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Welcome back to the Leading Edge, the professional journal of Naval 
Surface Warfare Center Dahlgren Division. We are excited to announce the 
relaunch and redesign of this beloved publication! Leading Edge features 
in-depth articles and scholarly papers that provide a window into the 
groundbreaking work of our talented scientists, engineers, mathematicians 
and other experts here at Dahlgren. Going forward, expect biannual 
delivery every Spring and Fall. 

This issue delves into the realm of neural networks, laser hazard evaluations 
and the evaluation of text data in cybersecurity. These technologies are 
poised to reshape the future of naval surface warfare. Members of our 
research and development community have contributed three insightful 
papers that explore what this means for our work at NSWCDD.

The first paper is a reality check. Authors David Johannsen, Jeffrey Solka, 
and John Rigsby share a cautionary tale about neural networks so that 
Navy leaders can be better informed about certain vulnerabilities and 
complications that this technology injects into our weapon systems. This 
paper reminds the reader of the dangers of overfitting, the black box nature 
of artificial neural systems, and their fragility while discussing some of 
the efforts at other organizations such as the Defense Advanced Research 
Projects Agency that are seeking to address these shortcomings.

In the second paper, Performance Numbers vs. Safety Numbers for 
Laser Hazard Evaluations, we learn how lasers are viewed by both laser 
manufacturers and laser safety professionals and what can be done to create 
a cohesive understanding and mutual betterment of laser safety calculations 
and measurements. This paper dives into the main laser assessment areas 
and how each calculation affects overall results.

The third paper, Cybersecurity Analytics for Statisticians: A Case Study 
of Text Data, discusses the technical defense developments for securing 
digital information against threats and attacks involving text data. The 
paper provides an overview of the areas vulnerable to these attacks and 
the statistical strategies and machine learning methods utilized to counter 
existing and future threats. 

These thought-provoking articles are on the front lines of scientific 
research, development, test and evaluation at Naval Surface Warfare Center 
Dahlgren Division.

Introduction
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Neural networks – a modern success 
story

Fueled by rapid increases in computer storage 
capacity and processing power (principally through 
the use of graphical processing units (GPUs)) and 
the widespread availability of powerful software 
for designing and implementing neural networks 
(such as Google’s TensorFlow), the application of 
artificial neural networks to significant problems in 
the real-world has seen tremendous growth over the 
last several years.  During this time, neural networks 
have demonstrated successes on problems as varied 
as automatic recognition of handwritten digits, 
automated image captioning and indexing, and have 
even beaten human masters in the game of Go.  In 
fact, the field has reached the state of maturity that 
a person with only casual knowledge of computer 
programming can implement a neural network for 
whatever problem they might have at hand.

Given this climate of success, there is growing 
interest in fielding neural networks in Department 
of Defense (DoD) systems.  In this brief note, we will 
discuss the nature of neural networks in a language 
which can be broadly understood, especially in the 
context of the unique environment within DoD, 
so that Navy leaders can be better informed about 
the strengths and limitations of this technology 
as it impinges ever more frequently on the DoD.  
We will first attempt to explain to non-specialists 

what an artificial neural network is.  We will then 
discuss some of the inherent limitations of this class 
of machine learning tools and some of the ways that 
we and other members of the DoD are studying these 
limitations.  Finally, we will discuss the consequences 
of these limitations. 

What is a neural network?  

Rather than giving a precise mathematical 
definition of a neural network, we will begin by 
giving a functionally oriented definition. Thus, we 
describe a neural network as a nonlinear function 
from the space of inputs to outputs.  The particular 
function is chosen from a broad class of nonlinear 
functions through a process known as training.  
Often, in current practice, the choice of nonlinear 
function is underdetermined; that is, the function 
contains more parameters to be learned than the 
number of observations that one has at hand for 
training the algorithm.  

For example, in the context of image captioning, 
the space of inputs is the collection of all possible 
digital images, and the output space is the collection 
of all meaningful captions.  The neural network 
accepts a digital image as input, and produces a 
caption.  Along the way, hidden from the end-user, 
the computer treats the image as a mathematical 
object, performs mathematical operations on it, and 
then produces a numerical output (which is often a 
vector of probabilities of membership in the various 

The Rapid Rise of Neural Networks and Their 
Implication to Defense: A Cautionary Tale
By David A. Johannsen, Jeffrey L. Solka, and John T. Rigsby
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classes). This vector of probabilities is then converted 
to a caption that is presented to the user.

