

DEPARTMENT OF THE NAVY

NAVAL SURFACE WARFARE CENTER CARDEROCK DIVISION NAVAL SHIP SYSTEMS ENGINEERING STATION 5001 S. BROAD STREET PHILADELPHIA, PA 19112-1403

9504 Ser 96315/067 31 October 2003

From: Commander, Carderock Division, Naval Surface Warfare Center, Naval Ship Systems Engineering Station, Philadelphia, PA
To: Commander, Naval Sea Systems Command Headquarters (Code 05Z5)
Commander, Naval Air Systems Command Headquarters Patuxent River (Code 4.5)
Commander, Space and Naval Warfare Systems Command Headquarters San Diego (Code PMW-165)

GUIDANCE DOCUMENT: METHOD TO MEASURE FERRULE END FACES, FIBER OPTIC CONNECTORS AND TERMINI

- (1) Guidance Document, Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Domed End Faces of 31 October 2003
- (2) Guidance Document, Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Flat End Faces of 31 October 2003
- (3) Guidance Document, Terminology used for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements of 31 October 2003

1. Purpose

This letter addresses guidelines to be used for specifying and measuring the ferrule end face geometry on fiber optic connectors and termini. Measurement method addressed is one using an interferometer. It is recognized that no one standardized ferrule end face geometry is in current use by all Platforms (such as ship, aircraft or ground-based). Acceptance criteria for ferrule end face geometry is addressed for domed end face ferrules (configured with either a physical contact, PC, or a non-contact, NC, polish) and for flat end face ferrules (with a NC polish only).

2. Measurement parameters

Guidance for limits on measurement parameter, measurement instrumentation considerations and measurement parameter interpretations are provided. This guidance for ferrules with a domed, end face geometry is provided in enclosure (1). Similar guidance for ferrules with a flat, end face geometry is provided in enclosure (2). Terminology used for ferrule end face geometry, that is not defined as part of enclosures (1) and (2), is provided in enclosure (3).

3. Distribution statement

Distribution Statement A: Approved For Public Release, Distribution Is Unlimited.

Subj: GUIDANCE DOCUMENT: METHOD TO MEASURE FERRULE END FACES, FIBER OPTIC CONNECTORS AND TERMINI

4. Points of contact

Please direct questions or comments to the Naval Surface Warfare Center Carderock Division, Ship Systems Engineering Station (NSWCCD-SSES) point of contact for fiber optic component testing and principle contact for NAVAIR/SPAWAR applications on this subject is E. Bluebond. He can be contacted by FAX: (215) 897-8509 or E-mail: <u>bluebondej@nswccd.navy.mil</u>. The Naval Surface Warfare Center, Dahlgren Division (NSWC DD) point of contact for specification requirements and principle contact for NAVSEA applications on this subject is R. Throm (Alternate: G. Brown). He can be contacted by FAX: (540) 653-8673 or E-mail: <u>thromra@nswc.navy.mil</u> (<u>browngd@nswc.navy.mil</u>).

A. Guli

A. GULIAN By direction

Copy to: NAVSEA 05Z5 (M. McLean) NAVSEA 05Z5 (H. Lewis) NAVSEA 05J2 (J. Moschopoulos) NSWC DD B35 (G. Brown) NAVAIR 1.0B1 (G. Celala) NAVAIR 3.1 (P. Arnason) NAVAIR 3.1 (R. Clarkson) NAVAIR 3.2 (M. Breckon) NAVAIR 4.4.4.3 (W. Boblitt) NAVAIR 4.4.4.3 (M. Peppas) NAVAIR 4.5.1.1 (G. Walles) NAVAIR 4.5.7 (D. Glista) NAVAIR 4.5 7 (M. Beranek) NAVAIR 4.5.7 (A. Burroughs) NAVAIR 4.5.7 (M. Hackert) NAVAIR 4.8.1.3 (A. Michon) SPAWAR PMW-165 (N.Freije) SPAWAR. PMW-165 (R. Orchard) SPAWAR PMW-165 (D. Kinsey) SPAWAR 04N-43A (D. Zsutty) SPAWAR 051 (C. Suggs) DSCC-VQP (R. Marbais) DSCC-VAT (D. Leight)

Guidance Document Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Domed End Faces

- 1. Summary of configurations for end face geometry and measurement conditions.
 - a. End face geometry configurations. There are two types of end faces for the ferrule (either domed or flat) and two types of polishes (either physical contact, PC, or non-contact, NC) addressed. This enclosure addresses the ferrules with a domed end face. The domed end face may contain either a PC polish or a non-contact polish. Both polishes for a ferrule with a domed end face are addressed in this enclosure. In general, possible configurations, for the ferrule and polish, end face geometry, are summarized in table form.

