1. SCOPE:

1.1 Title: General Criteria; accomplish

2. REFERENCES:

2.1 40 CFR Part 61, National Emission Standards for Hazardous Air Pollutants

2.2 S0420-AA-RAD-010, Radiological Affairs Support Program Manual

3. REQUIREMENTS:

3.1 Report delays to the SUPERVISOR.

3.1.1 In the event difficulty is encountered in meeting requirements or difficulty is anticipated in complying with the contract schedule dates, notify the SUPERVISOR immediately by verbal means, followed on the next work day by an original and 2 copies of a letter stating pertinent details. Receipt of this notification by the SUPERVISOR is not to be construed as a waiver of the requirements, delivery schedule by the Government, or waiver of rights or remedies provided by law or under this Job Order or any other requirements in the Job Order relating to jeopardy of contract schedule dates.

3.2 Reports:

3.2.1 For required reports that could result in a change in work to be accomplished or additional material to be procured, complete the preliminary work and submit one legible copy, in hard copy or electronic media, of the required report in a time frame to allow the SUPERVISOR to initiate early action, but no later than the first 20 percent of the availability.

3.2.2 Dry dock related inspection reports shall be submitted no later than the first 20 percent of the scheduled docking period. Dry dock related reports which contain readings (final, thickness, etc.), clearances, alignments, test results, or other such data for work that has to be completed prior to pre-flood/undocking, shall be submitted to the SUPERVISOR within 24 hours after recording the data but no later than 72 hours prior to pre-flood/undocking, whichever occurs first.
3.2.3 When a Work Item does not require a report, and one is determined to be necessary in order to produce a reliable or complete repair, submit one legible copy, in hard copy or electronic media, of a report with supporting data as early as possible in the contract period. The goal is to have required work completed within the original contract period.

3.2.4 Reports shall contain the following information:

3.2.4.1 Name and hull number of ship or craft, the job order, Work Item, and paragraph numbers.

3.2.4.2 A description of the conditions found with supporting data. Include annotated sketches, graphs, and photographs when necessary to make a report clearly understandable to the SUPERVISOR. Identify actual readings/dimensions taken.

3.2.4.3 Recommendations and/or a list of material required.

3.2.4.4 Data required by, signature and title of the contractor's representative, and submission date.

3.2.5 Prepare and submit one legible copy, in hard copy or electronic media, of a listing of all reports required by the job order to the SUPERVISOR no later than 15 days prior to the start of the availability. The listing shall be sequential by Work Item number, and include each applicable paragraph number, report due date, completion date, and submission date.

3.2.5.1 The report shall be revised and provided weekly throughout the availability to include additions, deletions, modifications, progress, and completions.

3.2.6 Where one legible copy of a report in hard copy or electronic media is required, or where sketches, graphs, or photographs are required, the electronic method shall be as agreed to by the SUPERVISOR.

3.3 Accomplish tests and checkouts.

3.3.1 Complete work which requires tests in time to allow correction of deficiencies prior to dock trials, sea trials, or other applicable milestones established in the Job Order.

3.3.2 Do not operate existing, newly installed, or repaired shipboard equipment. Ship's Force will accomplish such operation when required for test and checkout purposes. Such requirements will be coordinated by the SUPERVISOR.

3.4 Provide labor, material, and equipment which is required to complete the Work Item, including that which is indicated on drawings or test specifications as being provided by sources other than the contractor, unless specifically listed as Government Furnished Material (GFM) in Paragraph 5 of the Work Items.
3.4.1 Manufacture parts that are not available from the vendor/manufacturer, utilizing NAVSEA approved drawings, technical manuals, templates, or sketches.

3.4.2 Submit one legible copy, in hard copy or electronic media, of a status report, listing Contractor Furnished Material (CFM) required to accomplish the work in Work Items that are not already on hand, to the SUPERVISOR not later than 30 calendar days after the Job Order award, or 2 calendar days after availability start date, whichever occurs first. Update the report and submit revisions to the SUPERVISOR every 2 weeks during the entire contract period. The reports are to contain the following:

- 3.4.2.1 Contract Work Item number
- 3.4.2.2 Contractor's purchase order number
- 3.4.2.3 Description of material
- 3.4.2.4 Quantity ordered
- 3.4.2.5 Date scheduled to be ordered
- 3.4.2.6 Date ordered
- 3.4.2.7 Date required to meet production schedule
- 3.4.2.8 Proposed receipt date
- 3.4.2.9 A summary listing any problem areas
- 3.4.2.10 Date submitted to the SUPERVISOR

3.4.3 Purchase Orders

- 3.4.3.1 Maintain a file of purchase orders for CFM for review by the SUPERVISOR upon request.

- 3.4.3.2 Submit one legible copy, in hard copy or electronic media, of selected purchase orders to the SUPERVISOR upon request.

3.4.4 Submit one legible copy, in hard copy or electronic media, of a report listing Work Item number, subcontractor involved in Work Item, and paragraphs assigned to subcontractor, to the SUPERVISOR prior to the start of work being accomplished by subcontractor.

- 3.4.4.1 Pricing data may be eliminated from the purchase orders prior to submission to or review by the SUPERVISOR.

3.5 The length of externally threaded fasteners shall be such that a minimum of 2 threads to a maximum of 5 threads shall protrude beyond the crown of the tightened nut.
3.6 Procure Military Specifications and Standards and Commercial Specifications and Standards.

3.6.2 Classified Military Specifications are available at the office of the SUPERVISOR.

3.6.3 Work Items will normally reference the basic Government Specifications, Standards, or NAVSEA Standard Plans, without prefix zeros or suffix letters or numbers which identify revisions or amendments. Unless otherwise specified, the effective issue of these basic referenced documents, including revisions or amendments, shall be the most recent issue at the date of solicitation for a Job Order. Wherever specific dates for specifications, standards, and publications or amendments, revisions, or alterations thereto are specified in the Work Items, issues of those dates specifically shall apply in lieu of any other issue. Where industry standards such as ASTM and ANSI are referenced, the issue or revision in effect on the date specified for Government publication applies.

3.7 Work Items will normally reference technical manuals without suffix letters or numbers which identify revisions, change notices, or amendments. Unless otherwise specified, the effective issue of technical manuals, including revisions, change notices, or amendments, shall be the most recent issue at the date of solicitation for the Job Order.

3.8 Submit requests for deviations to the SUPERVISOR.

3.8.1 A deviation is defined as any action which is not in conformance with the Work Item requirements, including references thereto, no matter how minor.

3.8.2 Deviations from Work Items and references thereto will not be considered by the SUPERVISOR without a written request from the contractor.

3.8.3 Submit one legible copy, in hard copy or electronic media, of requests for deviations to the SUPERVISOR within 24 hours of identifying the deviation.

3.8.4 The Government does not have an obligation to approve any deviation; it may elect to do so if benefit to the Government can be shown. Accomplish deviation only when authorized in writing by the SUPERVISOR.

3.9 Accomplish the requirements of the contract.

3.9.1 Non-compliance/non-conformance with the requirements of the Job Order discovered by the Government will be reported to the contractor in writing.
3.9.2 Respond in writing to the report, indicating corrective action taken and, where applicable, the action to be taken to correct the cause of the deficiency. Written response shall be submitted to the SUPERVISOR.

3.10 Comply with security requirements.

3.10.1 In the event that the work required by the Job Order requires access to spaces or equipment that are classified, or use of technical manuals, references, or drawings that are classified, the specific security clearance requirements will be identified in the individual Work Item in addition to the requirements provided in the Invitation for Bid/Request for Proposal (IFB/RFP) by the Contract Security Classification Specification (DD Form 254).

