Discover ways to grow and what opportunities await you.
Naval Surface Warfare Center, Panama City Division
110 Vernon Avenue, Panama City, Florida 32407
(850) 230-7400

Distribution A:
Approved for public release; distribution is unlimited.

Rev 1.0 (April 2017)
Table of Contents

OVERVIEW
- 1.1 How Will This Career Guide Benefit Me?
- 1.2 What Is a Career Path?
- 1.3 Why Competencies?
- 1.4 How to Use this Guide

SELF-ASSESSMENT
- 2.1 What Do You Value?
- 2.2 What Are You Interested In?
- 2.3 What Are Your Strengths and Weaknesses?
- 2.4 Is There Anything Else Important to You?

HOW TO “MOVE”
- 3.1 Vertical
- 3.2 Lateral
- 3.3 Enrichment
- 3.4 Reorient

CAREER MAPS, ROLES/POSITION PROFILES, AND QUALIFICATIONS
- 4.1 Engineering
- 4.2 Project Management
- 4.3 Systems Engineering
- 4.4 Science and technology
- 4.5 Software Engineering
- 4.6 Test and Evaluation
- 4.7 Logistics
- 4.8 Quality
- 4.9 Line Management

CONCLUSION
This Naval Surface Warfare Center, Panama City Division (NSWC PCD) Career Planning Guide (CPG) is intended to help both employees and their supervisors navigate their careers and personal development while at NSWC PCD. The command has established several competency domains (shown in Figure 1) in order to create communities which provide training, mentoring, and guidance to the workforce regardless of the employee’s organizational assignment or tasking. This guide has been created primarily from the perspective of the technical competencies and each has defined a Career Map for their domain, using a standard framework. These maps, and their associated content, allow an employee to understand the activities and responsibilities associated with various positions at the command, so that they can personally identify a path that meets their career goals.

This guide will evolve to include information related to the qualifications needed to serve in the positions shown throughout this guide. That information will allow employees to identify and plan specific training or development activities they want to complete, in order to prepare themselves for positions they desire. The qualification levels will also assist supervisors in identifying who is, or may be, prepared to serve in positions that are available as well as aid in mentoring their employees. In this way, NSWC PCD is better prepared to achieve the goal of having “the right person, in the right place, with the right skills, at the right time.” It is envisioned that this guide will also evolve to include other potential competency areas, such as mechanical engineering or tactics to address the entire technical workforce.

Figure 1 - NSWC PCD Technical Competency Domains
1.1 HOW WILL THIS CAREER GUIDE BENEFIT ME?

The CPG is a ‘living’ tool for planning an employee’s career. Employee development is a constant partnership between employees, their supervisors, their mentors, and their peers. These relationships are essential to support the needs of the individual and to maintain a diverse and agile workforce exemplifying the highest standards of service to our Nation. To do so, we must come together as a team to address:

• The skill and knowledge areas that must be filled to maintain a highly skilled and talented workforce.
• Succession planning required by the accelerated movement of the workforce into, within, and around NSWC PCD.

This guide benefits all employees interested in career management, growth, and advancement by providing career broadening information within the associated with critical competencies at NSWC PCD. Additionally, the New Professional Development Plan1 (NPDP) is being put in place to provide additional support to individuals joining the organization with less than approximately three years of professional experience. NSWC PCD’s goal is to assist employees in achieving personal growth, consistent with the organization’s mission and strategic plans2. This will be accomplished through mentoring and coaching, as well as providing opportunities to grow through formal, informal, and non-traditional learning; on-the-job training; and rotational assignments. Further revision of this guide will also provide clear and concise qualifications associated with the roles of the organization to facilitate more detailed planning.

1 - Contact the New Professional Technical Advisor in Code 00 for more information.
2 - See the NSWC Panama City Division iNAVSEA site under the “NSWC PCD Leadership” section for references to our mission and digital copies of strategic plans. The missions, functions and tasks of NSWC PCD are also defined in NAVSEAINST 5450.133A.
1.2 WHAT IS A CAREER PATH?

This guide describes a process which can be used by an employee to chart a course for his or her career development. Establishing a career path requires an employee to take an honest look at his or her career goals, current or needed skills, knowledge, experiences, and personal characteristics.

Using this information, the employee can work with a manager, mentor(s), and other professional contacts to create a plan outlining what is necessary, in each of these areas, to grow along his or her career path. To aid in this process, Section 4 of this guide provides a set of career maps. The career maps, similar to Figure 2, are formatted in a manner that shows a progression in the scope of responsibility within the organization. Within each competency domain, specific positions are identified at each level, to which an employee could aspire. The “side-by-side” relationship of technical roles and line management roles is intended to show only that they operate at similar levels across the organization and not that one requires more, or less, experience than another.

Figure 2 - Career Map Overview

1.3 WHY COMPETENCIES?

The technical competencies establish large communities of practice (CoP) that cross organizational boundaries. These communities foster collaboration, share resources, and provide a forum for networking and personal growth. Through the establishment and support of standard policy, processes, tools, training and coaching, the Competency Leads enable constant improvement in our ability to execute direct work with excellence. This document provides information on the roles generally associated with the specific competency domains.

One need not “reside” in a single technical competency. Many positions in the organization utilize aspects of several competencies to execute their role. The career maps contained in this document are organized by competency domain for simplicity of presentation. There is overlap between all of the competency areas. You may want to move through these overlaps to gain broad experience. As you learn more about each competency at NSWC PCD and discover where you are most proficient and best suited to meet your career goals, you may focus on one competency area to gain in expertise and enhance your ability to move along your chosen career path.
1.4 HOW TO USE THIS GUIDE

Career planning can be broken into four steps; Reflection, Realization, Remedy, and Repetition. The paragraphs below describe each of these areas and make relevant connections to the rest of the guide.

REFLECTION

In preparation for mapping out a development plan and determining where to focus your efforts, you need to assess your current capabilities. This is an excellent opportunity to update your resume. Assess yourself honestly, document your recent accomplishments, and identify your current strengths and developmental needs through a self-assessment. Guidance on performing a self-assessment is offered in Section 2 of this document. This is just a suggested process; use a strategy that works for you. Determine your developmental priorities. These priorities should reflect an effort to build on your strengths and address gaps identified through your self-assessment.

REALIZATION

Research opportunities that will help you accomplish both your personal and professional objectives in the near and long term. Take the contents of Section 3 and Section 4 of this document into account when researching opportunities. Identify positions that interest you. Consider the cost and time required when considering which opportunities you wish to pursue. Discuss your plan with your mentor and supervisor; refine your development plan together. Take ownership by asking questions of your mentor or supervisor to clarify your understanding of what needs to be done. Document the outcome of your review.