We will now be a bit more precise in defining a 
neural network.  The formulation of neural networks 
as a method of machine learning was motivated 
by analogy with the functioning of neurons in the 
human brain.  Thus, neural networks consist of a 
set of nodes (neurons) with edges between them.  
Outputs of the nodes are multiplied by the weights 
associated with the edges and fed forward to the nodes 

in the next layer of the network.  This information 
is adjusted by a threshold function associated with 
the node and then propagated through the neural 
network.  In Figure 1 we present a 4 layered neural 
network with an input layer, two hidden layers, and 
an output layer.  Following our discussions above, 
one might imagine that each node in the output layer 
provides the probability of the input belonging to 
one of three classes.

Figure 1. An example neural network with four layers.

A virtue is a vice

Statistical pattern recognition has historically 
involved a somewhat standard pipeline, see Figure 2.

The first three steps of this process (i.e., data 
collection, data processing/cleaning, and feature 
extraction) are often time consuming.  If possible, 
a practicing statistician is well served to spend his 
time on the steps contained in the dotted box.  The 
“extract features” and “dimension reduction” steps 
can be particularly daunting.  The process of feature 
extraction and selection is usually the domain of 

subject matter experts (SMEs) and will often require 
significant time and experimentation to determine 
what features should be selected and have utility 
for the task at hand.  Neural networks promise to 
revolutionize this pipeline by incorporating these two 
steps directly into the model building step without 
the need for SMEs.  The virtue of artificial neural 
networks is that one can train a network to perform 
complex machine learning tasks such as interpolation, 
classification, regression, etc. without having to 
go through the process of feature generation and 
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dimensionality reduction.  In our discussions below 
we will focus on the consequences of automating 
these two steps of the pattern recognition process.   

Before getting too far along, we should note that 
in some settings it may be impossible to generate 
features specifically tailored for each of the possible 
classes.  For example, in automatic image captioning, 
as the image may be of anything in the world, there 
are virtually a limitless number of different classes 
and therefore it is not possible to specify optimal 
features to be extracted for each of the classification 
tasks.  Thus, it is indeed a benefit of neural networks 
that they free the scientist from the necessity of 
crafting specific features for each possible class.  
However, in many problem domains, neglecting to 
fully understand the processes that gave rise to the 
data (i.e., the training data) and then not actively 
participating in feature selection, yields a model of 
which we have no understanding.  In the following 
paragraphs we will briefly describe some of the 
implications of this aspect of neural networks.

“Black box” nature  

If one reads the scientific literature on neural 
networks, one will quickly see that they are often 
described as a “black box.” What is meant by this?  
The complexity of a network trained to tackle non-
trivial “real-world problems” is very high.  That 
is, the internals of the network hide an incredible 
mathematical complexity.  In fact, the complexity is so 

great that one cannot interpret how the input features 
provide a basis for the output.  This is known in the 
statistics field as a non-attributable model.  In the 
context of an application like image captioning, this is 
of some concern.  For example, if the neural network 
errs and gives the label “dog” to an image of a “cat,” 
the designer is troubled by not knowing exactly what 
features in the image caused the misclassification 
and therefore being unable to alter the algorithm 
in order to prevent future misclassifications.  This 
lack of insight into the relation between input and 
output is much more troubling for DoD applications, 
where the consequences of misclassification are 
often much more serious.  For example, if one is 
designing an autonomous vehicle, one would like 
to be able to predict how the vehicle will react to a 
given input from its sensors.  With a neural network, 
it is generally impossible to know the output of the 
network prior to presenting the input to the system 
and observing the output.

Generalizability  

Generalizability is the ability of the model to 
produce reasonable output when presented with 
an input that is different from the data used to 
train the network. The issue of generalizability is 
a central concern in DoD applications: how will 
a fielded system perform with subtle changes to 
the environment?  As we do not know much about 
either the processes that gave rise to the training data 

Figure 2. Pattern Recognition Pipeline.
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nor much about the “black box” nature of neural 
networks, it is impossible to predict the output.  
There are no guarantees of the behavior of the neural 
network, even when presented with inputs that do 
not vary substantially from the training data.  In 
fact, there is currently no body of theory that governs 
the behavior of neural network outputs.  The class 
of functions that a neural network model is chosen 
from has tremendous richness and great power to 
approximate highly nonlinear behavior.  Though this 
expressive power is useful to learn from training, 
model richness is a potential problem when one 
wants to predict/classify a new observation.  The 
figure below represents how a model (green line) 
created with far too much complexity suffers from 
overfitting and does not generalize to the simple 
linear model (black line) that generates the data 
points (black circles).

Studying the mitigation of these 
problems

Numerous organizations have begun programs 
to better understand these limitations.  The Defense 
Advanced Research Projects Agency (DARPA) has 
started the Explainable AI (XAI) program which 
seeks to develop methods to better understand the 
decisions made by AI systems.  DARPA has also 
begun the Lifelong Learning Machines (L2M) 
program.  This program seeks to develop machine 

learning based systems that provide the capability 
to train themselves in the field in the face of new 
environmental or mission-based conditions.