3.10.2 Verify that personnel, including subcontractor's personnel, are cleared for the required level of security classification for handling, repair, installation, and testing of classified equipment and for access to areas of the ship which require a specific security clearance.

3.10.2.1 After selection of a subcontractor, prepare in triplicate a DD Form 254 for the subcontract and request the official designated in Paragraph 14.b of the DD Form 254 for the prime contract to approve and sign the DD Form 254 for the subcontract and to make the required distribution. In preparing the DD Form 254 for subcontracts, extract pertinent data from the DD Form 254 pertaining to the prime contract.

3.10.2.2 Prior to starting work on a Work Item that requires a security clearance, submit a list in triplicate of the names, badge numbers or other identification numbers, and security clearances of contractor and subcontractor personnel who will require access to classified information or areas in order to accomplish the work.

3.10.3 Verify that classified equipment removed from ship and classified documents, such as drawings, technical manuals, and test specifications, are marked or tagged and safeguarded at all times in accordance with the National Industrial Security Program Operating Manual (DOD 5220.22-M).

3.11 Comply with applicable federal, state, and local laws, codes, ordinances, and regulations in their entirety. Any reference to a specific portion of a federal, state, or local law, code, ordinance, or regulation in this or any other item shall not be construed to mean that relief is provided from any other sections of the law, code, ordinance, or regulation.

3.11.1 Provide appropriate notification to regional United States Environmental Protection Agency (EPA) in accordance with the requirements of 2.1. Also, comply with notification requirements of state and local air pollution control laws.

3.11.2 Submit one legible copy, in hard copy or electronic media, of notification required in 3.11.1 that has been provided to any regulatory
authority for work on board the vessel to the SUPERVISOR within 2 working days of providing such notice to the regulatory authority.

3.12 Submit one legible copy, in hard copy or electronic media, of the Material Safety Data Sheet for each hazardous material that will be utilized aboard the ship and/or in a naval facility during the performance of this Job Order to the SUPERVISOR, 72 hours prior to the start of work.

3.13 Comply with the requirements of 2.2 when using Nuclear Regulatory Commission (NRC) licensed radioactive material or machine sources of ionizing radiation on Government property.

3.13.1 Do not commence operating prototype or developmental systems using radioactive material or machine sources of ionizing radiation on Government property until authorized by NAVSEADET RASO, via the SUPERVISOR. NAVSEADET RASO's address/telephone number is:

Naval Sea Systems Command Detachment
Radiological Affairs Support Office
NWS P.O. Drawer 260
Yorktown, VA 23691-0260
(757) 887-4692

3.13.2 Contract personnel shall not be used as operators under a Navy Radioactive Material Permit (NRMP) issued to a naval facility. Navy personnel shall not be used as operators under a Nuclear regulatory Commission (NRC) or Agreement State License issued to a contractor.

3.13.3 For use of licensed radioactive material, submit one legible copy, in hard copy or electronic media, of the applicable NRC or Agreement State license including procedures regarding system process and operation, to NAVSEADET RASO via the SUPERVISOR. In addition, Agreement State licensees shall provide evidence of NRC Form 241 (Report of Proposed Activities in a Non-Agreement State) with the copy of the license.

3.13.4 NAVSEADET RASO shall apprise the contractor, via the SUPERVISOR, of any radiation safety shortcomings to be rectified prior to commencing operations.

4. NOTES:

4.1 Labor or material progress payments on deficient Work Items will be withheld until each deficiency has been corrected.

4.2 For the purposes of this Job Order, the term "day" means 24 hours prior to or after the scheduled event.
4.3 Known sources for unclassified military specifications and standards are:

http://stinet.dtic.mil
http://assist.daps.dla.mil/quicksearch

4.4 The term SUPERVISOR is defined as the local Government activity responsible for the execution and contract administration of Navy maintenance and modernization work.
1. **SCOPE:**

 1.1 **Title:** Reporting of Material Usage Requirements for Work at Naval Facilities for Environmental Compliance; accomplish

2. **REFERENCES:**

 2.1 42 USC 7412(b), Clean Air Act, Section 112(b), List of Hazardous Air Pollutants

3. **REQUIREMENTS:**

 3.1 Submit one legible copy, in hard copy or electronic media, of reports as follows:

 3.1.1 Submit applicable permits for portable, registered, or rental emission units to the SUPERVISOR prior to start of work.

 3.1.2 Establish a record keeping program to reflect the manner in which the material records will be maintained and submitted to the SUPERVISOR.

 3.1.3 Maintain facility specific records to ensure accurate reporting for all preservation, welding repairs, and fuel consumption for each individual portable internal combustion engine or portable emission unit. Provide the SUPERVISOR sufficient details to track usage of all paints, solvents, adhesives, welding rods, and fuel used for each individual portable internal combustion engines over 50 brake horse power. Report any other materials used which contain chemicals listed in 2.1.

 3.1.4 Maintain current usage records of materials listed in 2.1.

 3.1.5 Negative reports are required.

 3.1.6 Reports shall contain the following items based upon category of the material.

 3.1.7 Paint, solvent, and adhesive usage records are to be submitted monthly and shall include the following:

 3.1.7.1 Product manufacturer, identification or color
3.1.7.2 Net daily paint usage in gallons, paint application method (airless spray, HVLP, brush, or roller) per paint type, amount of paint disposed as hazardous waste; density of mixed paint; net daily onsite solvent usage in gallons used for equipment cleaning and surface preparation; net amount of adhesives in unit of measure (ounces, quart, gallons or pound)

3.1.7.3 Product material safety data sheet (MSDS), technical data sheet, VOC certification for paint and non-skid product

3.1.7.4 Government site location, applicable local Air Pollution Control District (APCD) permit number, date and ship's name

3.1.8 Abrasive blast grit materials used shall be submitted monthly and shall include:

3.1.8.1 Manufacturer of abrasive blast grit and MSDS

3.1.8.2 Abrasive blast grit usage certification if required by the cognizant state or local authorities

3.1.8.3 Amount and hourly usage of the abrasive blast grit

3.1.8.4 Permit associated with the abrasive blasting equipment if required by the cognizant state or local authorities

3.1.9 Welding operation report shall be submitted monthly and shall include welding rod manufacturer, specific product used in welding application, MSDS, usage in pounds and type of welding application

3.1.10 Portable internal combustion (IC) engine greater than 50 brake horse power operation report shall be submitted monthly and shall include:

3.1.10.1 Amount of fuel used in gallons and the hours of operation

3.1.10.2 IC engine permit number and site location if required by the cognizant state or local authorities

3.2 Submit one legible copy, in hard copy or electronic media, of each report required by 3.1 to the SUPERVISOR no later than 10 calendar days after the end of the month throughout the availability.

4. NOTES:

4.1 Paint and non-skid manufacturer may be Ameron, International, American Safety Technology, etc.
4.2 Welding rod may be E316-16, E7018-AL 308-16, etc. If there is no American Welding Society (AWS) classification assigned, use the product name and circle the product on the MSDS.

4.3 Welding application may be Shielded Metal Arc Weld (SMAW), Gas Metal Arc Weld (GMAW), Flux Core Arc Weld (FCAW), etc.
1. SCOPE:

1.1 Title: Toxic and Hazardous Substances; control

2. REFERENCES:

2.1 29 CFR Part 1915, Occupational Safety and Health Standards for Shipyard Employment

3. REQUIREMENTS:

3.1 Sample or otherwise identify materials that are to be used, removed, or disturbed during work operations that may contain toxic or hazardous substances as listed in 1915.1000 of 2.1.

3.1.1 Consider work operations that have the potential of producing air contaminants as safety and health hazards unless airborne concentration levels are determined to be below the exposure limits listed in 2.1.