REMEDY

Develop a set of actions and a timetable for completion. Include specific details regarding resource needs and the involvement of others. Each employee should have an Individual Development Plan (IDP) on record that details short- and long-term goals and objectives consistent with reaching their desired role within the organization. Choose learning and career opportunities that match the development need, and also fit your learning style as well as personal and professional values. Your plan may be a set of “moves,” a set of classes, or focused behavioral changes you desire to undertake while remaining in your current position. Section 3 can help outline the types of steps you might take to navigate your career map and populate an IDP. When examining the figures in Section 4, note that experience from multiple competency areas may be valuable when seeking increased responsibility within the organization. Execute your plan.

REPETITION

Periodically review progress to ensure you stay on track. Continuously reflect on that progress, realize new opportunities, and revise your plan when appropriate. Continue to communicate with your manager and mentor, and apply what you have learned.

3 - See TWMS Individual Development Plan (IDP) Handbook for Employees on the NSWC Panama City Division iNAVSEA site under the “Training Procedures” section of the Workforce Development page.
Section 2 - Self Assessment

Increasing self-awareness is a key part of identifying educational and career options best suited for you. A personal self-assessment is the informal process of identifying your goals, values, strengths, weaknesses, and opportunities for improvement by assessing one’s own activities, biases, and behaviors. One approach to personal self-assessment is provided below and is intended to support your career planning as well as facilitate discussions with your manager, mentor, and peers. The use of this approach is not necessary, but adoption of a disciplined approach which works for you is highly recommended. Most importantly, this should be an opportunity to reflect upon your successes and strengths. Everyone should regularly assess their personal performance in order to continue on a path of growth.

2.1 What Do You Value?

The things that you value in the day-to-day functions of your career are possibly the most important thing to consider when you’re choosing a position. Satisfaction and contentment depend upon acting on your values both in your personal and professional life. Think about what you value in your day-to-day work; some examples are listed below. Consider how important each item you identified is to you.

Autonomy
- Receiving little to no supervision

Challenge
- Performing tasks that are difficult

Prestige
- Having high standing

Variety
- Doing different activities

Acknowledgment
- Receiving attention for your work

Achievement
- Doing work that yields results

Utilizing Your Skills and Background
- Using your education and work experience to do your job

Collaboration
- Working with or providing assistance to individual or groups of others

Influence
- Having the ability to affect people’s opinions and ideas
2.2 WHAT ARE YOU INTERESTED IN?

Identifying what is of high interest to you will ensure that you achieve a great deal of satisfaction from your job and career. Be sure to separate what really interests you from what draws your attention as an end in itself; separate what you actually like doing from the intrinsic value (i.e. higher pay, big office, etc.)

2.3 WHAT ARE YOUR STRENGTHS AND WEAKNESSES?

When deciding on your next career move, you also need to determine your aptitudes. An aptitude is a natural or acquired ability. In addition to looking at what you’re good at doing, you should consider what you are interested in. You may be very adept at a particular skill, but despise every second you spend using it. To discover your strengths, consider the following:

- What do you do better than anyone else?
- What values do you believe in that you don’t often see exhibited in others?
- What resources do you have available that other people don’t have?
- What do others see as your strengths?

Next, evaluate your weaknesses. To identify these, ask yourself the following:

- What tasks do you often avoid?
- What tasks make you feel least confident doing?
- What do other people see as your weaknesses?
- Do you have sufficient proficiency in a desired skill or knowledge area? Could you benefit from more training, development, and/or experience?

NSWC PCD has adopted the DoD Civilian Leader Development Framework and Continuum (CLDF&C)\(^4\), which can also assist with the assessment of your strengths and weaknesses by giving you categorical focus as you consider the questions above. As you assess yourself, you should also consider the time you are willing to spend on acquiring more advanced or new skills. For example, “If my next career pursuit holds all the qualities I find appealing, but it takes a certain number of years to prepare for it, would I be willing and able to make this time commitment?”

2.4 IS THERE ANYTHING ELSE IMPORTANT TO YOU?

It’s also important to understand factors that are important to you in your life and career. This helps you identify opportunities that will be a good fit for you to achieve an appropriate work/life balance. This will help you narrow your choices. Additional factors to consider might include:

- Fit with current lifestyle.
- Longevity of a project/program.
- Fit with respect to overall career and life goals.
- Future training/development availability.
- Work schedule flexibility.
- The opportunity itself; does it interest and excite you?

4 - DoD Instruction 1430.16, DoD Civilian Leader Development Framework and Continuum. This can be found on the NSWC Panama City Division iNAVSEA site under the “Leadership & Supervisory Development” section of the Workforce Development page.
Up and ahead is not the only direction to move in an organization. If your sole definition of career success is getting promoted or advancing in pay/status/role title, then you are not thinking broadly enough. It is important to consider multiple directions in which your career could move, and to focus on what moves help you develop the most. Also, not all “moves” can be made when convenient to the employee with respect to timing, nor are any moves guaranteed based upon superficial completion of requirements. The organization will have needs from the workforce, and those needs will shift over time. Your career plan may need to shift as well, to match the organization’s needs.

A more helpful metaphor for career progression is that of the “Career Lattice,” in which career moves can occur in a combination of multiple directions, as Figure 3 shows. Consider the relationship between elements of this structure when planning your next “move.” A description of each element is contained in the following sections. To identify these opportunities, discuss your plan with your supervisor, use your network, and watch for regular announcements seeking candidates for various opportunities internal and external to the organization.
3.1 VERTICAL

Upward moves exist, although they become fewer as you progress higher in the organization. If you are intent on following this path, be certain your skills and career plans run parallel to the organization’s overall strategic goals. If your career goals, skills, and values do not align very closely with the strategic vision of the organization at this time, it may be a very frustrating exercise for you to pursue this option. You may want to consider a different part of the organization where your chances of successfully moving in this direction are greater. However, if you believe you are in a good position to pursue this option, focus on cultivating relationships and building your network. Make sure you are complementing your technical expertise with coalition-building skills.

3.2 LATERAL

These types of career changes typically involve changing the role, but not necessarily the status or level of responsibility. These moves may be beneficial to help you broaden your experiences, or give you an opportunity to work on areas you feel are weaknesses. A lateral move can help you continue your career with an increased depth and breadth of experience, which can be a great asset as you pursue your personal and professional goals. They may also facilitate vertical movement in the future.

Lateral moves external to the organization are especially beneficial when your career aspirations involve positions with responsibilities across, and outside of, the command. A move like this, which is often temporary or may be part of a development program, provides an individual with a one of a kind opportunity to familiarize themselves with what it takes to lead at a level across multiple organizations. It demonstrates a focus on raising both organization and individual performance.

