CKU-12/A
ROCKET CATAPULT
ASSEMBLY, AIRCRAFT
EJECTION SEAT

PROGRAM UPDATE

CAD/PAD TEW 2022
THANK YOU

Authors & Contributors
Carson, Kassidy L.¹
Whelan, Patrick M., P.E.²
Webb, Brian³
Tidwell, Quinn⁴

¹ Discipline Chief Engineer — Mechanical Design, Collins Aerospace, Colorado Springs, CO
² Senior Manager — Systems Engineering, Collins Aerospace, Fairfield, CA
³ Mechanical Engineer — CAD/PAD Division, NSWC IHD, Indian Head, MD
⁴ Lead Engineer — AFLCMC/EBHJ, NSWC IHD, Hill AFB, UT
CKU-12/A PROJECT OVERVIEW

DESIGN & QUALIFICATION ACTIVITY

- The CKU-12/A RoCat (Rocket Catapult) Assembly is a derivative of the CKU-5C/A RoCat
 - Head Assembly and Retainer Assembly designs have been modified to support ACES (Advanced Concept Ejection Seat) integration into the low-profile cockpit geometries
- Qualification is based on an optimized set of tests and similarity
 - Delta-Qualification per MIL-P-83126A
 - Qualification by similarity to CKU-5C/A
- Structural/Environmental test levels based on enveloping legacy & new program requirements
 - CKU-5C/A (legacy)
 - USAF New Trainer
- Delta-Qualification Testing facilities:
 - Structural/Environmental – NTS (Santa Clarita, CA)
 - Drop – NSWC IHD (Indian Head, MD)
 - Ballistic – Collins Aerospace (Fairfield, CA)
- Dynamic Response Index (DRI) capability improvement
CKU-12/A DESIGN

OPTIMIZED TEST SET NEEDED TO ADDRESS HARDWARE CHANGES

• CKU-12/A fits in a more compact envelope
• CKU-12/A is a Derivative of the Previously Qualified CKU-5C/A
• 90% (35 of 39) of the Parts/Assemblies from CKU-5C/A specified
• CKU-12/A easy convertible from Collins Aerospace CKU-5C/A
• Same Manufacturing Process and Acceptance Tests as the CKU-5C/A (except Dynamic Response Index (DRI) upper limits optimized)
• No Changes to the Ballistic Performance
CKU-12/A DELTA-QUAL TEST SUMMARY

OPTIMIZED SET OF TESTS PER MIL-P-83126A

- Inspection
 - Visual
 - X-Ray
- Load Testing
 - - 65°F
- Vibration & Shock Testing
 - - 65°F
 - +165°F
- 3 ft Drop testing
 - - 65°F
 - +165°F
- 40 ft Drop Testing
 - Ambient Temperature
- Ballistic Testing
 - - 65°F
 - +70°F
 - +165°F
- MOS (Marginality of Success)
 - All Delta-Qual Units
OPTIMIZED SET OF TESTS PER MIL-P-83126A

Test Unit Numbers (23 Rocket Motors to be Tested **)

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Unit Number (23 Rocket Motors to be Tested **)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Remints</td>
</tr>
<tr>
<td>1</td>
<td>n/a</td>
</tr>
<tr>
<td>2</td>
<td>3.2.23.9</td>
</tr>
<tr>
<td>3</td>
<td>3.2.17</td>
</tr>
<tr>
<td>4</td>
<td>3.2.23.7</td>
</tr>
<tr>
<td>5</td>
<td>3.2.23.6</td>
</tr>
<tr>
<td>6</td>
<td>3.2.25.4</td>
</tr>
<tr>
<td>7</td>
<td>3.2.25.3</td>
</tr>
<tr>
<td>8</td>
<td>n/a</td>
</tr>
<tr>
<td>9</td>
<td>3.2.24.1</td>
</tr>
<tr>
<td>10</td>
<td>3.5.7</td>
</tr>
<tr>
<td>11</td>
<td>3.2.15</td>
</tr>
<tr>
<td>12</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Notes:
1. a, b, c, etc. designates testing sequence.
2. * Part of baseline test firings.
3. Test Unit Numbers correspond to MIL-P-83126A.
4. Axis designation: (+z), (-z).
5. **Gaps exist within the Test Unit Number sequence due to the reduced number of environmental tests.

- Environmental Tests Focused on Structural Changes (Load, Vibration, Shock, and Drop Testing)
CKU-12/A DELTA-QUALIFICATION TESTING

RESULTS

<table>
<thead>
<tr>
<th>Tests</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>PASS</td>
</tr>
<tr>
<td>Vibration</td>
<td>PASS</td>
</tr>
<tr>
<td>Shock</td>
<td>PASS</td>
</tr>
<tr>
<td>Drop (3 ft and 40 ft)</td>
<td>PASS</td>
</tr>
<tr>
<td>Ballistic</td>
<td>PASS</td>
</tr>
<tr>
<td>Marginality of Success</td>
<td>PASS</td>
</tr>
</tbody>
</table>
CKU-12/A DRI CAPABILITY IMPROVEMENT

DYNAMIC RESPONSE INDEX (DRI) CAPABILITY IMPROVEMENT

• DRI Upper Limits Optimized thru Statistical Analysis of Manufacturer Base Capability
• DRI Requirement Upper Limits Optimized to:
 • 16.0 Cold (CKU-5C/A is 18.0)
 • 20.0 Hot (CKU-5C/A is 22.0)
• Lower DRI Upper Limits Support Escape System MIL-HDBK-516C Airworthiness Requirements
• DRI Verified thru Ballistic Testing
CKU-12/A DRI CAPABILITY IMPROVEMENT

Analysis

Work Scope:
- Evaluate the feasibility of the following DRI limits for CKU-12/A based on historical CKU-5C/A LAT performance to align product specification requirements with MIL-HDBK-516C CN5 Escape System Airworthiness Requirements:
 - ✓ +165°F: 20 (as measured on LAT)
 - ✓ +77°F: 18 (calculated by interpolation)
 - ✓ -65°F: 16 (as measured on LAT)
- Provide recommendations for the achievable/repeatable DRI limits of performance for CKU-12/A.