3.2 Ensure that procedures for the removal or disruption of existing toxic or hazardous substances comply with the requirements of 2.1, and that exposure monitoring, method of compliance, respiratory protection, protective clothing, housekeeping, hygiene facilities and practices, medical surveillance, clearance sampling, employee information and training, signs, and recordkeeping are all addressed.

3.2.1 Maintain, at the work site, written designation of the Qualified Person who will take samples for analysis, monitor personnel, and inspect affected areas.

3.2.1.1 The Qualified Person shall be an Industrial Hygienist, Marine Chemist, equivalent, or person working under the direct supervision of those herein, capable of specifying necessary protection and precautions to be taken during work process and shall have received training as recommended by the American Industrial Hygiene Association (AIHA).

3.2.1.2 Submit one legible copy, in hard copy or electronic media, of certifications, licenses, and other documentation required by federal, state, and local regulatory authorities to the SUPERVISOR prior to start of work.
3.3 Provide a written notice to the SUPERVISOR and to the Commanding Officer's designated representative of potential exposure to toxic or hazardous substances and hazardous operations.

3.3.1 Post the notice at the ship's Quarterdeck and at all entrances to the work areas for each job or separate area of potential exposure to toxic or hazardous substances at least four hours, but not more than 24 hours, prior to the start of work.

3.3.2 The notice shall contain the following information:

3.3.2.1 Ship's name and hull number
3.3.2.2 Work Item number
3.3.2.3 Compartment or frame number
3.3.2.4 Identification of hazard
3.3.2.5 Date and time of work process
3.3.2.6 Identification of engineering and work practice controls

3.3.3 Deliver notification of work planned over a weekend or Monday following that weekend to the Commanding Officer's designated representative not later than 0900 on the Friday immediately preceding that weekend.

3.3.4 Deliver notification of work planned on a Federal holiday and on the day following the Federal holiday to the Commanding Officer's designated representative not later than 0900 on the last working day preceding the Federal holiday.

3.3.5 The notice and procedure shall be submitted to the SUPERVISOR for review prior to commencement of the work operation. Authorization of the SUPERVISOR shall be obtained before proceeding with the work.

3.4 Provide for isolation and blanking of ship's ventilation systems in work areas to prevent toxic or hazardous substance contamination of ventilation systems or other compartments/spaces.

3.5 Establish regulated areas for monitoring and authorized personnel entry whenever concentrations of the toxic or hazardous substance are in excess of exposure limits as listed in 2.1.

3.6 Monitor the affected areas during work operations to ensure compliance with 2.1. Monitoring shall include adjacent spaces to ensure the work area containments and work practices are effective. Results of
surveillance shall be documented and documentation shall be made available to the SUPERVISOR.

3.7 Submit one legible copy, in hard copy or electronic media, of the laboratory analysis results as required in 3.2 to the SUPERVISOR prior to release of the space for entry of unprotected personnel. The analysis shall verify that the exposure limits are not exceeded.

4. **NOTES:**

4.1 The terms "substance", "air contaminant", and "material" are equivalent in meaning for 29 CFR 1915.1000.
1. SCOPE:

1.1 Title: Quality Management System; provide

2. REFERENCES:

2.1 ANSI/ISO/ASQ Q9001-2000, Quality Management Systems - Requirements

2.2 ANSI/NCSL Z540-1, General Requirements for Calibration Laboratories and Measuring and Test Equipment

3. REQUIREMENTS:

3.1 Establish, document, implement, and maintain a Quality Management System as a means of ensuring that product conforms to specified requirements. The system shall, as a minimum, comply with the requirements of 2.1 and all additional contract requirements. The documented Quality Management System shall be submitted to the SUPERVISOR for an adequacy review and acceptance. The contractor shall have an acceptable documented Quality Management System, in accordance with this Standard Item, in place to receive an award of a Job Order. The Quality Management System shall be subject to periodic compliance audits by the SUPERVISOR throughout the contract.

3.2 Include the following additional documented procedures:

3.2.1 Management Responsibility: Address all areas of Paragraphs 5.1 through 5.6.3, 6.1, 6.2.1, 6.2.2, and 8.5.1 of 2.1.

3.2.2 Customer Related Processes: Address all areas of Paragraphs 7.2.1 through 7.2.3 of 2.1.

3.2.3 Purchasing: Address all areas of Paragraphs 7.4.1 through 7.4.3 of 2.1.

3.2.3.1 Verification of Purchased Product: Identify, in the purchasing documents, verification arrangements at the subcontractor or vendors location/premises. Purchasing documents shall contain the following statement when the SUPERVISOR requests government inspection: "Government Inspection is required prior to shipment from your plant. Upon receipt of this order, promptly notify and furnish a copy to the government
representative who normally services your plant so that appropriate planning for government inspection can be accomplished. In the event the government representative or office cannot be located, our purchasing agent shall be notified immediately."

3.2.3.2 Receipt Inspection of contractor furnished materials shall be based on supplier performance history and one or more of the following: certificate of compliance, vendor material test certification data, or testing using sampling techniques. Use of black-oxide coated brass threaded fasteners (BOCBTF) is not authorized in the accomplishment of any work under this contract.

3.2.4 Production and Service Provision: Address all areas of Paragraphs 7.5.1 - 7.5.5 of 2.1.

3.2.5 Monitoring and Measurement of Product: Address all areas of Paragraph 8.2.4 of 2.1.

3.2.6 Control of Monitoring and Measuring Devices: Address all areas of Paragraph 7.6 of 2.1, and 2.2.

3.2.7 Measurement, Analysis, and Improvement: Address all areas of Paragraphs 8.2.1, 8.4, and 8.5.1 of 2.1.

3.3 The corrective and preventive action program shall require that a copy of the written responses to contractor generated corrective actions will be provided to the SUPERVISOR when requested.

3.4 A Test and Inspection Plan shall be developed incorporating each Work Item in the job order. Submit an initial copy of the Test and Inspection Plan to the SUPERVISOR no later than 5 days prior to the start of the availability (for availabilities 30 days or longer). Submit subsequent updated copies of the Test and Inspection plan at the 50 and 100 percent points of the availability.

3.4.1 A Test and Inspection Plan shall:

3.4.1.1 Be revised prior to the start of productive work and updated as work proceeds on each work item. It shall be available upon request by the SUPERVISOR. Supporting data for tests and inspections requiring government notification (G), including accept/reject criteria, shall be available at the location of each test and inspection. Include provisions for documenting the date, time, and identification of the SUPERVISOR's representative notified and government representative attending each (G) Point on the Test and Inspection Plan.

3.4.1.2 Identify by paragraph and appropriate symbol(s) (see 3.7 and 3.8), each test and inspection required by the Work Item and the contractor to substantiate product conformance. Tests and inspections required by the Work Item that provide a report of conditions found are not
required to be included in the Test and Inspection Plan unless specifically required by the Work Item.

3.4.1.3 Provide identification of the item to be inspected by name, number, and location (e.g., number 3 main feed pump, 5-180-0-E).

3.4.1.4 Provide identification of each characteristic of the items to be inspected and provide the criteria for acceptance for each characteristic (e.g., air test; 2 PSIG for 10 minutes; no drop).

3.5 Test and Inspection records shall:

3.5.1 Include the ship's name and hull number, Job Order and Work Item numbers, date, time, and signature of the contractor's authorized representative who witnessed or performed the test or inspection.

3.5.2 Be maintained at a contractor location accessible to the site of the work required by the Job Order.

3.5.3 Be documented within 24 hours of accomplishment or prior to the subsequent tests or inspections, whichever is less. Records shall be incorporated into the Test and Inspection Plan within 72 hours after completion of each test or inspection.