3.3 ENRICHMENT

Growing within the role you currently have is an option that many overlook. The fundamental first step of this type of progression is to clarify what you want. Determine if you can achieve this without leaving your current role. There is a time and energy cost to searching for and changing roles. Before you invest in that option consider ways to develop yourself “in place.” One option may be to pursue an advanced degree. These are often favored when competing for moves in the future. To keep yourself engaged in your work, develop your ability to create opportunities through:

- Proposing a way to solve a problem you’ve noticed.
- Learning new, or expand upon existing skills.
- Participating in special projects in your work environment.
- Taking on more responsibilities in areas you are interested in.
- Letting go of responsibilities in areas in which you are losing interest. Identify the area(s), and who else can take those on.

3.4 REORIENT

Moving ‘downward’ in perceived status or level of responsibility can be an active means of pursuing a successful career. This often is a temporary move affording yourself the opportunity to gain the necessary skills and experiences required for future vertical and lateral move aligning with your overall career goals. To accomplish this form of movement, one should be prepared to clearly articulate their overall career goals and how the movement supports long-term growth to their manager in order to gain the support necessary to make the move a success. Examples may include changing warfare domains (i.e. from Mine Countermeasures to Expeditionary Command and Control) or a change in your technical focus (i.e. from Project Manager of a level 2 project to Systems Engineer on a level 1 project).
CAREER MAPS, ROLES/POSITION PROFILES, AND QUALIFICATIONS

This section includes career maps and position profiles. This section begins with content organized by our technical competencies, as shown in Figure 1. It is then completed with a section discussing technical roles not contained within a single technical competency and then a look at the line management roles in the organization. The career maps presented herein are depicted independently, but are not intended to imply that you must stay in one competency for the duration of your career. In fact, experience and skill in more than one competency area will be of benefit as you pursue opportunities in the organization. For example, systems engineers and project managers bring unique skills and experiences to the programs on which they work. Those unique capabilities both are essential for the successful execution of the program, as are the skills and capabilities of team members from other disciplines. However, there is also a “shared space” where program managers and systems engineers collaborate to drive the program team’s performance and success. Each discipline would then benefit from an understanding of the other’s discipline. The position profiles provide a general description of each role shown on the career map, as well as some typical tasks performed by an individual in that position. The levels of projects utilized in many of the career maps are intended to be consistent with categorization of projects across the organization and are defined in the NAVSEA Value Management (VM) Guide. This is done for contextual reference only.

4.1 ENGINEERING

Engineering is an incredibly broad profession, as demonstrated by the depth and breadth of experience, which contributes to this organization’s success every day. This section is a collection of roles, not directly represented by the individual technical competencies, which still play a significant role in executing our mission and maintaining the overall health of our technical capabilities.

Figure 4 is intended to show the relationship of the scope of responsibility of these individuals across the organization. This career map is closely related to all of the others and should not be considered by itself. A career may and should be developed across the areas necessary to reach your professional goals.

5 - The NAVSEA VM Guide can be found on the NSWC PCD Knowledge Management System (KMS) site under Project Management Competency and Value Management Reporting.
An Engineer is responsible for properly executing technical activities for a project of a given level within their knowledge area. This individual may grow from applying basic knowledge of engineering concepts and technology to serving as a Lead Engineer within a project.

Lead Engineers will generally support a Systems Engineer and/or Project Manager by leading a sub-set of a team, within their knowledge area, of government and contract employees assigned to the project. A Lead Engineer on a larger project may lead a medium to large team of government and contract employees in their area of expertise.

This is the area where a significant portion of the NSWC PCD workforce begins their career. These roles are intended to capture specific technical disciplines not adequately represented by the other technical competencies. Some common tasks for an Engineer or Lead Engineer are:

- Perform design, integration, and test responsibilities as assigned in accordance with documented processes.
- Implement engineering practices for their assigned project.
- Ensure team execution is in accordance with documented processes.
- Identify and facilitate resolution of complex technical issues within the project.
- Serve as primary interface with other project team leads.

The Deputy Chief Engineer is filled as a temporary developmental assignment which is indicated by the asterisk (*).

A Technical Area Expert (TAE) typically resides at either the branch or division level. A TAE may apply their knowledge, skills, and abilities specifically to a mission/warfare domain, such as Airborne Mine Countermeasures or Air-Cushioned Vehicles, or more generally to multiple domains, such as Modeling and Simulation, or Real-time Command and Control. TAEs provide review and/or approval of technical documentation in their field, and use their subject matter expertise to guide the successful execution of tasks and projects. Specific tasks include:

- Serve as a subject matter expert (SME) at Technical Reviews.
- Provide technical leadership to project teams, to include performing technical tasks for the projects.
- Provide guidance on processes specific to their area of expertise.
- Interface and build relationships with relevant sponsors or stakeholders to maintain a strong business base and facilitate enterprise collaboration.
- Create and execute strategic plans to ensure the command is positioned to meet work demands in their domain.
- Coach and mentor personnel in the technical domain.
The **Chief Engineer** (CHENG) is accountable to the Commanding Officer/Technical Director for Personnel Qualifications and Technical Processes, Tools, and Infrastructure and for the development and sustainment of the Technical Competency Areas (TCA). The CHENG’s primary focus is to provide senior technical oversight of full life-cycle engineering processes, tools, and infrastructure, ensuring the goal of commonality and knowledge transfer is achieved across the Division Technical Program Areas (TPA). Each technical department has a non-supervisory CHENG responsible for the same activities within their department. The CHENG tasks include:

- Ensuring personnel within the non-business competencies are trained, prepared, and qualified to perform within their competency area.
- Guiding the development of cross-departmental solutions to complex technical programmatic issues and events.
- Planning and leading independent technical and vulnerability assessments.
- Serving as the organization’s focal point for establishment of specialized new engineering initiatives and technical direction.
- Coordinating technical interactions with external organizations.

4.2 PROJECT MANAGEMENT

Project management is the discipline of initiating, planning, executing, and controlling the work of a team to achieve specific goals and meet specific success criteria. The primary challenge of project management is to achieve all of the project goals within constraints. We must consistently deliver quality products and services to our customers, on time and within budget. This is true whether we are performing basic research, serving as a consultant, acquiring or developing systems, or supporting fielded systems. Individuals working within this competency are responsible for accomplishing the project objectives which invariably involves balancing competing demands among the following:

- Scope, time, cost, resources, quality, and risk.
- Identified requirements (needs) and unidentified requirements (expectations).
- Stakeholders with differing needs and expectations.

![Project Management Career Map](image)

6 - The CHENG is also a supervisor with the same responsibilities of the line managers discussed in Section 4.9.
Figure 5 is intended to show a progression in the scope of responsibility within the organization and is focused in the area of project management. One should note that the level of professional experience in these positions does not begin with the level of a new professional; it is expected that the ability to accept an increasing scope of responsibility for management of projects in this organization will be developed as you develop your foundational skills and knowledge in a product area, or areas. This career map is closely related to all of the others and should not be considered by itself. A career may and should be developed across the areas necessary to reach your professional goals. For example, one may require experience in Science and Technology (S&T) positions to become a Project Manager (PM) for S&T or enabling capability-like projects in the future.