Ferrule End Face	Polish	Comments
Domed	PC	<u>1</u> /, <u>2</u> /
Domed	NC	<u>1</u> /
Flat	PC	
Flat	NC	

Possible Configurations for End Face Geometry

- \underline{l} Configuration covered in this enclosure.
- 2/ Recommended.
- b. Measurement parameters. The three parameters measured for end face geometry are fiber height, radius of curvature and offset. There are different ways to determine the offset. For a ferrule with a domed end face, the apex offset is the recommended offset to use. Recommended measurement conditions used will differ depending on the end face geometry.
- c. Measurement conditions. Measurement parameters can be determined using either a broad band or a narrow band measurement and the fiber height calculated based on the spherical surface or the planar surface. For the ferrule with an end face geometry addressed in this enclosure, the following measurement conditions are recommended:

Measurement conditions for end face geometry addressed.

Configurations for	End Face Geometry	Measurement Conditions				
Ferrule End Face Polish		Measurement Type	Calculated Fiber Height			
Domed	PC	Narrow band	From spherical surface			
Domed	NC	Broad band	From spherical surface			

2. Connector end face geometry parameters for domed ferrules.

- a. Radius of curvature: 7 mm to 25 mm.
- b. Apex offset: \leq 50 microns.
- c. Fiber height for a PC (Physical Contact) polish.
 - (1) Protrusion: ≤ 0.05 microns (50 nanometers (nm)).

Enclosure (1)

- Enclosure (1): Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Domed End Faces
 - (2) Undercut. The maximum value (limit) for the spherical undercut is dependent upon the radius of curvature measured for the connector under test. Current commercial equation is as follows: $U = -0.02R^3 + 1.3R^2 31R + 325$, where U is the maximum acceptable undercut in nanometers and R is the radius of curvature in mm. This equation is used for a radius of curvature between 10 to 25 mm. A constant value for the maximum acceptable undercut of 125 nm is used with a radius of curvature between 7 to 10 nm. The table below lists the maximum acceptable undercut for every mm of the radius of curvature (ROC).

Table of Maximum Acceptable Undercut Values versus the Radius of curvature.For Ferrules with a Domed End Face and with a PC Polish

ROC (mm)	7	8	9	10	11	12	13	14	15	16
Undercut (nm)	125	125	125	125	115	106	98	91	85	80
										_
ROC (mm)	17	18	19	20	21	22	23	24	25	
Undercut (nm)	75	72	68	65	62	59	56	53	50	

- Note: For military applications, further study is required before the performance criteria can be specified. For present, the commercial telecommunications industry criteria are listed.
- Note: If a one value limit must be employed, the following values are offered as guidance:
 - (1) Termini/test probe: ≤ 0.125 microns (125 nm).
 - (2) ST connector: \leq 75 nm.
- d. Fiber height for a NC (Non-Contact) polish.
 - (1) Protrusion: N/A (not applicable).
 - (2) Undercut. The minimum value (limit) for the spherical undercut is dependent upon the radius of curvature measured and on the ferrule hole diameter for the connector under test. The table below lists the minimum acceptable undercut for every mm of the radius of curvature (ROC).

Table of Minimum Acceptable Undercut Values versus the Radius of curvature. For Ferrules with a Domed End Face and with a NC Polish Ferrule hole diameter: 125 microns

ROC (mm)	7	8	9	10	11	12	13	14	15	16
Undercut (nm)	329	294	267	245	228	213	200	190	180	172
ROC (mm)	17	18	19	20	21	22	23	24	25	
Undercut (nm)	165	159	153	148	143	139	135	131	128	

Table of Minimum Acceptable Undercut Values versus the Radius of curvature. For Ferrules with a Domed End Face and with a NC Polish Ferrule hole diameter: 140 microns