3.5.3.1 For tests and inspections involving (G) points, records shall be documented upon acceptance or rejection and a hard copy provided to the Government representative by the end of the work shift or prior to the start of the next evolution requiring documentation, whichever is sooner.

3.5.4 Required reports resulting from tests or inspections shall include the appropriate design criteria for each attribute or measurement required by the Work Item.

3.6 The SUPERVISOR will consider the Work Item incomplete if the contractor's documentation and records are not complete.

3.7 Accomplish (I) and (V) test/inspection requirements as follows:

3.7.1 (I) inspections require verification and documentation by a separate individual, other than the person who has accomplished the work, who is qualified as an inspector.

3.7.2 (V) inspections require verification and documentation by either the qualified tradesperson, trade supervisor, or inspector.

3.8 Accomplish (G) Point (government notification) as follows:

3.8.1 (G) is a symbol inserted in a Work Item to establish a point in the sequence of accomplishment of work at which time the SUPERVISOR shall
be notified to permit observation of a specific test or inspection by the government.

3.8.2 Notify the SUPERVISOR's designated representative via FAX, hard copy, or by electronic method, as agreed to by the SUPERVISOR, during normal day shift working hours. Notification shall be at least 4 hours, but not more than one working day, prior to commencing the specific requirements in the paragraph annotated with the symbol (G). Notify the SUPERVISOR not later than 4 hours before the end of the last preceding day shift when tests or inspections following a (G) Point are scheduled after normal day shift working hours, on a weekend, or on a federal holiday. Notify the SUPERVISOR at least 48 hours, but not more than 72 hours, prior to commencing (G) Points at contractor's/subcontractor's plants located in excess of 50 miles by the most direct roadway nearest to the place of performance of the contract. Document the date, time, and identification of the SUPERVISOR's representative notified.

3.8.2.1 For (G) Points scheduled after normal day shift working hours, on a weekend, or a Federal holiday, notify the SUPERVISOR to cancel a scheduled test or inspection as soon as known, but no later than 2 hours prior to the scheduled event.

3.8.3 A qualified contractor representative shall be present to accept or reject tests or inspections annotated with the symbol (G).

3.8.4 When the symbol (G) precedes tests or inspections in a Work Item which are applicable to more than one action, the symbol (G) shall identify the action required, e.g., (G) "HYDROSTATIC TEST". When more than one unit is involved, the (G) notification requirement applies to each unit.

3.8.5 Proceed with the test or inspection if the SUPERVISOR is not present, provided the required advance notice has been furnished to the SUPERVISOR and the contractor has completed and documented the preceding tests and inspections.

3.8.6 A partial test or inspection requiring (G) notification may be accomplished in the event that all work cannot be completed and work progress would be delayed in waiting for total completion of work. Comply with the requirements of 3.8.2 when the incomplete work is completed and ready for the remainder of the test or inspection. Note partial inspections on the test or inspection form.

3.8.7 Invoke (G) notification requirements for tests or inspections involving a subcontractor in purchase orders such that the requirements of 3.8.2 are met.

3.8.7.1 Submit one legible copy, in hard copy or electronic media, of the technical specification portion of those purchase orders, or a report identifying the applicable information, which involve (G) notifications to the SUPERVISOR prior to the start of work by the contractor/subcontractor.
3.8.7.2 Submit one legible copy, in hard copy or electronic media, of those purchase orders for work being accomplished by subcontractors located outside a 50-mile radius of the place of contract performance to the SUPERVISOR prior to shipment of purchase order and equipment. For contractors with facilities outside the 50-mile radius, a report identifying the applicable information may be submitted in lieu of a purchase order.

3.8.8 The qualified contractor's representative shall witness or perform and document all tests and inspections within a 50-mile radius of the contractor's plant nearest to the place of performance of the contract.

3.8.8.1 The authority to witness or perform and document tests and inspections may be delegated to subcontractors who are MSRA or ABR agreement holders and have a current Quality Management System accepted by the SUPERVISOR. However, (G) Point notification requirements shall not be delegated.

3.9 The contractor may delegate responsibility to subcontractors for tests and inspections performed at plants located outside a 50-mile radius of the contractor's plant nearest to the place of performance of the contract. However, the (G) Point notification requirements shall not be delegated.

3.10 Maintain a current list for reference by the SUPERVISOR, designating the contractor's qualified inspectors who witness or perform and sign for symbol (I) inspections, indicating the type of tests and inspections for which each inspector is qualified. When subcontractors are delegated responsibility, the subcontractor's qualified inspectors shall be included on this list.

4. NOTES:

4.1 ANSI/ISO/ASQ Q9001:2000 commercial third party registrar certification is not required.

4.2 Submittal of procedures and Process Control Procedures (NAVSEA Standard Item 009-09) invoked by NAVSEA Standard Items, MIL-STDs, drawings, and specifications, although an integral part of the Quality Management System, are to be submitted and approved by the SUPERVISOR independent of the Quality Management System.

4.3 The recommended Quality Management System structure is the Level A, B, and C hierarchy as described in ANSI/ISO/ASQC Q10013, Guidelines for Developing Quality Manuals.

4.4 The Quality Management System submitted in 3.1, requires a one-time submittal/acceptance unless this NAVSEA Standard Item and/or references change or contractor's status changes.
1. **SCOPE:**

 1.1 Title: Quality Management System; provide

2. **REFERENCES:**

 2.1 Standard Items

 2.2 ANSI/ISO/ASQ Q9001-2000, Quality Management Systems - Requirements

 2.3 ANSI/NCSL Z540-1, General Requirements for Calibration Laboratories and Measuring and Test Equipment

3. **REQUIREMENTS:**

 3.1 Establish, document, implement, and maintain a Quality Management System as a means of ensuring that product conforms to specified requirements. The system shall, as a minimum, comply with the requirements of 2.2 and all additional contract requirements. The documented Quality Management System shall be submitted to the SUPERVISOR for an adequacy review and acceptance. The contractor shall have an acceptable documented Quality Management System, in accordance with this Standard Item, in place to receive an award of a Job Order. The Quality Management System shall be subject to periodic compliance audits by the SUPERVISOR throughout the contract.

 3.2 Include the following additional documented procedures:

 3.2.1 Management Responsibility: Address all areas of Paragraphs 5.1 through 5.6.3, 6.1, 6.2.1, 6.2.2, and 8.5.1 of 2.2.

 3.2.2 Customer Related Processes: Address all areas of Paragraphs 7.2.1 through 7.2.3 of 2.2.

 3.2.3 Purchasing: Address all areas of Paragraphs 7.4.1 through 7.4.3 of 2.2.

 3.2.3.1 Verification of Purchased Product: Identify, in the purchasing documents, verification arrangements at the subcontractor or vendors location/premises. Purchasing documents shall contain the following statement when the SUPERVISOR requests government inspection: "Government
Inspection is required prior to shipment from your plant. Upon receipt of this order, promptly notify and furnish a copy to the government representative who normally services your plant so that appropriate planning for government inspection can be accomplished. In the event the government representative or office cannot be located, our purchasing agent shall be notified immediately.

3.2.3.2 Receipt Inspection of contractor furnished materials shall be based on supplier performance history and one or more of the following: certificate of compliance, vendor material test certification data, or testing using sampling techniques. Use of black-oxide coated brass threaded fasteners (BOCBTF) is not authorized in the accomplishment of any work under this contract.

3.2.4 Production and Service Provision: Address all areas of Paragraphs 7.5.1 - 7.5.5 of 2.2.

3.2.5 Monitoring and Measurement of Product: Address all areas of Paragraph 8.2.4 of 2.2.

3.2.6 Control of Monitoring and Measuring Devices: Address all areas of Paragraph 7.6 of 2.2, and 2.3.

3.2.7 Measurement, Analysis, and Improvement: Address all areas of Paragraphs 8.2.1, 8.4, and 8.5.1 of 2.2.

3.3 The corrective and preventive action program shall require that a copy of the written responses to contractor generated corrective actions will be provided to the SUPERVISOR when requested.