A **Task Lead (TL)** is responsible for properly executing a task, or group of tasks in the form of a sub-project, to achieve its stated requirements. The TL is accountable to the PM for all tasks which have been delegated to them. This role may be a collateral duty or comprise all of the individual’s time depending on the scope of the tasks and nature of the project. A TL will:

- Create task schedules and cost estimates as inputs to the overall project plan.
- Lead the execution of task/sub-project activities by providing part of the day-to-day direction to a small portion of the technical team.
- Monitor task performance and provide task monitoring metrics data to the PM as directed.
- May serve as the Contracting Officer’s Representative (COR) for one or more contracts and/or assess the technical performance of the contractor.

A **Project Manager (PM)**, working closely with their team, is responsible for execution, direction, and success of a project within its phase(s) of the life cycle, at a given level, within the organizational unit. The projects can range from transition of enabling capability (EC) technologies from lower Technology Readiness Levels (TRLs), through execution of Developmental Testing of a system, to production and sustainment. A PM is responsible for the day-to-day direction of a technical team which may consist of government and contract employees. A PM may be assisted by a Deputy PM or a number of task leads, depending on the scope and size of the project. The PM will also support one or more TPMs in their long term plans and interaction with the customers. A PM typically:

- Plans, estimates, and manages the funding and resources required to satisfy project objectives, requirements, and expected outcomes.
- Maintains accurate and up-to-date information in the Enterprise Resource Planning (ERP) tool and customer’s project planning tool(s).
- Coordinates and establishes relationships with other government activities and contractors.
- Assesses technical performance of any contractors.
- Monitors project resources and activities to ensure project objectives, requirements, and expected outcomes are achieved.

A **Technical Program Manager (TPM)** is concerned with the overall planning and success of a group of projects within their respective portfolio. The TPM oversees and manages the relationship with the sponsor(s) and provides high-level execution guidance to the project managers executing projects under this portfolio. A TPM typically operates within a Division or Department, depending on the breadth of their portfolio, and is responsible for communicating execution information, long-term work load commitments in support of the Technical Capability Health Assessment (TCHA), and customer feedback to senior leadership. A TPM typically:

- Manages the relationship with the sponsor and other high level stakeholders.
- Leads yearly task and resource negotiation and serves as the focal point between the projects and the sponsor for yearly project tasking.
- Develops and executes Customer Engagement Plans.
- Reviews Technology Transition Agreements (TTAs).
- Implements sponsor mandates and provides high level guidance to projects in their portfolio.
• Collaborates and manages partnerships with other organizations, such as industry, academia, and other warfare centers.
• Reviews plans for the systems and capabilities in their portfolio.
• Develops forecasts for the purposes of organizational long-term planning.

The **Project Management Competency Lead** is responsible for establishing and maturing the PM competency in order to ensure disciplined project management is applied to overall planning, direction, and success of major technical programs, engineering systems development efforts, and research or technology initiatives at NSWC PCD. The PM competency lead will:
 • Establish, deploy, and train employees on disciplined project management processes.
 • Oversee the implementation and application of project management processes and tools.
 • Coach and evaluate personnel in the competency for qualifications, experience, and training.
 • Validate the technical health of the PM competency through formal assessments, such as the TCHA and the Manager’s Internal Control Program (MICP).

4.3 SYSTEMS ENGINEERING

Systems engineering is concerned with the overall process of defining and managing the development, operation, and maintenance of quality systems. Where other engineering disciplines concentrate on specific knowledge areas in a system (e.g. software, etc.), systems thinking allows the systems engineer to focus on the integration of all of these disciplines to help successfully develop a system. Systems Engineers apply a disciplined set of processes to ensure the result is a quality product that meets the customer’s needs.

Figure 6 is intended to show a progression in the scope of responsibility within the organization within the area of SE. One should note that the level of professional experience in these positions does not, typically, begin with the level of a new professional. The ability to apply disciplined systems engineering to projects develops concurrently, as you build your foundational skills and knowledge in the SE domain, while also gaining expertise in a product area or technical domain. One should maintain a balance between the application of systems thinking and technical expertise as they progress in their career. This career map is closely related to many of the others and should not be considered by itself. A career may and should be developed across the areas necessary to reach your professional goals. For example, one may move from developing software to a role as a Systems Engineer (SE) responsible for managing requirements or developing test strategies for a project.

A **Systems Engineer (SE)** or **Lead SE (LSE)** working closely with the PM is responsible for properly executing all Systems Engineering activities for a project of any kind within a given level. An LSE on a Level 3 project may lead a large multidisciplinary team of government and contract employees through all life cycle phases (e.g. prototyping, system architecting, verification, etc.) within the scope of the project. Typical tasks include:
 • Leading and/or executing requirements development or management.
 • Active participation in system architecting or modeling efforts.
 • Participating in Technical Reviews.
 • Leading and/or executing design, implementation, and integration of a system.
 • Involvement with verification and validation (Test and Evaluation (T&E)).
 • Leading the fielding, training, or maintenance of a system.
 • Addressing System of Systems risks and issues and assessing mission level effectiveness.
 • Assisting the PM in resolution of tasking issues with sponsoring organization.
 • Addressing System of Systems’ issues and assessing mission level effectiveness.
 • Assisting the PM in resolution of tasking issues with sponsoring organization.
A **System Test Engineer (STE)** is the lead test engineering position within a project or group of projects. The STE is required to have in-depth working knowledge of the system under test to include system requirements and system performance. System knowledge is critical to this role and is the purpose of aligning it with the SE competency as opposed to the T&E competency. In addition, the STE is required to have knowledge of testing within the project’s life cycle phase, such as Developmental Testing and Operational Testing or activities. The STE integrates, plans, and schedules complex systems level events, involving multiple systems, resources, and stakeholders. The STE will verify, as early and often as possible during testing, that the correct data at the correct levels of accuracy and precision are being collected, and that analysis tools and products are sufficient to meet the test objectives. Depending on size or complexity of the program, the STE may be a dual-hatted position filled by the SE, PM, or Senior Scientist. The STE typically:

