CAPACITORS

PACKAGING

Each capacitor style is made with different materials and contained in different packaging styles to give it unique functional characteristics. A general comparison between all capacitor styles is shown in <u>Table 1</u>, and a more detailed comparison between the functional parameters of fixed capacitor styles is shown in <u>Table 2</u>. Note the numeric values given in <u>Table 2</u> is for initial tolerance and stability after life testing for capacitors manufactured to Military performance specifications. They may not be indicative of similar commercial styles.

Frequency characteristics are especially important when selecting a capacitor style. All capacitors have frequency limitations due to the nature of the dielectric and other construction features. Figure 2 breaks down the frequency characteristics graphically. The frequency range of electrolytics is the most difficult to describe because effective capacitance involves a complex relationship between voltage rating, case size, nominal capacitance value, and operating frequency. Alternating currents and operation under pulse and energy storage conditions adds further complexities.

In addition to voltage rating, heat dissipation must also be taken into account. Heat is generated as a result of Equivalent Series Resistance (ESR), dielectric losses, and to a lesser extent, by losses in the attachment of lead wires to the capacitor elements.

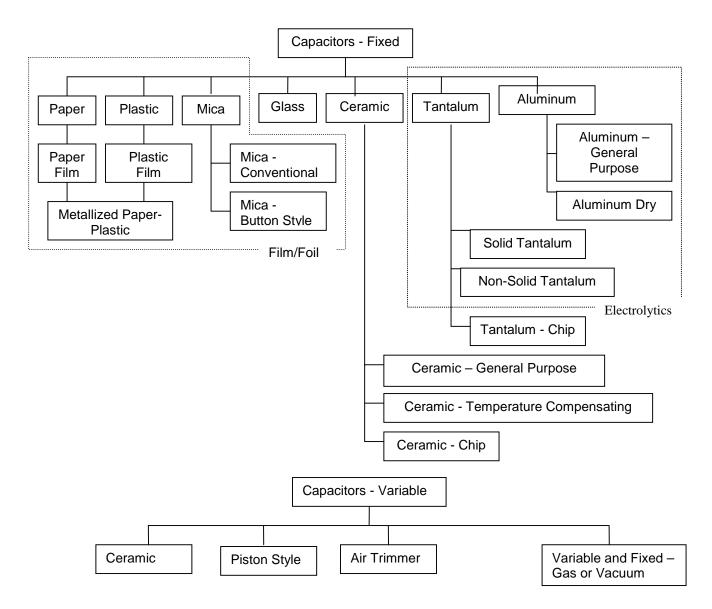


Figure 1. Capacitor Technology Tree

Table 1.	Summarv of	Application	Characteristics	bv	Capacitor Style
10010 11	o anninary or	, application	onaraotonotioo	~,	Capacitor Cigio