3.4 A Test and Inspection Plan shall be developed incorporating each Work Item in the job order. Submit an initial copy of the Test and Inspection Plan to the SUPERVISOR no later than 5 days prior to the start of the availability (for availabilities 30 days or longer). Submit subsequent updated copies of the Test and Inspection plan at the 50 and 100 percent points of the availability.

3.4.1 A Test and Inspection Plan shall:

3.4.1.1 Be revised prior to the start of productive work and updated as work proceeds on each work item. It shall be available upon request by the SUPERVISOR. Supporting data for tests and inspections requiring government notification (G), including accept/reject criteria, shall be available at the location of each test and inspection. Include provisions for documenting the date, time, and identification of the SUPERVISOR's representative notified and government representative attending each (G) Point on the Test and Inspection Plan.

3.4.1.2 Identify by paragraph and appropriate symbol(s) (see 3.7 and 3.8), each test and inspection required by the Work Item and the
contractor to substantiate product conformance. Tests and inspections required by the Work Item that provide a report of conditions found are not required to be included in the Test and Inspection Plan unless specifically required by the Work Item.

3.4.1.3 Provide identification of the item to be inspected by name, number, and location (e.g., number 3 main feed pump, 5-180-0-E).

3.4.1.4 Provide identification of each characteristic of the items to be inspected and provide the criteria for acceptance for each characteristic (e.g., air test; 2 PSIG for 10 minutes; no drop).

3.5 Test and Inspection records shall:

3.5.1 Include the ship's name and hull number, Job Order and Work Item numbers, date, time, and signature of the contractor's authorized representative who witnessed or performed the test or inspection.

3.5.2 Be maintained at a contractor location accessible to the site of the work required by the Job Order.

3.5.3 Be documented within 24 hours of accomplishment or prior to the subsequent tests or inspections, whichever is less. Records shall be incorporated into the Test and Inspection Plan within 72 hours after completion of each test or inspection.

3.5.3.1 For tests and inspections involving (G) points, records shall be documented upon acceptance or rejection and a hard copy provided to the Government representative by the end of the work shift or prior to the start of the next evolution requiring documentation, whichever is sooner.

3.5.4 Required reports resulting from tests or inspections shall include the appropriate design criteria for each attribute or measurement required by the Work Item.

3.6 The SUPERVISOR will consider the Work Item incomplete if the contractor's documentation and records are not complete.

3.7 Accomplish (I) and (V) test/inspection requirements as follows:

3.7.1 (I) inspections require verification and documentation by a separate individual, other than the person who has accomplished the work, who is qualified as an inspector.

3.7.2 (V) inspections require verification and documentation by the qualified tradesperson, trade supervisor, or inspector.

3.8 Accomplish (G) Point (government notification) as follows:
3.8.1 (G) is a symbol inserted in a Work Item to establish a point in the sequence of accomplishment of work at which time the SUPERVISOR shall be notified to permit observation of a specific test or inspection by the government.

3.8.2 Notify the SUPERVISOR's designated representative via FAX, hard copy, or by electronic method, as agreed to by the SUPERVISOR, during normal day shift working hours. Notification shall be at least 4 hours, but not more than one working day, prior to commencing the specific requirements in the paragraph annotated with the symbol (G). Notify the SUPERVISOR not later than 4 hours before the end of the last preceding day shift when tests or inspections following a (G) Point are scheduled after normal day shift working hours, on a weekend, or on a federal holiday. Notify the SUPERVISOR at least 48 hours, but not more than 72 hours, prior to commencing (G) Points at contractor's/subcontractor's plants located in excess of 50 miles by the most direct roadway nearest to the place of performance of the contract. Document the date, time, and identification of the SUPERVISOR's representative notified.

3.8.2.1 For (G) Points scheduled after normal day shift working hours, on a weekend, or a Federal holiday, notify the SUPERVISOR to cancel a scheduled test or inspection as soon as known, but no later than 2 hours prior to the scheduled event.

3.8.3 A qualified contractor representative shall be present to accept or reject tests or inspections annotated with the symbol (G).

3.8.4 When the symbol (G) precedes tests or inspections in a Work Item which are applicable to more than one action, the symbol (G) shall identify the action required, e.g., (G) "HYDROSTATIC TEST". When more than one unit is involved, the (G) notification requirement applies to each unit.

3.8.5 Proceed with the test or inspection if the SUPERVISOR is not present, provided the required advance notice has been furnished to the SUPERVISOR and the contractor has completed and documented the preceding tests and inspections.

3.8.6 A partial test or inspection requiring (G) notification may be accomplished in the event that all work cannot be completed and work progress would be delayed in waiting for total completion of work. Comply with the requirements of 3.8.2 when the incomplete work is completed and ready for the remainder of the test or inspection. Note partial inspections on the test or inspection form.

3.8.7 Invoke (G) notification requirements for tests or inspections involving a subcontractor in purchase orders such that the requirements of 3.8.2 are met.

3.8.7.1 Submit one legible copy, in hard copy or electronic media, of the technical specification portion of those purchase orders, or a
report identifying the applicable information, which involve (G) notifications to the SUPERVISOR prior to the start of work by the contractor/subcontractor.

3.8.7.2 Submit one legible copy, in hard copy or electronic media, of those purchase orders for work being accomplished by subcontractors located outside a 50-mile radius of the place of contract performance to the SUPERVISOR prior to shipment of purchase order and equipment. For contractors with facilities outside the 50-mile radius, a report identifying the applicable information may be submitted in lieu of a purchase order.

3.8.8 The qualified contractor's representative shall witness or perform and document all tests and inspections within a 50-mile radius of the contractor's plant nearest to the place of performance of the contract.

3.8.8.1 The authority to witness or perform and document tests and inspections may be delegated to subcontractors who are MSRA or ABR agreement holders and have a current Quality Management System accepted by the SUPERVISOR. However, (G) Point notification requirements shall not be delegated.

3.9 The contractor may delegate responsibility to subcontractors for tests and inspections performed at plants located outside a 50-mile radius of the contractor's plant nearest to the place of performance of the contract. However, the (G) Point notification requirements shall not be delegated.

3.10 Maintain a current list for reference by the SUPERVISOR, designating the contractor's qualified inspectors who witness or perform and sign for symbol (I) inspections, indicating the type of tests and inspections for which each inspector is qualified. When subcontractors are delegated responsibility, the subcontractor's qualified inspectors shall be included on this list.

3.11 Accomplish the requirements of 009-09 of 2.1 for coating system and non-skid applications for each Work Item in the Job Order that invokes preservation of critical coated areas as defined in 009-32 of 2.1.

4. NOTES:

4.1 ANSI/ISO/ASQ Q9001:2000 commercial third party registrar certification is not required.

4.2 Submittal of procedures and Process Control Procedures (NAVSEA Standard Item 009-09) invoked by NAVSEA Standard Items, MIL-STDs, drawings, and specifications, although an integral part of the Quality Management System, are to be submitted and approved by the SUPERVISOR independent of the Quality Management System.
4.3 The recommended Quality Management System structure is the Level A, B, and C hierarchy as described in ANSI/ISO/ASQC Q10013, Guidelines for Developing Quality Manuals.