- Reviews and provides input to Program Office/Sponsor documentation, such as the Test and Evaluation Strategy (TES) and Test and Evaluation Master Plan (TEMP), or evaluates the impact of system KPPs specified in the CDD/project proposal and how they relate to T&E.
- Serves as a liaison with government agencies and contractors in the planning of testing of systems.
- Plans and coordinates with the Test Director (TD) system verification and validation activities.
- Prepares the System Test Plan (STP), Test Execution Plans (TEP), Test Procedures, and Operational Risk Management (ORM) Assessments.
- Develops methodology for the conduct of tests, e.g., determines the measurable values; determines degree of measurement accuracy; determines availability of measurement equipment and, as necessary, designs test tools and instrumentation; and makes recommendations on test site location.
- Summarizes test results, draws test conclusions, and writes reports documenting test results and conclusions.
- Makes recommendations to continue with planned test approach or to correct test deficiencies or to re-test.
A Senior Systems Engineer (SSE) serves as a Systems Engineering expert for the warfare domain or organizational unit (typically Division level) they serve. The SSE oversees and acts as approval authority on technical documentation and reviews, ensures systems engineering practices are properly applied during technical execution of projects, resolves engineering-related issues, and coaches and mentors technical personnel. An SSE will typically:

• Assist with requirements development or management and participate in Technical Reviews.
• Assist with activities such as design, implementation and integration, verification and validation (T&E), and sustainment of a system or group of systems.
• Address System of Systems risks and issues and assess overall mission effectiveness.
• Review project plans and/or Technology Transition Agreements (TTA) to identify common practices, technologies, and metrics.
• Assist projects in resolving technical tasking issues with any sponsor organizations, and facilitate discussion with technical warrant holders, as required.

The Senior System Test Engineer (SSTE) position resides at the department level within NSWC PCD. The SSTE is responsible for the technical quality of the assigned department’s test engineering products and provides oversight for all testing in the assigned department. The SSTE also assists with resolving test engineering related issues, and coaches/mentors technical personnel. Typical tasks include:

• Providing department-level recommendations and guidance on T&E issues concerning projects and technical initiatives.
• Providing department-level recommendations and guidance on T&E issues concerning projects and technical initiatives.
• Approving department Test Assessment Category.
• Acting as TSRC Chair for department tests.
• Implementing and monitoring NSWC PCD T&E processes across the department to ensure policies and directives are followed.
• Determining when a TEP/TSP is needed, based on the requirements of the NSWC PCD T&E Manual, and makes final determination if TEPs, TSPs, Test Change Records (TCRs), and/or Test Procedures require TSRC review.
• Authorizing any pre-test activities prior to test plan approval.
• Supporting the Program Office/Sponsor as needed in the proper execution of T&E for their programs.

The Systems Engineering Competency Lead is responsible for representing NSWC PCD in matters relating to systems engineering, developing, and defining Systems Engineering policy and guidance at the command level, assessing, and maintaining the health of the competency. The Competency Lead is tasked to:

• Establish, deploy, and train employees on disciplined systems engineering technical and technical management processes.
• Oversee of the application of systems engineering processes.
• Coach and evaluate personnel in the competency for qualifications, experience, and training.
• Validate the technical health of the Competency through formal assessments, such as the TCHA and the MICP.
4.4 SCIENCE AND TECHNOLOGY

As part of the Department of Defense (DoD) workforce, the S&T career field conducts, and/or monitors S&T activities, including basic research, applied research, and/or advanced technology development, in support of acquisition programs. These researchers may also be involved with direct support to acquisition program managers or PMs within the organization. Their primary duties include research path initiation and investigation of new concepts, along with the review of disruptive technologies and technology forecasting.

Additional duties may involve supporting the development of program plans for S&T projects with the PM and supporting the oversight of efforts performed by universities, industry, or other Federal Government organizations. These responsibilities may entail conducting evaluations of S&T products to determine their effectiveness, including conducting Technology Readiness Assessments; interfacing with the technology customer to expedite the transition of technology to the user; and supporting the development of Technology Transition Agreements with Project Managers and SEs, as required. Figure 7 shows a general progression within the S&T technical competency. This figure, like the others, when compared to the other career maps forms the broad range of career possibilities which can be accomplished. A career may and should be developed across the areas necessary to reach your professional goals.

A Level 1 S&T Researcher/Technologist contributes to the scientific development or execution of a project in a substantive and measurable way. They are responsible for effectively handling assigned tasks and meeting project milestones. These positions serve as introductions into S&T development, procedures, methods, and objectives. An individual in this category will perform directed research with substantial (partial or full) supervision and contribute to proposal efforts in partnership with more senior researchers or technologists.

A Level 2 S&T Researcher/Technologist is charged to conduct objective research that generates independent, high quality, and reproducible results. Additionally, the person is responsible for the direction and oversight of compliance, financial, and other related aspects of the research project. The person may supervise a group of people who are working on the project, checking in with them to gauge progress and reporting the project status to higher-level managers.

Figure 7: Science and Technology Career Map
Typical tasks include:
- Directed research with limited supervision.
- Contributing to Technical Reviews through their in-depth knowledge within their research area.
- Contributing to proposals in partnership with more senior researchers.
- Writes peer-reviewed publications.
- Develops patentable inventions.

A **Level 3 S&T Researcher/Technologist** manages a research staff and maintains oversight, retaining ultimate responsibility for the conduct of those to whom they delegate responsibility. As a Principle Investigator (PI), they are charged to conduct objective research that generates independent, high quality, and reproducible results. The PI is responsible for the management and integrity of the design, conduct, and reporting of the research project and for managing, monitoring, and ensuring the integrity of any collaborative relationships. Typical tasks include, but are not limited to:
- Independent research in an applied area.
- Developing proposals as the lead Principal Investigator.
- Active participation in future system or technology development.
- Active participation in system architecting or modeling efforts.
- Leading implementation or integration of a subsystem in a prototype.

A **Senior Scientist/Technologist** serves as a technical expert for the organizational unit they serve (typically Division level). They assist in proposal writing and review and conduct technical reviews of all Division projects to ensure scientific and investigative process accuracy.

A **Subject Matter Expert (SME)** serves to coordinate, foster collaboration, and focus research and products in a particular research area which supports the core mission areas of the NSWC PCD. The role will also involve close interaction with the Defense Research and Development community, including academia and industry. This involves representing NSWC PCD in matters relating to their technical area. They are assigned to Special Projects and participate in Warfare Center Working Groups and Integrated Product Teams. Residing at the branch level, they also assist in writing and reviewing proposals, as well as support technical reviews of projects within their technical area to ensure scientific and investigative process accuracy. They serve as advisors in both their specialty and general scientific rigor.

The **Chief Scientist** serves as the technical expert for S&T activities and works with S&T programs to provide specialized guidance and common investigative procedures. They assist in the development and review of technical proposals, as well as conduct technical reviews of all Division projects to ensure scientific and investigative process accuracy. The chief scientist is also responsible for mentoring other scientists and technologists.