Our own organization, the Naval Surface Warfare 
Center Dahlgren Division (NSWCDD), has also 
begun efforts to help better understand these 
shortcomings.   Our ongoing effort, “Neural Networks 
for Manifold Discovery,” seeks to apply advanced 
mathematical methodologies to better characterize 
the fragility of neural networks and other machine 
learning methodologies.  Our new start effort, 
“Adversarial Learning for Robust AI,” seeks to use 
recent research in “adversarial examples” to better 
understand how we can make neural network based 
systems more robust to environmental or enemy 
precipitated changes to operational environments.  
Both of these efforts were funded under the Naval 
Innovative Science and Engineering (NISE) program.  
The NISE program is designed to serve as a major 
innovation catalyst for the naval surface warfare 
centers. 

Final comments

We hope that we have presented a fairly objective 
overview of artificial neural networks.  We have 
tried to describe both the strengths of this class of 
machine learning algorithms, as well as illustrating 
some of their current limitations, especially in the 
unique environment of the DoD.  We acknowledge 
the demonstrated successes of neural networks and 
believe that there are settings where the technology 
works very well; for example, developing AI for 
wargaming, planning, or training seems a very 
good use of the technology.  In situations of complex 
environments where system performance errors 
have the potential for tremendous fiscal cost and 
potential to endanger lives, we need to be very 
cautious.  We remain optimistic that programs at 
DARPA, NSWCDD, and other organizations can 
help better understand and ultimately mitigate 
these shortcomings.  Until theory can catch up with 
practice, is a system whose outputs we can neither 
predict nor explain really all that desirable?Figure 3. Simple linear model with white noise

The Leader in Warfare Systems Development & Integration | 7

The Rapid Rise of Neural Networks and Their Implication to Defense:  
A Cautionary Tale



Abstract  

Laser classification and hazard evaluation require 
certain laser beam parameters to perform the required 
measurements and calculations.  When parameters 
are provided to a laser safety evaluator, they are often 
given from a performance perspective for a laser or 
laser system.  While the performance numbers are 
not incorrect, they often are not what a laser safety 
evaluator really needs to do their measurements or 
calculations to perform a reasonable, realistic laser 
hazard evaluation.

It is hoped that this paper can help to bridge the 
gap between laser manufacturers and laser safety 
professionals by providing a better understanding 
of what a laser safety professional needs to know 
about a laser in order to better perform laser safety 
calculations and measurements.

The typical parameters required to perform a 
laser hazard evaluation for a continuous-wave (CW) 
laser are wavelength, power, beam size, and beam 
divergence.  For a pulsed laser, the parameters 
needed include wavelength, energy per pulse, beam 
size, beam divergence, pulse repetition frequency, 
and pulse duration.  Whether these parameters 
are provided from a performance perspective or a 
safety perspective can significantly change the results 
of a laser hazard evaluation, whether it is for the 
measurement portion (if measurements are done), 
or the calculations performed.  What follows is a 
description of how each parameter can be looked 
at from each perspective and how the results can be 
affected because of those differences.

Performance Numbers vs. Safety Numbers 
for Laser Hazard Evaluations
By Sheldon Zimmerman and Mary Zimmerman
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Wavelength

Depending on the wavelength of a laser beam, 
the precise wavelength may not be needed for 
either calculations or measurement, but there are 
times when it is crucial.  Wavelength is particularly 
important for calculations near where the maximum 
permissible exposure (MPE) value is directly 
dependent on the wavelength, near MPE changed 
borders, and for measurements with a detector that 
has a strong wavelength dependence for its reading.  
For laser diodes in particular, the central wavelength 
in a wavelength range is often specified, but one of 
the extremes of that wavelength will determine the 
most conservative MPE.  A measurement example 
could be where the manufacturer has specified a 
wavelength of 532 nm for a doubled Nd:YAG laser 
and they have not filtered out the fundamental 1064 
nm radiation, but the evaluator did not know or think 
to use a filter to find out how much of the output is 
532 nm and how much is 1064 nm.  Without a filter, 
the portions of the beam that are at each wavelength 
cannot be measured precisely.

Beam Diameter/Size
It is somewhat uncommon for beam size or 

diameter to be very significant with regard to 
calculations of hazard distance, optical density, 
or even classification.  However, with large beams 
the size can be of particular importance.  The most 
often encountered difference here between the 
manufacturing and safety community is that, when 
a manufacturer specifies a Gaussian beam size or 
diameter, it is at a 1/e2 reference, where the safety 
community uses 1/e beam sizes to properly account 
for the maximum central beam irradiance or radiant 
exposure for the purposes of safety.