ROC (mm)	7	8	9	10	11	12	13	14	15	16
Undercut (nm)	400	356	322	295	273	254	238	225	213	203
ROC (mm)	17	18	19	20	21	22	23	24	25	
Undercut (nm)	194	186	179	173	167	161	157	152	148	

Enclosure (1): Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Domed End Faces

> Table of Minimum Acceptable Undercut Values versus the Radius of curvature. For Ferrules with a Domed End Face and with a NC Polish Ferrule hole diameter: 172 microns

ROC (mm)	7	8	9	10	11	12	13	14	15	16
Undercut (nm)	578	512	461	420	386	358	334	314	297	281
ROC (mm)	17	18	19	20	21	22	23	24	25	
Undercut (nm)	268	255	245	235	226	218	211	204	198	

Note: These tables for minimum acceptable undercut values versus the radius of curvature are based on a fiber height of 50 nm below the surface of the ferrule. Calculations for the tables are based on a geometric approach utilizing the Pythagorean theorem.

- Note: For military applications, further study is required before the performance criteria are finalized.
- Note: If a one value limit must be employed, the following values are offered as guidance: (1) Termini/test probe: > 0.4 microns (400 nm).
 - (1) remain est probe. ≥ 0.4 microns (400 min). (2) ST connector: ≥ 0.3 microns (300 nm).
 - These values are minimum limits, not maximums as is the case for a domed end face with a PC polish.
- e. Relationship of fiber height to spherical surface of ferrule. Protrusion (i.e., spherical protrusion) is the positive distance above the spherical surface. Undercut (i.e., spherical undercut) is positive distance below the spherical surface.
 - Note: Only a partial region of the spherical surface is used for the fiber height measurement. This region is limited to the portion of the surface directly over the fiber.
- f. Interferometer measurement. Interferometers traditionally provided the extended/protracted fiber measurement in terms of fiber height. With respect to the distance above the spherical surface, a particular interferometer may provide the fiber height as either a positive or negative value. Refer to the operating manual for the particular interferometer. Some recent interferometers provide the extended/protracted fiber measurement either in terms of protrusion or in terms of undercut.
 - (1) If the interferometer provides either a measurement of fiber height with a positive distance below the spherical surface or of undercut, use the applicable undercut value in the table as the upper/positive limit. Use the value for protrusion as the lower/negative limit (for example, a 0.05 micron protrusion, as the lower limit, would be specified as -0.05 microns).
 - (2) If the interferometer provides either a measurement of fiber height with a positive distance above the spherical surface or of protrusion, use the applicable undercut value in the table as the lower/negative limit. Use the value for protrusion as the upper/positive limit (for example, a 0.05 micron protrusion, as the upper limit, would be specified as +0.05 microns).

Enclosure (1): Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Domed End Faces

- 3. Curve fitting areas for interferometer measurement calculations (see figure 1 at end this of enclosure).
 - a. Diameter F. The outside diameter of the Averaging Area, an area of a circle that is centered on the fiber surface. The center of the fiber is considered to be concentric with the center of the ferrule.
 - b. Diameter E. The outside diameter of the Extracting Area, an area of a circle that includes the fiber end face and the adhesive region around the ferrule hole diameter.
 - c. Diameter D. The outer diameter of the Fitting Area, an area centered on the ferrule surface and defined by a donut shaped area with outer diameter D and inside diameter E. The outer diameter of the Fitting Area is also referred to as the Region of Interest Width.

	Claddi	ng	Polyimide Coating
Diameter (microns)	125 <u>1</u> /	140	100/140/172
Diameter F – averaging area OD $\underline{4}$ /	50	50	50
Diameter E – extracting area OD $2/$	140	155	185
Diameter D – fitting area OD $\underline{3}/$	250	270	300

Table of Standardized Diameters to be used for the Curve fitting areas.

<u>1</u>/ Page 16 of IEC standard IEC 1300-3-23 lists the "suggested" diameters for D, E & F for the 125 micron, nominal fiber diameter and an ROC of 8 to 25 mm. Other size fiber diameters D, E & F are proportional based on these values as indicated in the following notes.