The **Science and Technology Competency Lead** is responsible for representing NSWC PCD in matters relating to the S&T competency. They execute the mission of the technical competencies by developing and defining policy and guidance at the command level, as well as assessing and maintaining the health of the competency. Currently this role is held by the X Department Head, who is supported in execution of this role by other individuals within the organization. They are tasked to:
- Establish, deploy, and train employees on disciplined research processes.
- Oversee and assess the application of research processes across the organization.
- Coach and evaluate personnel in the competency for qualifications, experience, and training.
- Validate the technical health of the S&T competency through formal assessments, such as the TCHA and the MICP.
A **Senior Research Scientist/Technical Consultant (ST)** serves as the Navy’s expert in a particular research area. Becoming an ST is the most prominent position that can be achieved by a Navy civilian scientist. An ST is expected to have an outstanding record comprising sustained, high-quality and appropriately balanced contributions to both research/creative activity and service. In addition, an ST is expected to demonstrate the highest standards of good character, academic integrity, and leadership, and to demonstrate a significant impact beyond their own individual scientific area. Typical tasks include conducting basic research and serving as an expert by consulting both within and outside of the Department of the Navy. This unique, non-executive position involves performance of high-level research and development in the physical, biological, medical, or engineering sciences, or a closely-related field. Many of the Federal Government’s most renowned scientists and engineers serve in ST positions.

4.5 SOFTWARE ENGINEERING

The Software Engineering competency contains individuals who are implementing a systematic, disciplined, quantifiable approach to the development, operational support, and maintenance of software and computer systems. Because of the widespread applications of software products, the quality of software products can have profound impact on the assessment and operational performance of the technology and systems this organization develops and sustains.

Figure 8 is intended to show a progression in the scope of responsibility within the organization and is focused in the area of software engineering. This career map is closely related to all of the others and should not be considered by itself. A career may and should be developed across the areas necessary to reach your professional goals.

A **SWE** or **Lead Software Engineer (LSWE)** is responsible for properly executing all Software Engineering and/or computer science activities for a project of a given level. This individual may grow to serve as a Lead Engineer within a project by supporting a Systems Engineer and/or PM by leading a sub-set of a team, within their knowledge area, of government and contract employees within the project. A LSWE on a Level 2-3 project may lead a medium to large multi-disciplinary team of government and contract employees. Typical tasks include, but are not limited to:

- Perform SW design, code, integration, and test responsibilities as assigned in accordance with documented processes.
- Implement software engineering practices for their assigned project. These practices may include approaches such as assuring systems are secure from cyber threats.
- Ensure software team execution is in accordance with documented processes.
- Identify and facilitate resolution of complex software issues within the project.
- Serve as primary interface with other project team leads.

A **Senior Software Engineer (SSWE)** is recognized as a subject matter expert in the area of Software Engineering and/or Computer Science. A SSWE is responsible for the technical quality of the assigned organizational unit’s (typically Division level) engineering products and acts as approval authority on software documentation and reviews, and ensures defined software engineering practices are properly applied during technical execution of projects. They assist with resolving engineering related issues and coach/mentor technical personnel within the organizational unit. Typical tasks include, but are not limited to:

- Oversee the application of software engineering processes to multiple projects within their organization.
- Provide support across the warfare center as a recognized expert in their field.
- Coach and evaluate personnel in their organization for qualifications, experience, and training.
- Review and approve software product artifacts for projects within their organization.
- Support the organizational unit managers by anticipating long-range needs, priorities, and technical challenges to the organization.
The **Software Engineering Competency Lead** is responsible for representing NSWC PCD in matters relating to the Software Engineering competency. They execute the mission of the technical competencies by developing and defining policy and guidance at the command level, as well as assessing and maintaining the health of the competency. They are tasked to:

- Establish, deploy, and train employees on disciplined software development processes.
- Oversee the application of software development processes across the organization.
- Coach and evaluate personnel in the competency for qualifications, experience, and training.
- Validate the technical health of the SWe competency through formal assessments, such as the TCHA and the MICP.

4.6 TEST AND EVALUATION

Test and Evaluation (T&E) is a process by which a system or components are compared against requirements and specifications through testing. The results are evaluated to assess progress of design performance, supportability, etc. T&E provides measured data against documented metrics to verify the overall system design performance. The data is used to effectively manage the program and to provide decision makers with the information needed to determine the overall operational effectiveness, suitability, and survivability of the system. Personnel with roles in this field are responsible and/or accountable for the development and/or execution of policy, processes, procedures, and artifacts related to the safe, suitable, and effective conduct of T&E events.

Figure 9 is intended to show a progression in the scope of responsibility within the organization and is focused in the area of T&E. This career map is closely related to all of the others and should not be considered by itself. A career may and should be developed across the areas necessary to reach your professional goals.

A **Test Director (TD)** is responsible and accountable for the safe and efficient conduct of all test activities to include pre- and post-test related activities. As they lead and direct the event, they are responsible for ensuring that the test plan and its execution are in compliance with all statutory, regulatory, and policy requirements. The TD is expected to have the appropriate test execution experience including monitoring, conducting, and evaluating tests of prototype, new or modified systems, equipment, and materiel and will make determinations on the safe conduct of test events.
Some typical tasks include:

- Ensure TEPs, Test Procedure(s), and TCR(s) are developed and approved. Modify TEPs and Test Procedures as necessary.
- Schedule and ensure a TSRC review has been accomplished when required.
- Preparation of ORM Assessments.
- Coordinate technical support with other support activities, departments, and codes in the assignment of test team members (e.g., divers, boats, riggers, ranges, etc.).
- Ensure availability of calibrated and operable test equipment required to support the test.
- Ensure all near mishaps and mishaps are reported in accordance with the Safety section of TEP and Test Procedure(s), and are reported to the appropriate supervisor per applicable policy.
- Ensure data and status reports are collected, stored, and distributed appropriately. Assist with writing reports, documenting test results, and conducts daily hot washes and way forward; record and implement lessons learned.

The **T&E Competency Lead** is responsible for representing NSWC PCD in matters relating to the T&E competency. They execute the mission of the technical competencies by developing and defining policy and guidance at the command level, as well as assessing and maintaining the health of the competency. They are tasked to:

- Establish, deploy, and train employees on disciplined processes for the execution of T&E events.
- Oversee the application of T&E processes.
- Coach and evaluate personnel in the competency for qualifications, experience, and training.
- Validate the technical health of the T&E competency through formal assessments, such as the TCHA and the MICP.