Beam Divergence
Beam divergence is usually provided as a maximum 

for performance, but the minimum beam divergence 
is needed for hazard calculations.  If no minimum 
divergence is specified, the evaluator may have to 
use the diffraction-limited beam divergence, often 

resulting in overly conservative results.  For example, 
for laser safety calculations, if someone is firing a 
532 nm laser beam out of a 20 cm telescope, they 
may specify a divergence that is no more than 350 
µrad, but the minimum divergence of the laser is not 
specified.  The real minimum divergence may be 300 
µrad, but the laser safety evaluator, not knowing the 
minimum divergence will likely assume a diffraction-
limited divergence, about 17 µrad.  If a value of 17 
µrad is used instead of 300 µrad in the nominal 
ocular hazard distance (NOHD) calculations, the 
calculated NOHD will artificially be far longer than 
a much more realistic NOHD.

One measurement example could be where 
a manufacturer says that the divergence of their 
laser beam is no more than 1 mrad, and an 
evaluator has brought equipment to their facility 
to measure a divergence of approximately 0.5-0.75 
mrad.  However, upon arrival, the evaluator finds 
that the performance is significantly better, and 
the divergence is approximately 0.1-0.2 mrad, so 
the difficulty in measurement increases, and the 
equipment required to make a precise measurement 
may be different from what the evaluator brought.  
Certainly, this could lead to some difficulty, whether 
it is simply in taking extra time to figure out how 
to use the equipment the evaluator has on hand to 
measure the narrower divergence, perhaps with more 
space, using a different technique, having to have 
borrow equipment from the manufacturer, or having 
equipment shipped from the evaluator’s facility.

Total Power
Total power is often specified as no less than some 

value, where the safety person needs to know the 
maximum power output of a laser device to perform 
calculations and measurements appropriately.

A calculation example could be where the output 
power of a CW visible laser beam is specified to be 
no less than 4 mW, while the maximum output of 
the laser is actually 10 mW, resulting in a Class 3B 
versus a Class 3R hazard classification.  This certainly 
makes the likelihood of an error occurring, either 
in the laser class or in the actual quantification of 
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the hazards from the system.  For measurements, 
if the power output is near the maximum for a 
detector response and the output is more than the 
specification, the measurement will be incorrect due 
to detector saturation or similar effect.

Total Energy per Pulse
Much like total power, total energy per pulse is 

often specified as no less than some value, where the 
safety person needs to know the maximum energy 
per pulse.

Similar to power, a pulsed calculation example 
could be where the pulse energy of visible laser 
beam is specified to be no less than 4 mJ, while the 
maximum output of the laser is actually 10 mJ, again 
increasing the likelihood of an error occurring, either 
in the laser class or in the actual quantification of 
the hazards from the system.  For measurements, 
likewise, if the energy per pulse is near the maximum 
for a detector response and the output is more than 
the specification, the measurement will be incorrect 
due to detector saturation or similar effect.

Pulse Repetition Frequency
Pulse repetition frequency (PRF) is the laser output 

parameter that is most often matched from both a 
safety perspective and a performance perspective, 
usually because the highest PRF is the best for 
performance and the most conservative for safety.  
More often than not, the discrepancy is in the power 
given on the units, but even this is uncommon.  For 
example, the output may be provided in kHz when 
a laser really is pulsing at MHz.  For calculations 
this would result in an average power 1000 times 
less than the actual output, assuming the energy per 
pulse were correct as specified.  When it comes to 
measurements, the detector chosen may not respond 

properly to a PRF that is significantly higher than 
reported.

Pulse Duration

Pulse duration is also usually matched from both 
a safety perspective and a performance perspective, 
usually because the shortest pulse duration is the 
best for performance and the most conservative for 
safety. Here also, the discrepancy is usually in the 
power given on the units, but it is uncommon.  For 
example, the duration may be provided in ms when 
a laser really is pulsing at ns.  This kind of error has 
a significant effect on the MPE calculation at the 
very least.

Concerning Measurements

When performing on-site measurements outside 
an evaluator’s laboratory or facility, measurement 
difficulties are more likely to occur, simply because the 
evaluator does not have access to all of the equipment 
in his or her lab.  Even when doing measurements 
in an evaluator’s lab, there is the possibility of not 
having the required equipment for what turns out to 
be an unforeseen safety issue due to the specifications 
provided being with respect to performance.