4.4 The Quality Management System submitted in 3.1, requires a one-time submittal/acceptance unless this NAVSEA Standard Item and/or references change or contractor's status changes.
1. SCOPE:

1.1 Title: Temporary Accesses; provide

2. REFERENCES:

2.1 Standard Items
2.2 MIL-STD-1689, Fabrication, Welding, and Inspection of Ships Structure
2.3 29 CFR Part 1915, Occupational Safety and Health Standards for Shipyard Employment

3. REQUIREMENTS:

3.1 Submit one legible drawing or sketch of each proposed access cut and a list of each proposed bolted/riveted access removal to the SUPERVISOR three working days prior to making cut or removing bolted/riveted access.

3.1.1 The drawing or sketch shall include, as a minimum, the following information:

3.1.1.1 A plan and elevation view specifying the location of the access by deck, frame, and distance from the center line or deck edge and showing location of adjacent penetrations, bulkheads, framing, welds, and riveted joints within 12 inches of the proposed cut.

3.1.1.2 Location and number of previous cuts visible in each plate and the cutback of existing welds as required by 3.2.8.1.

3.1.1.3 Temporary structural reinforcement required to prevent distortion of ship structure.

3.1.1.4 Thickness and type of material of plating and structural members to be cut. Include source or document/drawing number which identifies material requirements.

3.1.1.5 A description of the temporary access closure or enclosure.
3.1.1.6 Include a copy of the weld procedure or approved weld procedure number with the proposed access sketch.

3.1.2 List of bolted/riveted access covers shall include location, designation, and classification as identified on ship's damage control charts.

3.1.3 **Provide all drawing titles and numbers (including applicable sub-tier), and technical documentation used to accomplish the requirements of 3.1.**

3.2 Ensure that access cut boundaries:

3.2.1 Are located between ship framing, bulkheads, and other structural members and shall be at least 3 inches from these members and the toes of other weld butts.

3.2.1.1 Boundaries may extend across one or more frames as required for size of opening.

3.2.2 Are sized and located to accomplish the requirements of the Job Order.

3.2.2.1 Use access requirements on NAVSEA drawings as guidance only.

3.2.3 Are located at least 6 inches from a riveted joint except where riveted joints form a boundary of the cut.

3.2.3.1 Weld riveted plates using a single V-weld with glass cloth conforming to MIL-C-24576, Type One, Class One, to prevent fusion between backing member and plate.

3.2.3.2 Remove existing rivets within 6 inches of a cut and install new rivets in accordance with 2.2.

3.2.4 Are at least four inches in diameter for round patches.

3.2.4.1 Round patches 2 feet in diameter or less shall be dished 1/16-inch to 1/8-inch.

3.2.5 Are at least 3 inches minimum to 6 inches maximum width for oblong cuts with circular ends and have a radius of one-half the width.

3.2.6 Are sized so that the smallest dimension of a square or rectangular cut is 12 inches. For cuts less than 24 inches, minimum radius of each corner shall be 3 inches; for cuts 24 inches and greater, minimum radius of each corner shall be 6 inches. Exception to this corner radius criteria is where cut terminates at an existing weld.

3.2.7 Utilize existing butts or seams whenever practical.
3.2.8 Utilize the same boundaries as used for prior cuts unless the requirements of this Standard Item have been violated.

3.2.8.1 Annotate violations on the drawing or sketch required by 3.1.

3.2.9 Intersect or cross existing butts at a 90-degree angle, plus or minus 15 degrees.

3.2.9.1 Intersecting welds shall be cut back a minimum of 3 inches beyond the toe to the weld of the access cut, except that the cutback shall not intersect or cross an existing weld, frame, or structural member, in which case, the cutback may be reduced to a minimum of 2 inches in length.

3.2.9.2 Cross welds shall not be cut back.

3.2.10 Are not made in the sheer, stringer, or bilge strakes, or in the flat keel unless approved by the SUPERVISOR.

(V) (G) "INSPECT LAY OUT"

3.3 Lay out access on both sides of the structure to be cut, in accordance with reviewed drawing or sketch.

3.3.1 Prior to cutting access in the ship/vessel's hull, accomplish positive verification of access parameters by the tapping method, heat method, or drilling of pilot hole in the path of the cut to be accomplished.

3.4 Cut access in accordance with reviewed drawing or sketch.

3.5 Remove bolted/riveted access.

3.5.1 Clean and preserve gasket faying surfaces.

3.5.2 Chase and tap exposed threaded areas.

3.6 Accomplish the requirements of 2.3 for guarding of access openings.

3.6.1 Remove temporary guarding after installation of access plates. Chip and grind surfaces flush in way of removals.

3.7 Install a temporary coaming with a minimum height of four inches around access cuts through decks. Tack weld the coaming to the deck and seal the deck joint with caulking compound.

3.7.1 Remove the temporary coaming after installation of access plate. Chip and grind surfaces flush in way of removals.

3.8 Protect ship from weather and contamination.
3.8.1 Fabricate temporary closures, using fire retardant material, prior to removing plates or cutting access openings.

3.8.1.1 Closures shall be constructed to protect the access from inclement weather and entry of contaminants.

3.8.1.2 Horizontal deck closures shall support a minimum of 150 pounds per square foot.

3.8.1.3 Closures shall be fitted with fasteners which permit rapid installation and removal.

3.8.2 Install closures whenever access is not in use.

3.9 Maintain watertight integrity of waterborne ship.

3.9.1 Fabricate and install watertight enclosures prior to removing plates or cutting access openings that do not provide a minimum of four feet of freeboard.

3.9.1.1 Maintain watertight integrity to a level four feet above the maximum anticipated draft.

3.10 Maintain watertight integrity of ship in dry dock.

3.10.1 Provide temporary access closure plates and fasteners prior to removing plates or cutting access openings below four feet of waterborne freeboard.

3.10.1.1 Closure plates shall be available on short notice for emergency sealing of the temporary access openings.

3.10.2 Seal access openings with closure plates when conditions warrant.

3.10.3 Secure openings at the end of each shift not immediately followed by another shift engaged in dry dock work.

3.11 Remove the temporary closures when no longer required.

3.12 Install the access plate in accordance with the reviewed drawing or sketch.

3.12.1 Accomplish the requirements of 009-12 of 2.1 for installation and inspection of the access plate.

3.12.1.1 Accomplish nondestructive testing with acceptance criteria for: new welds, existing welds extending 6 inches beyond cutbacks, 24 inches of riveted joints within 12 inches of new welds, and repaired
riveted joints including 12 inches either side of the repairs. Acceptance criteria for the welds adjacent to the cutbacks shall be limited to an absence of crack indications. Nondestructive test requirements for closure shall include closure plates and small access plates.

3.12.2 Install the bolted/riveted access.

3.12.2.1 Use new gasket material conforming to MIL-PRF-900 and fastener material conforming to MIL-DTL-1222, Grade 304.

3.12.2.2 Install new rivets for riveted access plates in accordance with 2.2.

(V) "CHALK TEST"

3.13 Accomplish a chalk test on structural closure in way of temporary access. Chalk imprint shall be centered with 100-percent contact.

3.14 Accomplish the requirements of 009-25 of 2.1 for the water hose or local air hose test of each watertight/airtight closure. Allowable leakage: None.

4. NOTES:

4.1 None.
1. SCOPE:

1.1 Title: Protection During Contamination-Producing Operations and Maintaining Cleanliness; accomplish

2. REFERENCES:

2.1 Standard Items

3. REQUIREMENTS:

3.1 The following requirements shall be observed, in addition to the specific requirements of the Job Order, for maintaining cleanliness of the ship, ship's equipment, components, and spaces for the duration of the availability.

3.1.1 Accomplish an inspection of the work area prior to installation of protective covering to identify the current condition of equipment, systems, and components, including any exposed cables, penetrations, stuffing tubes, bolted cover plates, and antennas.

3.1.1.1 Submit one legible copy, in hard copy or electronic media, of a report listing results of the inspection, with sketches, to the SUPERVISOR, showing type and location of damage and/or deterioration prior to the beginning of contamination-producing operations.