The **T&E Director** at NSWC PCD is assigned to work with the NAVSEA Research & Systems Engineering T&E Competency Leadership Team and Workforce Competency Working Group. The T&E Director reviews NSWC PCD T&E competency activities, ensuring that NAVSEA T&E competency guidance, standards, and processes are applied throughout NSWC PCD. The T&E Director is nominated by the NSWC PCD Commanding Officer and Technical Director. Concurrence with the candidate will be by the NSWC Technical Director, the NAVSEA R&SE T&E Executive, and the NAVSEA T&E Technical Advisor. Some typical tasks include:
• Exercise stewardship of the T&E workforce by encouraging and developing broad based knowledge and competency in T&E professionals.
• Support the WFC TE Executive and the NAVSEA T&E Executive in championing the NAVSEA-wide wellbeing of the T&E workforce.
• Work with the R&SE T&E Steering Group to establish and maintain standards and stewardship of facilities supporting the T&E competency domain.
• Support the R&SE T&E Steering Group as they address, define, and develop policy, guidance, standards, and practices for consistent execution of T&E as it applies to strengthening T&E functions, processes, and personnel qualifications.
• Support the NAVSEA CHENG roles and responsibilities of technical, testing, program, and certification authorities.

4.7 LOGISTICS

The Life Cycle Logistics competency area is comprised of professionals responsible for the planning, development, implementation, and management of a comprehensive, affordable, and effective systems support strategy. Life cycle logistics encompasses the entire system’s life cycle including acquisition (design, develop, test, produce, and deploy), sustainment (operations and support), and disposal.

Figure 10 is intended to show a progression in the scope of responsibility within the organization and is focused in the area of life cycle logistics. This career map is closely related to all of the others and should not be considered by itself. A career may and should be developed across the areas necessary to reach your professional goals.

The **Logistician** helps execute life cycle logistics tasking for the project(s) they operate within. The Logistician develops logistics products and supports reviews across the program’s life cycle. A Logistician is typically an expert in one, or more, life cycle logistic elements, and functions as a member of a larger logistics team. Typical tasks include, but are not limited to:

• With guidance from a Lead Logistician, helps execute the implementation of an effective and affordable product support strategy as defined in the program’s Life Cycle Support Plan (LCSP).
• Develops IPS-specific logistics products within their area of expertise or experience, such as Maintenance Plans, Provisioning and Supply Support documentation, Configuration Management (CM) Plans, etc.
• Participates as a member of the program’s logistics Integrated Product Team (IPT) by providing subject matter area expertise in one or more areas.
• Is assigned actions/tasks by the Lead Logistician or Logistics Team Lead and sees these through to completion.

The **Lead Logistician** serves as logistics expert for the Integrated Product Support (IPS) element or project(s) they oversee. The Lead Logistician develops logistics products and manages reviews, ensures defined practices are applied, as applicable, across the program’s life cycle. A Lead Logistician may also serve as a Team Lead by providing guidance and day-to-day task assignment to a group of Logisticians through experience with all elements of life cycle logistics. Typical tasks include, but are not limited to:

• Plan, develop, implement, and manage an effective and affordable product support strategy as defined in the program’s Life Cycle Support Plan (LCSP).
• Lead Supportability or LCL IPT or WG with planning and executing LCL budgets, resources, deliverables, and services for acquisition and/or sustainment efforts.
• Prepare for and participate in PM, SE, Contracts, and other applicable program events.
• Review tasks completed by Practicing Logisticians as applicable.
• Mentor and coach Entry Level and Practicing Logisticians.
• Develop Standard Operating Procedures (SOPs) and ensure adherence for their IPS specialty area.
The Senior Logistician serves as logistics expert for their assigned Division or product area. The Senior Logistician oversees and acts as approval authority on logistics products and reviews, ensures defined practices are properly applied, resolves issues, and coaches and mentors technical personnel. A Senior Logistician Typically:

- Leads journeymen and practicing Logisticians by sharing and demonstrating experience with systems in a variety of warfare domains across the life cycle.
- Coordinates with systems command and program offices on common issues.
- Chairs and attends LCL meetings. Reviews programs’ logistics budgets, products, and services.
- Leads all aspects of LCL processes for a Level 3 project.

The Logistics Competency Lead is responsible for representing NSWC PCD in matters relating to the Life-Cycle Logistics competency. They execute the mission of the technical competencies by developing and defining policy and guidance at the command level, as well as assessing and maintaining the health of the competency. They are tasked to:

- Establish, deploy, and train employees on disciplined Life Cycle Logistics processes.
- Oversee the application of Life Cycle Logistics processes.
- Coach and evaluate personnel in the competency for qualifications, experience, and training.
- Validate the technical health of the Logistics competency through formal assessments, such as the TCHA and the MICP.
4.8 QUALITY

The quality competency at NSWC PCD includes those professionals whose primary role and career goals are focused in Quality Engineering, Continual Process Improvement (CPI), Quality Assurance, and Quality Control. It is unique in that a large number of the roles cross organizational and project boundaries to ensure a high level of excellence is certain to be delivered to our customers. The processes which generate those products are continually improved upon, with the result that our professionals are well versed in the application of quality management across each competency.

Positions within the Quality competency are described in the following paragraphs and the layers of increasing scope of responsibility are shown in Figure 11. The Quality competency is unique in its progression and scope of responsibility.

A Quality Control Specialist provides quality control/mechanical inspection, non-destructive testing, and configuration compliance support. As the Quality Control Specialist transitions their responsibility across different levels of the organization, the type of programs and level of involvement will change from support for a project or group of projects to support for a wide variety of projects and include increasing responsibility for requirements compliance determination, process and configuration oversight, and improvement recommendations. Typical tasks include, but are not limited to:

- Identifying geometric dimensioning and tolerance (GD&T), weld symbols, and other technical requirements contained within engineering drawings and specifications.
- Performing precision dimensional inspections and geometric measurements, inspections of surface finish, concentricity, surface treatments, and coating, and non-destructive testing (NDT) and inspection in accordance with the appropriate standards.
- Conducting and supporting product configuration audits to determine configuration compliance to technical requirements.
- Recommending improvements for designs, dimensioning, and technical requirements to projects promoting a “quality designed in” approach to avoid production issues and delays, to reduce variability, and to improve production efficiency.

A Quality Assurance Specialist provides support to the Quality Management System (QMS) development, maintenance, implementation, execution, and compliance determination within their assigned organizational unit. As the Quality Assurance Specialist increases their responsibility across different levels of the organization, the type of programs and level of involvement will change from support for a project or group of projects to support for a wide variety of projects and include increasing responsibility for process and program monitoring, requirements compliance determination, and improvement recommendations. Typical tasks include, but are not limited to:

- Assisting with development of the QMS to ensure new requirements are included as they are identified.
- Assisting with maintenance of the QMS to ensure correctness and completeness.
- Assisting with implementation of the QMS to ensure all projects are aware of their requirements and responsibilities and brought up to the required level in a timely manner.
- Conducting internal quality audits of the projects included in the Quality Management System and any associated programs.