Conclusion

Laser hazard evaluations performed based on 
performance numbers can be far too conservative 
or provide safety numbers that are inadequate to 
address a laser beam’s true hazards.  It is important 
that the numbers used in laser hazard evaluation 
be provided or found from a safety perspective to 
avoid erroneous safety numbers such as NOHD or 
required optical density for protection of users from 
hazardous laser radiation.
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Introduction

Cybersecurity, a huge area of research, is 
critical for protecting our computer networks and 
infras- tructure. Here we focus on one subfield of 
cybersecurity that lends itself naturally to statistical 
analysis: threat reports, security mechanisms and 
attacks, all of which involve some text data, e.g., 
attacks using emails/messages as vectors.

We take emails for granted now, but they have been 
around for less than 50 years, since the early 1970s. 
Initially they were limited to researchers in computer 
science, mostly in academia and government, and 
to small networks called local area networks. In 
the 1980s, a technical document called RFC1 821 
was ratified, which described SMTP, the simple 
mail transfer protocol. However, the popularity of 
emails really skyrocketed when the Internet became 
widespread in the late 1990s. The Radicati Group, 

1 Request for Comments

which researches email and social media usage and 
patterns, estimates that in 2018 more than 250 billion 
emails were sent.

With the easy access afforded by the Internet, 
a Pandora’s box of problems was opened. Hackers 
started infiltrating weakly protected accounts and 
computer  systems.  Malware,  software designed 
to damage computer systems or steal sensitive 
information, was perfected and deployed. Defenders 
were slow to catch up at first, but,  over  time,  malware 
detectors (so called Anti-virus software) and intrusion 
detection systems were designed. Technical defenses 
of accounts and systems were also improved using 
software such as John the Ripper for cracking weak 
passwords proactively to ensure strong passwords 
were used, and the use of penetration testing, in 
which security experts attacked the network to 
discover (and fix) vulnerabilities.  The arms race 
between the defenders    and the attackers was on.

Cybersecurity Analytics for Statisticians: 
A Case Study of Text Data
By David J. Marchette and Rakesh M. Verma 
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Meanwhile in the email world, first came spam: 
emails containing advertisements for all kinds of 
products and services. Later, cybercriminals realized 
the true potential of email. Rather than breaching 
the technical defenses put up by defenders, it was 
much easier to create a fake website that mimicked a 
popular one, e.g., PayPal or eBay, and lure unwitting 
email recipients to the  fake website with the goal 
of stealing the entered information. Similarly, it 
was much easier to spread malware by attaching 
it to an email and disguising it as an invoice or the 
agenda for the next meeting. Again, the unwitting 
human recipient would download it to the computer 
where it would infect the machine and silently steal 
information as long as it could beat the latest Anti-
virus technology. Thus began the attack now known 
as phishing.

While estimating the losses due to phishing 
is difficult and the reported numbers are likely 
inaccurate, there is no question that vast amounts 
of money and time are lost through these attacks, 
and they can directly affect any one of us. Readers 
interested in these numbers can check out the reports 
published by the Anti-phishing Working Group, 
https://apwg.org/.2

Defenders now had to design spam and phishing 
email detectors and thereby hangs a tale. But before 
we can study the techniques behind these detectors, 
let us look at the structure of an email.  An email 
consists of a header at the beginning of the email, 
which contains the information about  the sender 
and recipient:  much  like the envelope of traditional 
letters.  The header also contains       a subject field, 
and routing information that is appended by the mail 
servers the email passes through, according to SMTP. 
The body of the email contains the actual message.  
Finally,  emails  can contain attachments – files that 
are sent along with the email.

While there are non-statistical methods to detect 
phishing - for example, ensuring that the link viewed 
by the user is actually the link that is accessed when 

2 A 2020 report on cybercrime from NIST conducts an analysis of large, transparent studies. For 2016, it estimates staggering 
financial losses of between $160-770 billion in the US.

it is clicked or analyzing the header information – 
clearly text analytics can be used to detect certain 
types of phishing and spam, which we discuss below. 
But, before doing that, it will be helpful to review 
text mining and natural language processing (NLP) 
briefly.

Text and Its Analysis
The overwhelming majority of data on the Internet 

is unstructured text. We generate more such data 
daily by writing emails, messages, memoranda, 
white papers, notices (e.g., from US-CERT), website 
updates, etc. As noted above, many cyberspace 
attacks start out with a well-crafted email/message. 
Collectively, such attacks via emails/messages are 
referred to as social engineering attacks. This class 
includes business email compromise, job scams, and 
phishing/spearphishing attacks.

Humans are considered the weakest links in 
the cybersecurity chain. The popularity of these 
attacks stems from the fact that no technical defenses 
must be overcome, it is enough to just induce risky 
behaviors. Hence, they are likely to continue.

Another concern is deceptive content, e.g., “fake 
news,” conspiracy theories, and the like. De- ceptive 
content is now proliferating on social networking 
sites and the Internet. It is insidiously undermining 
faith in public institutions and the news media, and 
destroying trust. A society, espe- cially one in which 
so many transactions are online, cannot function 
effectively when trust is lost. This is another fertile 
area for text mining and NLP approaches.