- 2/Use an outer diameter that is 15 microns greater than the cladding diameter or coating diameter, as applicable.
- 3/ Use an outer diameter that is about 110 microns above the extraction diameter.
- <u>4</u>/ Diameter F is not increased for larger fiber sizes since fiber height is calculated at the center of the fiber and is not the average height of the total fiber. A 50 micron diameter provides a more robust measurement for the center of the fiber (more pixels).
- 4. Other measurement variables.
 - a. Interferometer measurement method.
 - (1) Narrow band (monochromatic light). In general, use for connectors with a PC polish. Use where there will be less dispersion from the end face, such as with a "sharper" radius of curvature (smaller value). Monochromatic light (such as red light) provides a measurement with better resolution.
 - (2) Broad band (white light). In general, use for connectors with a non-contact polish. Use to eliminate ambiguity for a configuration with a step height. White light provides a coarser measurement.
 - b. Surface reflectivity. Adjust lighting level (such as camera gain, image and contrast) to prevent light saturation of the detector/camera.
 - (1) Ceramic surface. Adjust for a lower reflectivity.
 - (2) Metal ferrule with ceramic (jeweled) insert. Adjust for a lower reflectivity (similar reflectance level as for ceramic ferrule since region being detected is within the ceramic insert).
 - (3) Metal ferrule. Adjust for a higher reflectivity.

Enclosure (1): Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Domed End Faces

- 5. NAVAIR fiber optic, cable harnesses/connectors approach for end face geometry.
 - a. Connector end face geometry parameters, along with optical performance (cable harness assembly loss and for single mode also return loss), are to be used as part of cable harness acceptance criteria unless otherwise specified by the particular Platform or specific cable harness application.
 - b. Commonality will standardize on the end face geometry guidance listed in this enclosure.
- 6. Navy Shipboard, fiber optic connectors approach for end face geometry.
 - a. Connector end face geometry parameters are provided as guidance to augment steps for termination and inspection currently specified in MIL-STD-2042.
 - b. Polishing procedures, listed in MIL-STD-2042, produce PC polishes within the range specified.

Figure 1. Curve fitting diameters and areas.

DOC: EndFaceltr0310doc

Guidance Document Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Flat End Faces

- 1. Summary of configurations for end face geometry and measurement conditions.
 - a. End face geometry configurations. There are two types of end faces for the ferrule (either domed or flat) and two types of polishes (either physical contact, PC, or non-contact, NC) addressed. This enclosure addresses the ferrules with a flat end face. The flat end face may contain either a PC polish or a non-contact polish. Only the NC polish for a ferrule with a flat end face is addressed in this enclosure. End face geometry measurements are less meaningful for the configuration of a ferrule with a flat end face containing a PC polish. No meaningful parameter limits can be established to ensure that fiber-to-fiber contact will always be obtained. In general, possible configurations, for the ferrule and polish, end face geometry, are summarized in table form.

Ferrule End Face	Polish	Comments
Domed	PC	
Domed	NC	
Flat	PC	
Flat	NC	1/

Possible Configurations for End Face Geometry

- $\underline{1}$ / Configuration covered in this enclosure.
- b. Measurement parameters. The three parameters measured for end face geometry are fiber height, radius of curvature and offset. There are different ways to determine the offset. For a ferrule with a flat end face, the angular offset is the recommended offset to use. Recommended measurement conditions used will differ depending on the end face geometry.
- c. Measurement conditions. Measurement parameters can be determined using either a broad band or a narrow band measurement and the fiber height calculated based on the spherical surface or the planar surface. For the ferrule with an end face geometry addressed in this enclosure, the following measurement conditions are recommended:

Measurement conditions for end face geometry addressed.

Configurations for	End Face Geometry	Measurement Conditions			
Ferrule End Face Polish		Measurement Type	Calculated Fiber Height		
Flat NC		Broad band	From planar surface		

- 2. Connector end face geometry parameters for flat ferrules.
 - a. Radius of curvature.
 - (1) Intent. Inspect to ensure consistency of a flat surface contour rather then specifying stringent pass/fail criteria. The criteria provided are to ensure there is not an overly concave or overly convex surface contour (i.e., not have a sharp/steep radius of curvature (ROC)).
 - (2) Acceptable ROC: \leq -80 mm and \geq + 80 mm.