3.2 Prevent contamination and damage of the ship's equipment, components, and spaces during contamination-producing operations.

3.2.1 Plug, blank, wrap, cover, seal, and mask equipment, components, cables, wireways, boats, and openings using fire retardant/water repellent material, and prevent entry of contaminants to machinery, winches, rigging, machinery surfaces, weapons systems, electrical equipment, electronic equipment, valves, vents not in use, and other openings.

3.2.1.1 Ensure plugging and blanking does not result in flooding or damage to ship's equipment.

3.2.1.2 Install Herculite or canvas covering conforming to A-A-55308, and/or fire retardant plywood conforming to Category 2, Type II, of MIL-L-19140.
3.2.2 Install fire retardant industrial filter material on the intake of supply and exhaust end of ventilation systems which will be in use.

3.2.2.1 Remove existing and install new filter or clean the filter material when air flow is restricted.

(V) "VERIFY PROTECTIVE MEASURES"

3.2.3 All protective measures are to be in place prior to start of any contamination-producing operations and shall remain in place until the contamination-producing operations are complete.

3.2.4 Install double curtain baffles at the entrance of each access door where airborne contamination could occur during contamination-producing operations. Install a dirt collecting mat on the deck directly inside each door. The SUPERVISOR will select a maximum of 4 doors. Tag out doors not designated for access.

3.2.5 Temporary coverings shall not be removed during contamination-producing operations without permission of the SUPERVISOR.

(V) "INSPECT PROTECTIVE COVERING"

3.3 Inspect the integrity of the protective covering at the beginning of each shift in which contamination-producing operations will be accomplished. Ensure that equipment and machinery have not been infiltrated by contaminants. Notify the SUPERVISOR immediately by verbal means, followed on the next work day in writing, if contamination or surface damage has occurred. Reseal to prevent further entry of contaminants or surface damage.

3.4 Maintain cleanliness of the work site, including bilges, free from accumulation of industrial debris caused by contractor and/or subcontractor employees on a continuous basis throughout the availability. Work spaces include those areas immediately under and adjacent, and those areas where service lines are run, and bilge areas in vicinity of the work site.

3.4.1 Cleaning shall be accomplished no later than at the end of each shift, on a daily basis.

3.4.2 Remove and dispose of industrial debris from the ship on a daily basis.

3.5 Accomplish an initial walk-through of all locations aboard ship where contractor responsible work will take place, to observe cleanliness conditions. The inspection shall be made jointly with the SUPERVISOR and the Commanding Officer's designated representative, and shall take place prior to the commencement of any work by the contractor.
3.5.1 Submit one legible copy, in hard copy or electronic media, of a report of any unclean sites/spaces to the SUPERVISOR and Commanding Officer of the ship within 72 hours after completion of the inspection.

3.6 Accomplish a cleanliness inspection on a daily basis whenever work is in progress. The inspection shall be made jointly with the SUPERVISOR and the Commanding Officer's designated representative. During inspection the responsible party shall be assigned. A written report of any unclean work sites/spaces shall be prepared by the contractor and copies distributed to the SUPERVISOR and Commanding Officer's designated representative within 4 hours after completion of the inspection. The inspection report shall list the responsible activity (contractor, ship, etc.) for each unclean site/area. Unclean sites/areas determined as contractor responsible shall be immediately cleaned.

3.6.1 Accomplish inspections and reporting during the daily fire prevention and housekeeping inspections in accordance with 009-07 of 2.1.

(V)(G) "FINAL CONTAMINATION/DAMAGE INSPECTION"

3.7 Remove protective covering upon completion of contamination-producing operations. Accomplish a final inspection of the work area to identify the presence of contamination and/or damage created by contamination-producing operations. Contamination/damage shall be documented on the inspection record.

3.8 Remove from the ship and dispose of debris and foreign matter generated as a result of work being accomplished on this ship and from work being accomplished on other naval and private ships and crafts. Comply with the requirements of federal, state, and local laws, codes, ordinances, and regulations or as specified elsewhere in the Job Order.

4. NOTES:

4.1 Definitions:

4.1.1 Cleanliness means the removal of all industrial debris (industrial trash, waste material, weld rods/tips, fasteners, rags, lagging waste, job scrap, wire, litter, rubbish, etc.) at the end of each shift, leaving the areas broom clean and electronic spaces vacuum clean. Adjacent/surrounding machinery, equipment, etc., left exposed during debris producing operations shall be cleaned free of all resulting debris.

4.1.2 Daily means 7 days per week, 24 hours per day.

4.1.3 Contamination-producing operations are defined as follows:

4.1.3.1 Operations liable to produce particulates to become airborne during accomplishment of the work scope, i.e., abrasive blasting, mechanical cleaning, spray painting, and air blowdowns.
4.1.3.2 Operations liable to produce fluid contamination of equipment as a result of external leakage of piping systems during testing.

4.1.3.3 Operations liable to produce fluid contamination of equipment as a result of external leakage of piping systems during waterjetting.

4.2 The SUPERVISOR will coordinate operation of ventilation systems, as requested by the contractor, to maintain a positive pressure within the vessel's envelope and to create an outward flow of air through crevices or around penetrations.

4.3 The cleanliness goal is to turn over all areas of the ship in the same condition or better as at beginning of the availability.

4.4 Ship's Force responsibility:

4.4.1 Ship's Force is responsible for dust that collects as a matter of course throughout the availability and for any Ship's Force job site maintenance including monitoring job sites being worked by SIMA, AIT teams and any contractor services that the ship has arranged.

4.4.2 Ship's Force is responsible to maintain cleanliness of their areas of responsibility broom clean at the end of each shift, on a daily basis.

4.4.3 The ship will raise concerns to the SUPERVISOR prior to any cleanliness condition getting out of control. The ship is expected to inspect any suspect area to first ascertain if it is their responsibility before contacting the SUPERVISOR.

4.4.4 Ship's Force will work continually throughout the availability to keep bilges and other general areas of the ship clean where the Contractor is not working.

4.5 Ship's Force and the Contractor will familiarize each other with their scope of work (any other work being performed on board the ship not pursuant to contractor authorized work under the Job Order is considered Ship's Force work). The affected locations and aspects of the work and/or ship conditions (i.e., blasting, grinding, preservation, hot work, insulation removals, decking replacement, hydroblasting, weight tests, electrical cable replacement, etc.) will be identified. Each responsible party will clean site in locations where both parties will be working, on a daily basis. Communications must be continuous and active two ways.

4.6 Diligence in inspection will ensure that action is taken by the responsible party prior to any area becoming unsatisfactory.
1. **SCOPE:**

 1.1 Title: Confined Space Entry, Certification, Fire Prevention and Housekeeping; accomplish

2. **REFERENCES:**

 2.1 Standard Items

 2.2 29 CFR Part 1915, Occupational Safety and Health Standards for Shipyard Employment

 2.3 29 CFR Part 1910.134, Occupational Safety and Health Standards, Respiratory Protection

 2.4 NFPA Standard 51B, Standard for Fire Prevention During Welding, Cutting, and Other Hot Work

 2.5 NFPA Standard 312, Standard for Fire Protection of Vessels During Construction, Repair, and Lay-up

3. **REQUIREMENTS:**

 3.1 Comply with the requirements of 2.2 through 2.5 and this item to determine whether or not an explosive or other dangerous atmosphere exists in tanks, spaces, and associated piping, including adjacent tanks, spaces, and piping, aboard the ship and control hot work and entry to those spaces to preclude damage to the ship or injury to personnel during the performance of this Job Order.