A Quality Engineer assists projects with development of a quality management system addressing elements to ensure project and process control, provides support for process identification, development, implementation, and improvement, process problem identification and recommended resolution, and monitoring of process performance using data collection and analysis. A Quality Engineer may also provide in-depth technical support to projects within their area of expertise, i.e. welding and fabrication or software development and sustainment.
Quality Engineering will also mentor more junior quality professionals or other engineers in process and analytical techniques, which may include the progression of training for Six Sigma Green belt and/or Black Belt candidates. As the Quality Engineer increases their level of responsibility across the organization, the type of programs and level of involvement will change from a focus on a project or group of projects to a systemic approach to program requirements, execution, performance, and control. Typical tasks for this role include:

• Assist projects with development of processes and procedures for the quality management system including document and record control, training, verification, validation, monitoring, measurement, inspection, and testing that ensure objective quality evidence is available.
• Research and perform analysis to identify trends and opportunities for improvement using information collected from internal and external audits, critiques, failure analysis, deficiency reporting, returned products, and other performance reporting data sources.
• Provide project, organizational unit, or command-wide support by identifying and recommending solutions to resolve product and process design weaknesses, failures, sub-standard product or process performance, and process variation minimization.
• Compile and present quality and performance information, assist with identification of fiscal year improvement initiatives and goals, and monitor and report on progress throughout the year.
• Conduct, support, and review all Lean Six Sigma, Rapid Improvement Events (RIE), Reducing Total Ownership Cost (rToC) and related activities. Develop Lean, Six Sigma, Theory of Constraints, and rTOC training courses and coordinate the training.

The Quality Competency Lead is responsible for representing the organization in matters relating to the quality competency. They execute the mission of the technical competencies by developing and defining policy and guidance at the command level, as well as assessing and maintaining the health of the competency. They are tasked to:

• Establish, deploy, and train employees on disciplined Quality Assurance, Control, and CPI processes.
• Oversee the application of Quality Assurance, Control, and CPI processes.
• Coach and evaluate personnel in the competency for qualifications, experience, and training.
• Validate the technical health of the Quality competency through formal assessments, such as the TCHA and the MICP.
The Quality Assurance Director (QAD) is responsible for representing NSWC PCD in matters relating to Quality Assurance, Quality Control, Continual Process Improvement (CPI), and Calibration. The QAD develops and defines Quality policy and guidance at the command level. The QAD also supervises the Quality and CPI office staff. Typical tasks include:

- Develop, implement, and manage the Quality Management System that engages all projects and establishes a suitable level of rigor for control and improvement of project processes.
- Conduct fact findings, investigations, and critiques to identify root causes of performance issues and subsequent corrective actions.
- Manage the Division CPI program and conduct events to identify improvements, improve operational efficiency, and improve cost. Develop processes, procedures, instructions, and training programs to improve performance through increased technical rigor.
- Participate in the Quality Community of Practice forum with the NSWC/NUWC QADs to develop requirements for standardization of quality practices and to foster a cooperative working relationship/information sharing.
- Manage the calibration program to ensure measurement accuracy and ongoing compliance to requirements.

4.9 LINE MANAGEMENT

Individuals performing in the roles outlined in this section function in multiple mission, product and competency areas and take primary responsibility for direction setting and project execution. Each one must balance and set priorities in order to accomplish the mission, develop people and capabilities, and maintain technical integrity. Figure 12 shows the roles aligned with their level of the organization. Just like individual leaders at all levels of the organization, they must effectively communicate upwards, downwards, within our organization, and across organizational lines to our stakeholders. They also have the responsibility to shape, nurture, empower, and grow the quality of their employees.

Detailed descriptions of the organizational structure and the key roles and responsibilities of the organization’s line managers can be found in the most recent edition of the NSWC PCD Concept of Operations (CONOPS). Key elements from the CONOPS are captured below. A balanced career progression covering from multiple competencies lays solid groundwork for an effective leader and manager.

The Department Heads, Deputy Department Heads, Division Heads, and Branch Heads are supervisors of their organizational unit. Each is responsible for stewardship of the organizational unit’s missions and functions. As supervisors, all managers perform tasks in the following areas:

- **Organizational/Operational Oversight**
 - Responsible for project planning, staffing and execution, financial management, work acceptance, and business development.
 - Communicates the status as well as the vision and goals of the organizational unit effectively and regularly.
 - Plans, prepares, and/or oversees the organizational unit’s contracts.

- **Professional Development**
 - Advocates career development for all employees; reviews and approves Individual Development Plans (IDP).
 - Facilitates mentoring opportunities for employees; ensures all new employees have a mentor
 - Facilitates career development opportunities, including competency training, rotational assignments, and qualifications.

7 - The NSWC PCD CONOPs can be found on the NSWC Panama City Division iNAVSEA site under “NSWC PCD Leadership”.

• **Personnel Management**
 - Maintains the health of the technical capabilities/knowledge areas within the organizational unit.
 - Develops hiring requirements (including succession planning) and executes the hiring plan.
 - Advertises and selects career development positions internally, as required.
 - Conducts performance reviews/appraisals.
 - Recognizes superior performance through monetary and non-monetary rewards and recognition.

• **Administration**
 - Reviews and certifies employee timecards.
 - Manages and approves all requested leave; ensures adequate leave plans are in place for use-or-lose leave.
 - Approves all travel orders and vouchers, requisitions, and shipping documents.

The **Deputy Technical Director (DTD)** is accountable to the Commanding Officer and Technical Director for the overall Strategic Planning Process for the Division. Specific leadership functions include:

- Performing strategic customer value analysis associated with the major programs supported by NSWC PCD.
- Developing, teaching, and maintaining the vision and values of the organization.
- Establishing and facilitating effective, collaborative interfaces with other (internal) organizational components of NSWC PCD and external customer organizations.
- Engaging the organization in an ongoing cycle to effect continuous improvement in all important technical and administrative processes.
The **Technical Director** provides senior civilian leadership and continuity of the business and technical direction for the workforce. The Technical Director’s primary responsibility is the long-term stewardship of the Business and Technical Capabilities, which are comprised of a skilled and experienced workforce; equipment; and facilities. The Technical Director, in partnership with the Commanding Officer, is responsible for successful technical program planning and execution, ensuring the proper direction and management of the operations of the Division. The Technical Director pays particular attention to the nurturing of S&T, innovation, technical authority, and the support structure for the technical warrant holders within the organization’s Technical Capabilities. The Technical Director:

- Is accountable for the planning and execution of technical programs.
- Develops and executes long-term strategic, business, and investment planning.
- Maintains support structure for Technical Warrant Holders.
- Collaborates with other Division Technical Directors and customers to optimize national workload assignments.

CONCLUSION

It is hoped that the contents of this document will be useful to NSWC PCD employees throughout their career at the command. This document will evolve to include additional elements as described in Section 1. It will also be updated as needed to address changes in organizational structure or strategic vision. Comments or suggestions regarding this document may be submitted to the Chief Engineer’s (CHENG) Office at any time.