Enclosure (2)

Enclosure (2): Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Flat End Faces

- (3) Relationships of radius of curvature.
 - (a) Positive radius of curvature is convex to a flat ferrule end face. A flat/gradual convex radius of curvature is considered to be from +80 to positive infinity.
 - (b) Negative radius of curvature is concave to a flat ferrule end face. A flat/gradual concave radius of curvature is considered to be from 80 to negative infinity.
 - Note: As the radius of curvature goes from a gradual convex contour to a gradual concave contour, the values go from + 80 mm up to positive infinity, inverts from positive infinity to negative infinity, then goes down from negative infinity to - 80 mm.
 - Note: The radius of curvature of a close to flat surface may change readily from one measurement to the next from a large positive value (such as + 20,000 mm) to a large negative value (such as -20,000 mm). A large
- b. Angular offset: (a measure of the polish angle).
 - (1) Intent. Inspect to ensure consistency of a near perpendicular surface rather then specifying stringent pass/fail criteria. The criteria provided are to ensure there is not an overly steep angle on the surface contour.
 - (2) Acceptable Angular offset. $\leq 0.5^{\circ}$.
- c. Fiber height for NC (Non-Contact) polish.
 - Note: Fiber height for a ferrule with a flat end face is to be measured from a planar surface as opposed to the apex of a spherical surface.
 - (1) Protrusion: none.
 - (2) Undercut. 65 nm minimum, 400 nm maximum.
 - Note: For military applications, further study is required before the performance criteria can be specified. For present, the currently used criteria are listed.
 - Note: If a one value limit must be employed, the following values are offered as guidance:
 - (1) Termini/test probe: ≤ 0.075 microns (75 nm).
 - (2) ST connector: ≤ 0.100 microns (100 nm).
- d. Relationship of fiber height to planar surface of ferrule. Protrusion (i.e., spherical protrusion) is the positive distance above the planar surface. Undercut (i.e., spherical undercut) is positive distance below the planar surface.
- e. Interferometer measurement. Interferometers traditionally provided the extended/protracted fiber measurement in terms of fiber height. With respect to the distance above the planar surface, a particular interferometer may provide the fiber height as either a positive or negative value. Refer to the operating manual for the particular interferometer. Some recent interferometers provide the extended/protracted fiber measurement either in terms of protrusion or in terms of undercut.
 - (1) If the interferometer provides either a measurement of fiber height with a positive distance below the planar surface or of undercut, use the applicable undercut value in the table as the upper/positive limit. Use the value for protrusion as the lower/negative limit (for example, a 0.05 micron protrusion, as the lower limit, would be specified as -0.05 microns).

Enclosure (2): Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Flat End Faces

- (2) If the interferometer provides either a measurement of fiber height with a positive distance above the planar surface or of protrusion, use the applicable undercut value in the table as the lower/negative limit. Use the value for protrusion as the upper/positive limit (for example, a 0.05 micron protrusion, as the upper limit, would be specified as +0.05 microns).
- f. Interferometer determination of the planar surface. The planar surface is to be determined from an ideal sphere after mapping the ferrule end face. From this best fit/ideal sphere, a plane shall be mapped using the points on the ideal sphere at diameter E, the outer diameter of the extraction area (see curve fitting areas for interferometer measurement calculations below).
- 3. Curve fitting areas for interferometer measurement calculations (see figure 1 at end of this enclosure).
 - a. Diameter F. The outside diameter of the Averaging Area, an area of a circle that is centered on the fiber surface. The center of the fiber is considered to be concentric with the center of the ferrule.
 - b. Diameter E. The outside diameter of the Extracting Area, an area of a circle that includes the fiber end face and the adhesive region around the ferrule hole diameter.
 - c. Diameter D. The outer diameter of the Fitting Area, an area centered on the ferrule surface and defined by a donut shaped area with outer diameter D and inside diameter E. The outer diameter of the Fitting Area is also referred to as the Region of Interest Width.

		Cladding			Polyimide Coating
Diameter (microns)		125	<u>1</u> /	140	100/140/172
Diameter F – averaging area OD 4	/		50	50	50
Diameter E – extracting area OD 2	/		140	155	185
Diameter D – fitting area OD	/		250	270	300

Table of Standardized Diameters to be used for the Curve fitting areas.

