DDG(X) Program

CAPT David Hart
DDG(X) Program Manager

12 Jan 2022
• The DDG 51 class is an outstanding success for the Navy and holds the record for the longest production run of any surface combatant in Navy history
 – Production started in 1985 and continuing beyond 2027
 – DDG 51 FLT III will provide the world’s best Integrated Air and Missile Defense (IAMD) combat system elements for the near term fight
 - Likely to remain in the Fleet through the 2060s
 - Limited in the ability to incorporate future upgrades that consume additional space, weight or power requirements

• Naval planning for the 21st century requires upgrades for the future fight. DDG(X) will provide flexibility for:
 – Increased missile capacity
 – Sensor growth
 – Longer range offensive anti-surface and strike capabilities
 – High power Directed Energy weapons (e.g. lasers)
 – Increased survivability
 – Increased efficiency to reduce operational costs & demands
 - Supported by an efficient Integrated Power System (IPS) that provides operational flexibility as well as power efficiency
 – Reduced impact on Command Logistics Fleet and improved Distributed Maritime Operations

New Hull Form Required to Introduce Enhanced Capability to Fleet and Pace Threat
• DDG(X) will utilize successful evolutionary development approaches from Destroyers, Cruisers, Frigates, CG 47 to DDG 51 upgrades vice revolutionary approach
 – Lessons learned from previous shipbuilding programs used to inform requirements development, design strategy and execution plans

• DDG(X) will provide the flexibility and margins necessary to become the Navy’s next enduring large surface combatant
 – Combine DDG 51 FLT III combat system elements with a new hull form
 – Resets SWAP-C margins
 – Minimize incorporation of new technologies
 – Include an efficient IPS
 – Provide greater endurance, reducing the Fleet logistics burden

• CNO approved Top Level Requirements (TLR) in December 2020 set clear path for DDG(X) execution
 – Draft Capability Development Document developed in Oct 2021

• DDG 51, Virginia, and Columbia program lessons learned demonstrated up front industry involvement is key enabler to program success
 – Columbia program Integrated Product and Process Development (IPPD) process used to help inform early relationship and industry involvement on DDG(X)
Top Level Requirements Overview

<table>
<thead>
<tr>
<th>Key Metrics/ TLR Areas</th>
<th>DDG(X)</th>
</tr>
</thead>
</table>
| **Flexibility** | • *Reestablish new construction SWAP-C margins* - Arrangeable area margin of 5% beyond reservations; Weight margin of 10%; modern naval architecture requirement for KG of .4m; Power margin of 20% + debitable power from propulsion via IPS; Cooling at 20% upgradeable to 40%;
* • *Space reservations for future upgrades* - AMDR and C4I growth, high power directed energy, Large Missile cells in place of 32 VLS cells; IPS for power flexibility; pre-planned growth for additional VLS, Large Missile cells, or future capabilities |
| **Vulnerability** | • Improved over FLT III in maintaining mobility & IAMD after damage;
* • Acoustic, IR and UEM signatures all improved by >50% |
| **Mobility** | • Current design objectives: Range >50% increase; Time on station >120% increase; Efficiency >25% increase |
| **Capability** | • Utilize FLT III Combat System elements + two 21-cell RAM launchers. Supports increase in VLS cells, Large Missile Launcher cells, sensor growth, Directed Energy weapons, C4I |
DDG(X) Design-Enabled Warfighting Improvements

- **Self Defense**
 - Improved self-defense with (2) 21-cell RAM launchers

- **Aviation**
 - Increased hangar size

- **Destroyer Payload Module Option**
 - 2 x SVTT for ATT (P/S)

- **Environmental Performance**
 - Expanded Arctic Operations & Improved Seakeeping

- **Survivability**
 - Improved survivability and enhanced mobility

- **Command & Control**
 - Air Defense & UxV control

- **Integrated Power System (IPS)**
 - IPES

- **Design-enabled Improvements**
 - Baseline Capabilities
 - Future Capabilities

DDG(X) – Designed Lethal, Affordable, Upgradable & Sustainable
• Deliberate Technology Maturation and Risk Reduction
 – Non developmental ship systems - land based testing to reduce critical risks prior to Detail Design and minimize risks prior to ship activation
 – Developing early and robust Model Based Systems Engineering (MBSE), Modeling and Simulation (M&S), Controller Hardware in the Loop (CHIL), and Power Hardware in the Loop (PHIL) plans to help inform early design decisions

• Critical Risks Identified
 – DDG(X) Land Based Testing for hull form and IPS will be executed at NSWC Carderock and NSWC Philadelphia planned
 – IPS testing supports component level-prototyping, system integration testing, and full-scale demonstration
 – Retires risk early by completing critical systems testing prior to Milestone B approval
DDG(X) Program Status

- Preliminary through Detail Design for DDG(X) will be accomplished through a collaborative, multi-disciplinary Navy-industry effort composed of the surface combatant shipbuilders, suppliers, ship design agents and other subject matter experts
 - Collaborative design team promotes preservation of skilled / experienced Large Surface Combatant design workforce
 - Shipbuilders integrated into the team in March 2021 to help inform early decision process
 - Design decisions informed by producibility and program affordability
- Program currently in Concept Formulation with plans to enter Preliminary Design in FY22
- CNO approved Top Level Requirements (TLR) in Dec 2020 informed draft CDD development
- Acquisition Strategy in development, informed by:
 - Columbia IPPD process
 - DDG 51 Flt III to DDG(X) production transition
 - Developing thoughtful transition plan to help manage Large Surface Combatant skilled workforce and workload