Statistical Analysis of Text. 
A popular method for analyzing text data is the 

bag-of-words model. In this model, only the word 
frequencies are important; it’s as if we jumble the 
words into a bag, forgetting word order, and simply 
count the number of times (or proportion of times) 
a given word appears in each document. While word 
order is important for understanding a document, 
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it turns out that these frequency histograms – also 
called term-document matrices – can be used to 
great effect in many document classification tasks. 
These features can be enhanced via the addition of 
word n-grams to encode phrases rather than single 
words. A word n-gram is an ordered sequence of 
n words. For example, in the phrase “my dog has 
fleas” there are three 2-grams (word bigrams) “my 
dog”, “dog has” and “has fleas”. In some applications, 
such as the analysis of passwords or the bytes in a 
malware executable, character n-grams are used 
instead of word n-grams.

The bag-of-word model loses grammar and syntax 
information, and for situations in which this loss 
may be critical, one can implement part-of-speech 
tagging, a subfield of NLP. This tags words or word 
phrases according to their parts of speech: nouns, 
verbs, adjectives, etc.

While the bag-of-words model does lose 
grammatical information, it can still provide 
consider- able information about the content. Topic 
models are a powerful class of statistical models 
that utilize term-document frequency matrices. The 
basic model is to view a document as a mixture of 
topics, and each topic as a mixture of words. This is a 
generative model, in which a document is generated 
by iteratively drawing a topic from the distribution 
of topics, then a word using that topic’s distribution 
over words. See Blei et al. [2003], which describes the 
original Latent Dirichlet topic model.

Applying Text Mining and NLP to 
Cybersecurity

Besides spam, phishing and fake news, text 
mining and NLP techniques have also been used 
for password security, analyzing threat/security 
reports, identifying disgruntled employees, and 
attack generation. They have also been applied to 
malware detection, by treating the byte pattern of 
the malware as if tuples of bytes were words, and 
building models on n-grams of these “words.”

3 For example, see https://haveibeenpwned.com/Passwords
4 https://github.com/eyalmazuz/ThreatIntelligenceCorpus

Datasets & Techniques for Text-based Attacks

Before exploring statistical techniques, a few words 
on datasets are in order. Good, diverse and recent 
datasets are difficult to find because of privacy and 
reputational-risk concerns. Good, labeled ground-
truth datasets are even harder, since much manual 
effort is required for labeling.

For password security there are several public 
datasets because of leaks and hacks. For example, 
about 10 million plaintext passwords,  and SHA-1 
hashes of hacked passwords are available.3 For a 
study on disgruntled employees, researchers scraped 
a small dataset from Vault.com and Yahoo discussion 
groups. For attack attribution from threat intelligence 
reports, researchers collected publicly available 
reports, labeled them, and released the dataset.4 It 
includes 249 labeled documents and over 20,000 
unlabeled ones. For phishing, the IWSPA-AP  and 
other datasets are available. This collection includes 
two datasets: emails with and without headers. 
They were collected from several sources and have 
undergone two rounds of cleaning and preprocessing 
to ensure high quality.

Statistical Techniques for Bad Passwords, 
Phishing Emails and Threats

We now discuss techniques for two security 
challenges: finding “bad” passwords and phishing 
email detection. The idea of detecting bad passwords 
comes from the observations that humans are very 
bad at producing random sequences, and they are 
even worse at remembering random sequences, so 
passwords tend to have patterns that the attacker can 
exploit. A dataset D of bad passwords was collected 
and a second-order Markov model, M, with 28 
states was built. Our discussion follows Verma and 
Marchette [2019]. The states of M correspond to the 
26 letters ignoring case distinctions, a state for space 
(SPC) and a state (OTH) for the remaining forty to 
fifty characters that include: digits, punctuation and 
special characters.
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For the transition probabilities, construct a 
frequency array f , , where f [i, j, k] is the frequency 
of the character trigram ijk . For instance, for 
the password, passwd247, we get the overlapping 
trigrams pas, ass, ssw, swd, wdOTH, dOTHOTH and 
OTHOTHOTH. For each bigram ij, denote f (i, j, ∞) 
as the total number of trigrams beginning with ij. 
Then T [i, j, k] = f (i, j, k)/f (i, j, ∞), the maximum 
likelihood estimate of the transition probabilities. 
Good-Turing smoothing was used since many of the 
values were zeros.

Now  the question of whether a given password 
is bad reduces to the likelihood that it is generated   
by M . The test used is a log-likelihood function. Let 
password   

For the final test, calculate 

where µ and σ are the mean and standard deviation of  

Find the mean and standard deviation by 
computing for every password p in D.  