- <u>1</u>/ Page 16 of IEC standard IEC 1300-3-23 lists the "suggested" diameters for D, E & F for the 125 micron, nominal fiber diameter and an ROC of 8 to 25 mm. Other size fiber diameters D, E & F are proportional based on these values as indicated in the following notes.
- 2/Use an outer diameter that is 15 microns greater than the cladding diameter or coating diameter, as applicable.
- $\underline{3}$ /Use an outer diameter that is about 110 microns above the extraction diameter.
- <u>4</u>/ Diameter F is not increased for larger fiber sizes since fiber height is calculated at the center of the fiber and is not the average height of the total fiber. A 50 micron diameter provides a more robust measurement for the center of the fiber (more pixels).
- 4. Other measurement variables.
 - a. Interferometer measurement method.
 - Broad band (white light). In general, use for connectors with a non-contact polish. Use to eliminate ambiguity for a configuration with a step height. White light provides a coarser measurement.
 - b. Surface reflectivity. Adjust lighting level (such as camera gain, image and contrast) to prevent light saturation of the detector/camera.
 - (1) Ceramic surface. Adjust for a lower reflectivity.

- Enclosure (2): Guidance for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements, Ferrules with Flat End Faces
 - (2) Metal ferrule with ceramic (jeweled) insert. Adjust for a lower reflectivity (similar reflectance level as for ceramic ferrule since region being detected is within the ceramic insert).
 - (3) Metal ferrule. Adjust for a higher reflectivity.
- 5. NAVAIR fiber optic, cable harnesses/connectors approach for end face geometry.
 - a. Connector ferrules with domed end faces are recommend for Commonality standardization, unless otherwise specified by the particular Platform.
 - b. Connector end face geometry parameters, along with optical performance (cable harness assembly loss and for single mode also return loss), are to be used as part of cable harness acceptance criteria unless otherwise specified by the particular Platform or specific cable harness application.

Commonality will standardize on the end face geometry guidance listed in this enclosure.

- 6. Navy Shipboard, fiber optic connectors approach for end face geometry.
 - a. Connector end face geometry parameters are not applicable.

Figure 1. Curve fitting diameters and areas.

Guidance Document

Terminology used for Interferometer Inspection of Fiber Optic Ferrule, Fiber End Face Measurements

- 1. Domed end face. A ferrule in which the mating connection surface has a radius (or domed) shape.
- 2. <u>Domed ferrule</u>. See domed end face.
- 3. <u>End face geometry</u>. Measurement of the ferrule end face for radius of curvature, measurement of the fiber from a defined surface for fiber height, and measurement of the highest point on the surface contour from the center of the fiber for offset.
- 4. <u>Ferrule end face</u>. Surface of the ferrule that makes contact with the mating ferrule and/or the mating fiber and the surface that is perpendicular to the longitudinal axis of the optical fiber.
- 5. <u>Fiber height, domed end face</u>. The height of the fiber is compared to the region of the sphere over the fiber that is formed by an ideally polished connector end face. The difference is the fiber height. The fiber height is measured as the degree of fiber protrusion or undercut from this region of the sphere.
- 6. <u>Fiber height, flat end face</u>. The height of the fiber is compared to the planar surface determined from predetermined distances on the connector end face. The difference is the fiber height. The fiber height is measured as the degree of fiber protrusion or undercut from the planar surface.
- 7. <u>Flat end face</u>. A ferrule in which the mating connection surface has essentially a planar (or flat) shape with a very limited degree of tilt.
- 8. <u>Flat ferrule</u>. See flat end face.
- <u>NC polish</u>. Ferrule end face is polished in a manner so that the ferrules are the first to make contact when connection surfaces are mated together without the fibers coming into contact.
- 10. Non-contact polish. See NC polish.
- 11. <u>Offset</u>. The polish offset is the distance between the highest point on the connector end face (where the center of the bull's eye pattern is observed) and the center of the fiber. This offset is also referred to as the linear offset, eccentricity or apex offset.
- 12. <u>Offset, angular</u>. The angle between a radial line from the center of the spherical surface to the high point of the polish and a line through the longitudinal axis in the center of the fiber.
- 14. <u>PC polish</u>. Ferrule end face is polished in a manner so that the fibers first make contact when connection surfaces are mated together.
- 15. Physical contact polish. See PC polish.
- 16 <u>Radius of curvature, domed end face</u>. An ideally polished connector end face should have the fiber and the connector form a uniform, spherical surface with the fiber at the highest point (apex). The radius of this sphere formed by the polished connector is called the radius of curvature.

Enclosure (3)