 4 redundant bridges in parallel
- Input: constant current, or 12V cap discharge

Preliminary Results

- Initiated pellets pressed at 3000, 4000, 6000, and 9500 lbs (41 to 51%TMD)
- Marginal reliability above 50% TMD for this configuration
- Small gap needed for reliable transfer (~0.5 mm)
- Options
 - Ink can be added to increase output



Porous Silicon Ignitor with Heat Pellet (pressed to 49% TMD, 7,000 lbs) Testing at DEVCOM AC with Lauren Morris, Giuseppe Di Benedetto, Aaron Stern

New Development: Porous Silicon Ink

- Prior to oxidation, porous silicon is removed from wafer
- "Chunks of a sponge" micron sized particles with nano-pores
- Ink is made from these particles, can be dispensed
- Enables use of various thicknesses, geometries, substrates
- Can be incorporated with Additive Manufacturing (AM)

Summary

- High surface area porous silicon patterned and etched, with initiator
- Standard cleanroom process, fabrication on 4" wafers
- Controllable porosity ٠
- Packaging with wire bonding or direct • soldering
- Inert until addition of oxidizer (dispensed) ٠
- Demonstrated to ignite heat pellets ٠

Porous Silicon Team at ARL Adelphi:

- Wayne Churaman ٠
- **Erin Gawron-Hyla** ٠
- Kate Price •
- **David Lunking** ٠
- Daniel Jean ٠

2 cm in 21.4 µs 935 m/s

Adams S. K., Piekiel N. W., Ervin M. H., Morris C. J., Silicon Quantum Dots for Energetic Material Applications, 1-8 (2018).