	1. Commary of Application characteristics by Capacitor Otyle
Capacitor Style	Application Information
Fixed, Paper Film	Low cost, low reliability style available in medium capacitance values (0.001 μf –
	30 µf). Film/Foil capacitor style designed for circuits requiring high insulation
	resistance, low dielectric absorption, and where ac component of voltage is
	small. Not intended for high humidity applications.
Fixed, Plastic Film	Broad class of capacitor style with similar failure characteristics and modes but
	manufactured with different plastic Styles. Generally intended for high voltage
	applications where the ac component of voltage is small in comparison to the dc
	component. Same as above, except higher in cost, higher in capacitance per
	volume, and less sensitive to environmental conditions.
Fixed, Metallized Paper	Same as above, except the metallization process increases voltmetric efficiency
and Plastic	and provides self healing process at the expense of decrease low impedance,
	low voltage performance.
Fixed, Mica, Conventional	Low capacitance value, high frequency capacitor style intended for use in circuits
	requiring precise filtering, bypassing, and coupling.
Fixed, Mica-Button	Small size, low capacitance value, high frequency style. Typical uses are in
Li d	tuned circuits and in coupling and bypassing high frequency applications.
Fixed, Glass	Rugged, small size, low capacitance value style with good high frequency
	characteristics and able to withstand high temperatures. Intended for
	applications where high insulation resistance, low dielectric absorption, and fixed
	temperature coefficients are important.
Fixed, Ceramic, General	Small physical size capacitor with comparatively large electrical capacitance and
Purpose	high insulation resistance. Intended for surface mount applications.
Fixed, Ceramic,	Intended to compensate for temperature induced variance from other circuit
Temperature	elements. Used for highly accurate circuits where change in capacitance value
Compensating	cannot be tolerated.
Fixed, Ceramic, Chip	Small size capacitor intended for surface mount applications. Use where high
•	accuracy applications where variation in capacitance values with respect to
	temperature, voltage, and life can be tolerated.
Fixed, Tantalum, Chip	Small size chip capacitor intended for relatively low voltage surface mount
	applications. Intended for similar applications as ceramic chip capacitors, but
	where higher voltmetric efficiency is needed.
Fixed, Electrolytic,	Low frequency, high capacitance style. Primary application is power supply
Tantalum, Solid	filtering. Higher capacitive density, but more expensive and higher leakage
	current than aluminum styles. Category covers both molded and dipped styles.
Fixed, Electrolytic,	High capacitance value capacitor, used primarily in low frequency filtering
Tantalum, Non-Solid	applications. Category covers plain foil, etched foil, and sintered slug capacitor
	styles, each with unique functional characteristics.
Fixed, Electrolytic,	Most common electrolytic. High capacitance density, high voltmetric efficiency,
Aluminum (General	and low cost. Used primarily for low frequency filtering. Not recommended for
Purpose)	airborne applications.
Fixed, Electrolytic,	High capacitance density, high volumetric efficiency, and low cost style used
Aluminum (Dry)	primarily for low frequency filtering. Most common electrolytic. Not
Variable Coromia	recommended for airborne applications.
Variable, Ceramic	Non-linearly adjustable, small sized trimmer capacitors designed for applications
Variable Distan	where fine tuning is periodically required during the life of equipment.
Variable, Piston	Linearly adjustable, small sized trimmer capacitors designed for applications
Variable Air Trimmer	where fine tuning is periodically required during the life of equipment.
Variable, Air Trimmer	Large capacitor intended for line rectification applications.
Fixed-Variable,	Non-Linear variable capacitor intended for high power applications.
Gas/Vacuum	<u> </u>

		N 41				A.L
Characteristic	Paper-Plastic	Mica	Glass	Ceramic	Tantalum	Aluminum
Capacitance	1pF to 50μF	1pF to 90μF	0.5pF to	0.1pF to	50pF to	500pF to
Range			20µF	1,000μF	1,200µF	200,000µF
DC Rated Voltage (V)	30 to 2000	50 to 2,500	100 to 1,250	50 to 1,500	3 to 500	5 to 500
Initial Tolerance	±0.5 to 20%	±1 to 10%	0.25pF to 5%	±0.5pF or 1% to 20%	-5 to +75%	-10 to +75%
Stability ¹	<2 to 10%	<1 to 5%	0.5% or 0.5pF	3 to 20%	<15%	<15%
Relative Size	Small to	Large	Large	Fixed-Small	Very Small	Medium to
for Equivalent	Large			Variable-		High
CV Rating	U U			Large		Ũ
Relative Cost	Medium to	Medium	Medium	Low	Very Small	Medium
for Equivalent	High				-	
CV Rating	-					

Table 2. Technical Performance Characteristic Comparison of Various Capacitor Styles

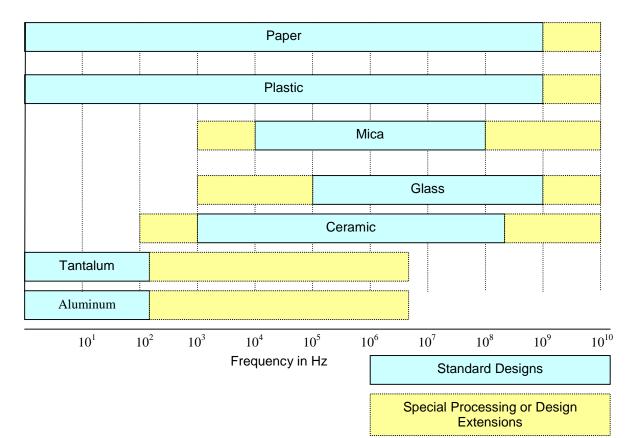


Figure 2. Operating Frequency Limits of Capacitors

¹Stability is measured after a 2,000-Hour life test for the capacitors manufactured to the Military performance specifications. Value may not be indicative of commercial styles.