Structural Analysis of Mechanical Defect in Solid Propellant Grain Using Machine Vision & Artificial Intelligence

Sandip Suman, PhD (Principal Engineer) Date: 7/12/2024

PRESENTER BIO

• Sandip Suman has been working as a Principal Engineer at the Ejection & Propulsion division of Collins Aerospace (A Raytheon Company) for the last seven years. He has a PhD in Mechanical Engineering with around 25 years (academia & industry combined) of engineering experience.

• Prior to Collins, Dr. Suman worked in the automotive industry for 7 years, and in academia (KU & NDSU) for almost a decade as a faculty and researcher.

• Dr. Suman is a well-known international expert in Multiaxial Fatigue & Fracture. He has also done research in the structural application of artificial intelligence & pattern recognition technology. His artificial intelligence-based pattern recognition work has also been listed by Smithsonian. He has several conference proceedings, journal papers, and book chapter publications (Mechanical Fatigue of Metals, Springer publication). He is also the creator of the famous SK Critical Plane Method for Multiaxial Fatigue.

• He has given talks at several national and international conferences and has served on International Conference on Multiaxial Fatigue and Fracture and ASTM E08 committees. He also won the Best Research Presentation Award at NDSU.

• Currently, Dr. Suman has been leading research on AI-based Defect Detection Technology for rocket motor grains at the Fairfield, CA site of Collins, and here to present his work.

OVERVIEW & OBJECTIVE

- Develop AI based image processing algorithm for the detection of cracks, voids and foreign materials in energetic assemblies
- Develop concept model to demonstrate the basic functionality of technology
- To improve accuracy, efficiency, customization and scalability
- Automation with human like intelligence
- Enhance the productivity and minimization of production downtime
- Minimize variability and improve consistency in analysis and process

WHAT IS AI/MACHINE VISION

CURRENT PROCESS & LIMITATION

Inspector ???????

- 1. Hard to detect
- 2. Experience of examiner
- 3. Consistencies
- 4. No analytical correlation
- 5. Human Fatigue

- Slow & Tedious Process
- Poor customer satisfactions
- Delivery delay
- Reduced Risk

PROPOSED SOLUTION

- Uses <u>Hardware</u> and <u>Software</u> in combination
- Use of historical data for training of AI-Neural Network
- Pattern recognition of defects
- Connect Defect and performance parameters
- Optimize Performance by proposing controlled process parameters

VALUE PROPOSITION

Current State (Manual inspection)	Future state (AIDD System)							
Induced human fatigue	Focused human decision making							
Accuracy (Highly human dependent)	Optimized human involvement							
Long cycle time	Focused value-added tasks							
Reliability	AIDD assisted human decision (Improved)							
Manual inspection	AIDD System							
Operator based knowledge	Sustainable system knowledge							
Constrained capacity	Flexible capacity (data driven management)							

IMAGE ACQUISITION

- Digital image with known PPI & x-ray Parameters
 - camera
 - digital scanner
 - digital x-ray machine
- Known lighting parameter
- Clear information about background color
- Camera parameter if any