Because of centering and normalization, BA(p) has 
a mean of zero and a  standard deviation  of one. The 
authors set a  threshold of 2.6 standard deviations, 
about 99% of the area under the normal curve, and 
accept as good any password that has a value less than 
−2.6. Passwords close to the mean, zero, are viewed 
as being drawn from D and therefore unacceptable. 
Besides the normality assumption for llf values, the 
definition of a bad password depends on collecting 
a good dataset D. We turn to phishing next.

Anatomy of a Spearphishing Attack

Spearphishing is an attack in which the attacker 
tailors the email for a specific target.  This specificity 

5 To distinguish it from a 2004 dataset, which became popular in academic research on phishing.
6 http://ceur-ws.org/Vol-2124/

increases the probability of success. For  example,  
an email came one morning to the first author 
purporting to be from  the  chair of his department.  
It just said, “are you  available?”  It had the name and 
position of the chair at the bottom. Nowadays, we are 
very used to reading our emails on cellphones that 
show very little email metadata. So, I responded. Then 
a reply came stating that: “I am in a meeting right 
now, so I can’t call you. I want you to do something 
urgent for me.”

Now the alarm bells started ringing. Upon 
checking the email header, I found the phisher 
had created a fake account with the department 
chair’s name. This example illustrates the phishers 
are willing to go the extra mile for a higher chance 
of success. According to anecdotal reports, several 
faculty all over the US (and in other countries as 
well) have fallen for this specific attack  already  and 
lost considerable time and money in the process.  
Spearphishing attacks are also suspected to   be 
the cause of the successful attack on the Ukraine 
power grid (Case [2016]), and there are other famous 
examples.

Phishing Email Detection

Next we analyze phishing emails from the “new” 
Nazario dataset,5 https://monkey.org/~jose/ phishing/, 
corresponding to 3,388 phishing emails from 2007 
to 2015. More recent email datasets, e.g., IWSPA-AP 
dataset6 are available, but this one will serve just 
as well to illustrate the methods. We start with 
n-gram analysis, but instead of character n-grams 
for passwords and links, we consider word n-grams. 
Hypothesizing that phishing emails typically ask 
people to visit a website or download an attachment, 
we first check how many files have the 1-grams “click” 
and “download.” The unigram“click” is in 1,125 files 
(of 3,388), close to a third, but “download” is in 
only 200 files. Of course, there may be some files 
containing both these words also. We next check for 
files containing the words “account,” “html,” “white” 
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and “#ffffff” (hexadecimal for white).7 From the table, 
we can see that Html is very popular with phishers 
as 4 out of 5 emails use it. Also, more than half of 
the emails have a reference to the word “account.”

Readers might wonder why we chose the unigrams 
“white” and “#ffffff.” The reason is that phishers 
might include in their emails some text to confuse 
spam/phishing detectors, which is obscured from 
the recipients by using the same color font for it as 
the typical background color.

Next, we examine 3-grams (or trigrams). Since 
we want to leave some emails for testing our 
hypotheses, we just start with a toy (20 emails) 
random sample of phishing emails and give it to 
a concordance software. As seen in Table 1, there 

7 Strictly speaking, we should not examine the entire dataset. We should reserve a portion for testing and we should not 
use it for our learning or hypothesis making. However, these counts are just for illustration.

are some interesting patterns. These emails have 
headers as well, but we are focusing on the n-grams 
from the email bodies.

This is for the phishing class. We also need to 
consider the legitimate class to determine viability 
of the n-gram approach. For this we check the 
IWSPA-AP 2.0 training dataset of legitimate emails 
with full headers. In 4082 emails we find that 160 files 
(3.9%) contain the unigram click and 206 files (5.0%) 
contain the unigram account.  This gives us some 
hope that the n-gram approach may be worthwhile. 
But there is much work remaining.

This approach was studied in Verma and Hossain 
[2013]. They split the dataset into 70% for training 
and 30% for testing. The training dataset of phishing 
and legitimate emails  was analyzed with a t-test to 
determine whether a feature’s variance between two 
datasets is statistically significantly different. They 
used a two-tailed, two samples of unequal variances 
t-test since the phishing and legitimate datasets are 
of different sizes as well as variance.

