

Allowable Service Life Extension Determinations

Presented to:

2022 CAD/PAD Technical Exchange Workshop

Presented by:

Mr. Harry L. Archer P.E.

Assignment: Ordnance Assessment/Logistics Branch
- July 2022 -

CAPT Eric C. Correll, USN
Commanding Officer

Mr. Ashley G. Johnson, SES
Technical Director

Distribution Statement A (22-110). Approved for public release. Distribution is unlimited.

N A V S E A W A R F A R E C E N T E R S

CAD/PAD Life

- Cartridge Actuated Devices (CAD) and Propellant Actuated Devices (PAD) begin their lives in manufacturing → Packaging
 - Complete manufacturing starts "shelf" life
 - Open package starts "install" life

CAD/PAD Evaluation

- CADs & PADs perform various functions in all critical military egress aircraft systems
 - CADs & PADs performance changes with time
 - The Ordnance Assessment (OA) Group assesses change using
 - ➤ OA/Quality Evaluation/Surveillance Test
 - Lot Acceptance Test
 - Qualification Test

Initial/Current CAD/PAD Life

- The latest approved Ordnance Evaluation Indian Head Technical Report determines current:
 - Allowed Shelf Life
 - Allowed Install Life and
 - Life limiting issues include:
 - Test Failure(s)
 - In-service Failure(s)
 - Out of specification with age and
 - Lack of long term data

Fleet Availability

- The fleet tries to schedule their deployment/maintenance cycles to accommodate unit replacement before they become overaged.
- Frequently, these deployment/maintenance cycles conflict with shelf/installed life predictions or stock availability. The choices are:
 - Deploy at risk,
 - Ground the aircraft, or
 - > Deploy under a granted service life extension.

Request Service Life Extension

- The least risk to <u>Aircrew Safety</u> and <u>Aircraft</u>
 <u>Availability</u> is to operate under an approved Service
 Life Extension (SLE) request.
- SLE requests are submitted to the Virtual Fleet Support (VFS) SLE request module.
- VFS provides two types of data to evaluate SLEs:
 - Unit Identification and
 - Unit Shelf & Installed Age

VFS SLE Data

Unit Identification

- Assigned SLE Request No.
- Department Of Defense Identification Code (DODIC)
- Lot No.
- Part No.
- Part Serial No.
- Installed Aircraft Type
- > Installed Aircraft Tail No. (BUNO)

VFS SLE Data

Unit Shelf & Installed Age

- Ordnance Evaluation Initial Life
- Latest Life Extension
- Current Life Requested Extension

Ordnance Evaluation Download

A VFS Feature allows SLE Download

- Ordnance Evaluator (OE) downloads VFS data into an Excel® spreadsheet
- OE sorts data by the earliest expiration date
 - Determines the highest priority + LMS requests
- OE filters data by assignment aircraft
- OE populates data in a separate spreadsheet with one or more DODIC(s) New

Ordnance Evaluation Spreadsheet

Ordnance Evaluation Spreadsheet

SLE Ordnance Evaluator's Role

- The Ordnance Evaluator's role is to recommend a service life and an install life that minimizes risk to the aircrew and aircraft.
- The Ordnance Evaluator's role <u>isn't</u> to maximize aircraft availability.

SLE LMS's Role

- The Logistics Management Specialist (LMS)'s role is to maximize aircraft availability by managing CAD/PADs supplied to aircrafts as need if available.
- The LMS's role <u>isn't</u> to evaluate a service life's affect on aircrew or aircraft safety.

SLE Senior Engineer's Role

- The Senior Engineer's role is to concur or not concur with the Ordnance Evaluator's recommended allowable service life and install life
- If non-concurrence, the **Senior Engineer's** recommends a service life and install life that minimizes risk to the aircrew, aircraft and aircraft availability to the Ordnance Evaluator.
- The Program Office ultimately dictates what service life and install life the Senior Engineer may allow.

Ordnance Evaluator's **SLE Recommendation**

Ordnance Evaluator's **SLE Recommendation**

SLE Determination Data Flow

SLE Request Limited Approval

- Limits <u>Shelf Life</u> and/or <u>Install Life</u>
 - Shelf life limits are based on unit deterioration/uncertainty in storage and in an aircraft
 - Install Life limits are based on unit deterioration/uncertainty in an aircraft

SLE Spreadsheet Determinations

SLE Request Bottom Line

Same DODIC ≠ **Same Life**

- The same DODIC may have difference extension lives
 - Some devices have stabilizer depleted by heat influenced by its aircraft ambient temperature history
 - DODICs produced with performance near or far from its limits have life determinations based how long it takes to exceed those limits.
 - Some producer make units with better aging performance than others.

SLE Determination Tools

- Ordnance Assessment
 - Unit's test performance changes with time
 - Linear trends with tolerance bands
 - ➤ Where there is a 90% confidence that 99% of the inventory population will perform within those bands.
 - Projection of curves
- Device analysis
- Rates of aging ^{New}
- Precedence

SLE Determination Tools

Project of Curves

Device Analysis

- Shear Pin Force = Initiation force Back Pressure force
- Back Pressure force increases with increased O-ring leakage
- Aged Nitrile O-rings tend to shrink
- O-ring on shear pin hole may damage
 O-ring → leakage

An Uninstalled DODIC Can Fail

What's the Difference?

OA Rates of Aging

Rates of Aging Spreadsheet New

SLE Data Uncertainty

- Test results may falsely indicate less life due to excessive bending/damage during uninstalling, packaging or testing:
 - Mild Detonating Cord Sets (MDCS)
 - Thin Layer Explosive lines (TLX)
 - Mild Detonating Cords (MDC)
 - Flexible Linear Shape Charges (FLSC)
- Excessive bending may cause charge separation or excessive compression and large variations in propagation velocities.

SLE Data Uncertainty

- Ballistic ordnance assessment testing may show successful testing; however, false positives may happen because
 - Long out of conditioning times bring the unit closer to ambient
 - Some uninsulated units reach ambient temperature quickly out of conditioning
 - > Fixture can bring a unit to its temperature
 - An inadequately cleaned closed bomb volume decreases with each test
 - > Inadequate or unmeasured stabilizer

SLE Data Uncertainty

- Qualification may not simulate aging
 - Current temperature extreme cycling may not adequately simulate long term aging
 - Real aging requires multiple cycles that simulate day and night exposures
 - In storage and
 - In its appropriate aircraft

Conclusions

Predicting allowable service life accurately requires:

- 1. A well understood installed/storage environment and its impact on performance
- 2. Representative unit ballistic testing performance
- 3. Measuring chemical/mechanical changes that correlate well with performance
- 4. An accurate performance analysis of trend data with sufficient data at the requested age

Acknowledgements

Ordnance Assessment/Logistics Branch