51	48	51	62	62	56	55	43	47	50	53	57	64	68	59	58	60	62	62	61	57
57	51	49	57	55	59	60	51	47	50	48	54	61	63	60	56	59	58	58	59	55
59	51	50	55	54	61	58	53	49	47	46	51	59	60	62	58	61	59	58	58	51
58	53	53	50	56	55	49	56	55	48	55	54	60	59	60	60	61	58	56	57	48
60	57	53	42	55	44	42	61	60	50	66	61	58	57	53	56	55	52	52	51	46
58	64	53	42	56	41	38	63	60	47	63	63	56	54	48	49	48	49	49	50	47
56	66	54	51	57	49	44	59	55	45	53	63	55	51	48	43	42	49	51	53	56
57	69	54	56	55	57	54	60	55	45	45	63	53	47	49	37	41	51	54	62	72
65	75	61	60	57	53	52	49	50	56	50	66	46	46	45	43	58	73	73	75	74
62	63	55	60	57	49	49	51	54	57	56	67	46	42	43	47	55	72	83	83	85
54	46	44	48	52	50	54	58	58	52	49	53	45	41	40	45	53	51	51	70	88
54	49	57	51	45	43	49	55	55	47	43	43	46	37	32	44	59	47	38	68	80
56	49	61	57	49	42	39	37	43	43	40	35	44	29	23	41	69	62	63	82	90
55	44	51	55	51	43	36	35	38	36	30	26	40	31	34	53	62	56	78	90	104
54	49	51	54	47	41	37	40	34	28	23	26	40	42	54	67	42	45	85	91	101
50	43	36	41	44	48	39	29	23	18	19	29	35	37	59	64	39	49	92	97	105
47	44	46	50	47	37	34	37	30	20	14	32	39	35	63	65	46	74	104	103	111
43	46	49	50	45	38	35	32	30	29	27	40	41	40	65	58	53	90	115	104	97
43	47	48	46	47	46	37	26	22	29	33	42	41	43	65	53	56	88	98	102	106
43	44	44	44	44	44	35	27	23	27	27	35	35	40	61	51	60	87	96	117	125
40	40	44	43	37	31	31	32	33	26	19	28	31	31	51	50	58	85	103	126	124
44	40	41	42	36	29	31	36	34	22	11	22	30	30	49	61	53	78	102	122	116
47	44	41	38	38	39	37	35	27	22	13	20	31	31	50	69	51	67	104	123	121
44	46	42	37	38	42	41	38	30	32	21	23	29	26	44	65	53	50	86	112	121
47	44	46	40	37	41	41	33	29	29	28	33	37	35	40	58	51	40	65	93	114
45	45	49	42	35	34	36	32	26	26	25	29	29	26	36	59	59	56	69	85	107
44	45	50	43	35	31	30	29	31	28	29	33	34	29	32	46	60	50	40	81	91
41	41	45	40	37	34	30	29	31	30	31	34	34	30	25	28	49	49	38	77	91
38	40	46	39	38	37	34	35	36	34	32	27	25	26	29	28	45	55	53	52	91
45	51	56	45	42	39	37	40	38	38	41	40	39	38	28	16	34	44	44	27	69
57	61	63	47	44	41	39	41	50	41	37	36	36	39	32	21	30	51	61	52	69
60	61	60	43	44	44	42	42	42	35	36	39	40	39	37	32	29	44	63	60	54
54	58	58	52	55	48	43	41	43	46	43	38	34	36	41	44	33	42	55	49	51
40	F D	F O		E 4	E 4	F 1	47		4.5		4.0	4.0	40	4.5	40	20	21	40	20	5.0

IMAGE PROCESSING

DEFECT PARAMETERS

- Length of crack
- Width of crack
- Some of the sharp angles of different locations
- Over all area of the defect

MACHINE VISION & AI

BUILDING OF AI NEURAL NETWORK

Artificial Defect Based Approach

- Defects are created manually to introduce in the image for training purpose
- Complement contrast (reverse contrast to make crack and defects more visible)
- Reconstruction based methods: Self trained encoders and decoders to reconstruct the images for anomaly detection

BUILDING OF AI NEURAL NETWORK

Geometrical Shape Based Approach

BUILDING OF AI NEURAL NETWORK

Geometrical Shape Based Approach

ANALYSIS PROCEDURE

DEFECT ANALYSIS

Measurement of features

Rectangular to Polar Coordinates

PATTERN & PERFORMANCE

- Understand the shape of the defects
- Mathematically model the defect
- Analyze the defect for its burn pattern
- Predict the ballistic performance curve

PROOF OF CONCEPT

-77

g', ...

97-1.jpg';

);

α.

SAMPLE OUTPUT

COLLABORATION

- RTRC
- ATC
- Others?????

ACKNOWLEDGEMENT

- My Leadership
- Engineering Team at Fairfield
- Conference Committee

Questions????

© 2024 Collins Aerospace. | This document does not include any export controlled technical data.