Data Process:
- Data Source: CKU-5C/A historical LAT data at -65°F and 165°F.
- Data Segregating and Pooling:
 - ✓ Two data sets at -65°F and +165°F are segregated and modeled by different sub-populations respectively.
 - ✓ All the data points at -65°F are pooled for one sub-population; and all the data points at +165°F are pooled for another sub-population.
CKU-12/A DRI CAPABILITY IMPROVEMENT

DRI ANALYSIS RESULTS @ +165°F

• The feasibility of upper limit = 20 @ +165°F
 ✓ Statistical tolerance limit analysis result: P(F ≤ 20) = 0.998610 at 90% confidence
 ✓ Percentages from actual data:

<table>
<thead>
<tr>
<th>Data @ 165°F</th>
<th>DRI > 19</th>
<th>DRI > 20</th>
<th>DRI > 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Number</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Percentage</td>
<td>0.8%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

✓ Conclusion: the upper limit = 20 @ +165°F is acceptable.

• The achievable upper limit = 20 @ +165°F
 ✓ Statistical tolerance limit analysis result: upper limit = 20.12 at P = 0.999 & 90% confidence
 ✓ Percentages from actual data: as shown above

✓ Conclusion: the achievable upper limit = 20 @ +165°F with P = 0.999 & 90% confidence
CKU-12/A ROCAT DRI CAPABILITY IMPROVEMENT

DRI ANALYSIS RESULTS @ -65°F

• The feasibility of upper limit = 16 @ -65°F
 ✓ Statistical tolerance limit analysis result: P(F ≤ 16) = 0.999980 at 90% confidence
 ✓ Percentages from actual data:

<table>
<thead>
<tr>
<th>DRI @ -65°F</th>
<th>DRI>14.75</th>
<th>DRI>15</th>
<th>DRI>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Number</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Percentage</td>
<td>1.0%</td>
<td>0.8%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

✓ Conclusion: the upper limit = 16 @ -65°F is acceptable.

• The achievable upper limit = 16 @ -65°F
 ✓ Statistical tolerance limit analysis result: upper limit = 14.75 at P = 0.999 & 90% confidence
 ✓ Percentages from actual data: as shown above
 ✓ Conclusion: the achievable upper limit = 16 @ -65°F with P = 0.999 & 90% confidence. Notice that the lower percentages from actual data are likely caused by the deviation of actual data from the fitted distribution.
CKU-12/A PROJECT STATUS

- Completed Tasks (2020)
 - Baseline & Batch Check Units / Test Stand Firings
 - Test Fixture Design & Fabrication
 - Delta-Qualification Test Plan (Δ-QTP) Release
 - Detailed Qualification Test Procedure Release
 - Delta-Qualification Test Unit Builds
 - Qualification Unit Builds
 - Structural/Environmental Testing
 - Shock, Vibration, Loads
 - Drop Testing
 - 3 ft, 40 ft
 - Ballistic Testing - Subset
 - Marginality of Success (MOS) – Subset
 - CKU-12/A DRI Capability improvement Analysis

- Completed Tasks (2021)
 - Ballistic Testing – Remaining Test Units
 - Marginality of Success (MOS) – Remaining Test Units
 - Delta-Qualification Test Report

- Completed Tasks (2022)
 - Finalized Qualification Documentation
 - First fielding of flight test units
CONTINUED COLLABORATION

Collins Aerospace welcomes the opportunity to continue collaborating with the CAD/PAD JPO and industry partners toward enhancing energetics performance and capabilities in the interest of improved safety and sustainability for the next generation.
QUESTIONS?

Contact Details
Kassidy.Carson@Collins.com
Patrick.Whelan@Collins.com
Brian.J.Webb20.civ@us.navy.mil
BACKUP INFO
CKU-12/A PROJECT SCHEDULE

<table>
<thead>
<tr>
<th>Documentation</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Documentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DQTP Released</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware Procurement/Fabrication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part Procurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast INERT CCU Grains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast Sustainer Grains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cast CCU Grains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CKU Assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assemble Inert Units</td>
<td>QTR 1</td>
<td>QTR 2</td>
<td>QTR 3</td>
</tr>
<tr>
<td>Assemble Batch Check Units</td>
<td>QTR 4</td>
<td>QTR 1</td>
<td>QTR 2</td>
</tr>
<tr>
<td>Assemble Catapult Only Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assemble Delta-Qualification Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch Check</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Reduction Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta-Qualification Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballistic Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inert Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catapult Only Test Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sled Test Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Report</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2021 Collins Aerospace
CKU-12/A QUALIFICATION BY SIMILARITY

SUMMARY OF QUALIFICATION BY SIMILARITY TO CKU-5C/A

- 42-Day Storage
 - -65°F
 - +165°F
- 84-day Storage
 - -65°F
 - +165°F
- Temperature Cycling
 - -65°F
 - +165°F

- Rain, Salt, and Humidity
- Sand and Dust
- Fungus Resistance
- External Heat
- Bullet Impact
- Atmospheric
- Detailed Breakdown
- Propellant System Characterization