After some experimentation, the researchers in 
Verma and Hossain [2013] considered frequencies 
of bigrams following the word “your.” A bigram was 
chosen as a possible feature if its t-value exceeded 
the critical value for an α value of 0.01. As usual, 
α denotes the probability of a Type I error. Then 
weights were calculated for each selected bigram, 
b, as follows:

In Equation 2, pb (respectively lb) denotes the 
percentage of phishing emails (respectively legitimate 
emails) that contain b. Features  that appeared in 
less than 5% of the emails or had weights less   than 
0 were discarded. Finally, a bigram b was selected, 
if w(b) > µ − σ, where µ is the mean bigram weight 
and σ the standard deviation. The resulting set 
of bigrams is called PROPERTY, since it denotes 
bigrams referring to the user’s property that has been 

Unigram Number of Files Percentage

click 1125 33.2

download 200 5.9

account 1950 57.7

html 2751l 81.2

white 1377 40.6

#ffffff 402 11.9

Table 1: Number of files and percentage containing 
each unigram (new Nazario dataset)

Trigram Raw Frequency

your paypal account 13

all rights reserved 9

the link below 9

to your pay 9

in to your 8

Table 2: Top trigrams from 20 random phishing emails 
(new Nazario dataset)
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affected (e.g., “credit card”). A similar analysis 
was  conducted for all the words that appear in 
sentences containing a hyperlink  or any of the 
words: url, link, or website. This analysis leads to 
the set of words called ACTION. The two sets lead 
to the Action-Detector sub-classifier:

For each email, label it phishing if it has:

1. The word “your” followed by a bigram 
belonging to PROPERTY (e.g. “your paypal 
ac- count”), and

2. A word from ACTION in a sentence 
containing a hyperlink or any word from 
{“url”, “link”, “website”} (e.g. “click the 
link”).

A Nonsense-detector is also designed to detect 
link-containing emails whose subjects do not 
match up with the body of the email, i.e., no word 
from the subject, after removing stopwords,8 
appears in the body. The Action-detector and the 
Nonsense-detector were composed sequentially.

The two detectors have several versions for 
robustness (recall that wily hackers are always 
trying to defeat these methods), the first versions 
of both detectors just use pattern matching. The 
second uses part-of-speech tagged features:  
bigrams that do not contain a noun or a named 
entity in the set PROPERTY, words that are not 
verbs in the set ACTION are discarded, and the 
Nonsense- detector only works on nouns, verbs, 
adjectives and adverbs in the subject of the email, 
and for subject-body similarity only nouns are 
used. The third adds sense tags to part-of-speech 
tagged features using SenseLearner Mihalcea and 
Faruque [2004], and the last extends the noun 
features using WordNet’s9 synonymy and the 

8 These are frequently occurring words such as conjunctions and prepositions.
9 https://wordnet.princeton.edu/  
10 https://nlp.stanford.edu/projects/glove/
11 https://github.com/facebookresearch/
12 https://allennlp.org/elmo
13 https://nvd.nist.gov

direct hyponyms of these synonyms. A few more 
changes are made in this last version, for more 
details see Verma and Hossain [2013].

We call these approaches feature engineering 
with statistical analysis/learning. Much early 
phishing detection work was in this direction. 
A recent survey of features and methods for 
phishing URL, website and email detection, and 
of phishing susceptibility studies, is given in 
Das et al. [2020]. A benchmarking evaluation of 
features and methods is in Aassal et al. [2020]. 
Another possibility is to avoid feature engineering 
and input the text of the emails using word 
embeddings, e.g., GLoVe10, FastText11 or ELMo12 
into a deep learning model that uses a lot of 
training data to automatically learn the features.

Threat Analysis 

Finally, we consider threat analysis. The 
National Vulnerability Database13 (NVD) contains 
reports of vulnerabilities covering two decades. A 
temporal topic model analysis was performed by 
Williams et al. [2020], showing the dynamic nature 
of the pattern of vulnerabili- ties, both over the 
applications and operating systems, and the types 
of vulnerabilities discovered.  By analyzing these 
patterns,  one can better understand the threat 
environment,  which can help   with planning 
and mitigation efforts. A similar study on attacks 
would be extremely valuable for understanding 
how the attackers exploit the vulnerabilities, how 
quickly they react to detected vul- nerabilities 
(and how often they utilize these vulnerabilities 
before the community detects them)   and how 
the threat environment changes in time.
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Discussion and Next Steps

Clearly, there are many opportunities for 
statisticians in cybersecurity. We have illustrated 
just text analysis for passwords, phishing and 
vulnerability reports. Others include: network 
analysis, the detection of malware, intrusion 
detection, and analyzing the behavior of users to 
detect insider threats. Since attackers are constantly 
trying to defeat defensive filters, an interesting 
direction for future research is adversarial machine 
learning Lee and Verma [2020]. It includes attack 
generation and techniques for building robust 
models. Readers interested in the state-of-the-art 
in phishing can look up the surveys cited above. 
For more information on text mining and natural 
language processing as well as other statistical and 
machine learning methods applied to cybersecurity, 
see Verma and Marchette [2019]. For a ranked list of 
free NLP tools see the URL below.14 
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