 3.1.1 Submit one legible copy, in hard copy or electronic media, of a list of tanks or spaces to be opened or certified to the SUPERVISOR at least 24 hours prior to commencement of work.

 3.1.1.1 Comply with additional requirements of 009-88 of 2.1 when accomplishing work in Collection, Holding and Transfer (CHT) and Mogas tanks, spaces, or associated piping.

 3.1.2 Provide initial and annual update training for Competent Persons by utilizing a National Fire Protection Association (NFPA) Certified
Marine Chemist or NFPA training program meeting the requirements of Section 1915.7 of 2.2. The length of the initial training class shall be at least 24 hours. Annual update training shall be at least 8 hours.

3.1.3 Post a copy of the Marine Chemist's certificate, Certified Industrial Hygienist's test/inspection record, or Competent Person's test/inspection record at each access to the affected space while work in the space is in progress. A copy of the certificate or test/inspection record shall also be delivered to a location designated by the SUPERVISOR. In the event that the space is found to be NOT SAFE FOR WORKERS/NOT SAFE FOR HOT WORK, the space shall be posted accordingly and the SUPERVISOR and ship shall be notified immediately. The posted copy shall be clearly visible and legible.

3.1.3.1 Initial certification of spaces that require a Certified Marine Chemist's certificate or Certified Industrial Hygienist's record of test/inspection in support of work operations shall be effective until conditions change which would void the certificate/record of test/inspection.

3.1.3.2 For those certified spaces which employees will enter, a Competent Person shall visually inspect and test each space certified as ENTER WITH RESTRICTIONS or SAFE FOR WORKERS as often as necessary, and as a minimum, prior to entry by employees on a daily basis.

3.1.3.3 For those certified spaces affected by hot work, a Competent Person shall visually inspect and test each space certified as SAFE FOR HOT WORK as often as necessary and, as a minimum, daily prior to commencement of hot work to ensure that conditions established by the certificate are maintained. When hot work is conducted continuously, the affected spaces shall be visually inspected, tested, and recorded on a daily basis to maintain the SAFE FOR HOT WORK certification.

3.1.3.4 If a Competent Person finds that the conditions within a certified space fail to meet the applicable requirements for which it was certified, work in the space shall be stopped and may not be resumed until the space has been recertified by a Marine Chemist.

3.1.3.5 For those spaces where only Competent Person tests and inspections are required in accordance with 2.2, a Competent Person shall visually inspect and test each space as often as necessary and, as a minimum, daily prior to entry or commencement of hot work to ensure that conditions are safe.

3.1.3.6 After the Competent Person has determined initially that a space is safe for entry and finds subsequently that the conditions within the tested space fail to meet the requirements of 2.2, work shall be stopped until the conditions in the tested space are corrected, the space is retested, and a new record of tests/inspections is recorded and posted.
3.1.4 Tank cleaning personnel shall be trained annually on safety practices to include a discussion of safety information found in Subparts A, B, and Section 1915.152 of Subpart I of 2.2.

3.1.5 Submit one legible copy, in hard copy or electronic media, of each of the following documents to the SUPERVISOR prior to the accomplishment of work requiring the services identified below.

3.1.5.1 A roster of designated Competent Persons, along with contractor certification that the training in 3.1.2 has been completed within the past year. Updates to the roster each time Competent Persons are added, deleted, or retrained.

3.1.5.2 A list of Competent Person(s) and tank cleaning personnel who will enter or work in confined spaces, including company name, badge number, and date training was provided in accordance with 3.1.2 and 3.1.4.

3.1.5.3 A list of the names of the Shipyard/Plant Rescue Team Members, along with contractor certification that training requirements of Subpart B of 2.2 have been accomplished and are current for each Rescue Team Member, or documentation of arrangements made for an outside rescue team to respond promptly to a request for rescue service.

3.1.5.4 A copy of the program to be utilized to train fire watches in the areas identified in 2.2 and 2.4, including steps to be taken by the fire watch and hot work operator prior to accomplishment of hot work, proper selection and use of fire extinguishing equipment and other safety equipment, relationship between the fire watch and hot work operator, proper fire reporting procedures and other sounding of fire alarms, and reporting of fires to the ship's Quarterdeck. This training should also include theory and practical (hands-on) fire suppression techniques. This training shall be provided to all newly assigned fire watches, with annual updates provided to personnel. Provide visible means of identifying trained fire watches, i.e., badge, sticker, vest, etc.

3.1.6 Spaces which are determined to contain Immediately Dangerous to Life or Health (IDLH) atmospheres shall never be entered except for emergency rescue or for short duration for installation of ventilation equipment in accordance with 2.2 and 2.3. When entering IDLH spaces for the purpose of installing ventilation, notify the SUPERVISOR prior to entry. Notifications of rescue shall be made as soon as possible.

3.1.7 Confirm that all personnel have exited the space prior to closure of tanks, voids, and cofferdams. Designate one person to account for all personnel who may have entered the space.

3.2 Provide a written notice for each job or separate area of hot work aboard ship.
3.2.1 The notice shall state a description of the work to be done, the specific location of the hot work and compartments adjacent to decks, bulkheads, and similar structures upon which hot work is to be accomplished, the time hot work will commence, current gas-free status of the area (if required), the absence or existence of combustible material in the vicinity of the operation, and if combustible material exists, what action shall be taken to protect the material from fire, the provision and assignment of a fire watch, and the affirmation that conditions at the work site (ventilation, temporary lighting, accesses) permit the fire watch to observe all areas where the hot work constitutes a fire hazard.

3.2.2 The notice shall affirm that a suitable, fully-charged fire extinguisher shall be available at the job site and provide for an inspection of the area 30 minutes after completion of the hot work or the cessation of hot work at the job site as the final action to complete the notice.

3.2.3 The notice shall be signed by a supervisor specifically designated as responsible for coordination of the hot work and the fire watch requirement.

3.2.4 One copy of each notice shall be given to the SUPERVISOR and one copy to the Commanding Officer's designated representative.

3.2.4.1 The notice to the Commanding Officer's designated representative shall precede the initiation of the actual hot work in order to permit the Commanding Officer to designate a member of the crew to observe the operation, if desired.

3.2.4.2 Notification of hot work planned Tuesday through Friday shall be delivered to the Commanding Officer's designated representative at least 30 minutes and not more than 24 hours preceding start of work.

3.2.4.3 Notification of hot work planned over a weekend or Monday following that weekend shall be delivered to the Commanding Officer's designated representative no later than 0900 on the Friday immediately preceding that weekend.

3.2.4.4 Notification of hot work planned on a federal holiday and on the day following the federal holiday shall be delivered to the Commanding Officer's designated representative no later than 0900 of the last working day preceding the federal holiday.

3.2.4.5 The notice shall be effective for 24 hours unless a shorter period is specified in the contract or the gas-free status of the work area or system requires stopping the work. A new notice is required if work is interrupted due to loss of gas-free status.

3.3 Provide fire watches, trained as outlined in 3.1.5.4, at all affected areas where hot work is being accomplished. Provide fire extinguishing
equipment as described in 2.2, 2.4, and 2.5. Fire watches and equipment shall meet the following requirements, as a minimum:

3.3.1 A fire watch(es), other than the hot work operator, is required when:

3.3.1.1 Any flame cutting, welding, plasma cutting, arcing and gouging, electric arc welding, thermal spraying, or any other hot work which produces sparks or slag that can be dropped or thrown or that causes heat to be transferred through a deck, bulkhead, or overhead to a location not visible to the hot work operator is being done.

3.3.1.2 Combustibles have not been removed or protected from heat conduction or ignition sources.

3.3.1.3 Equipment cannot be protected from falling sparks.

3.3.1.4 Openings in decks, bulkheads, or overheads cannot be protected.

3.3.1.5 Ducts and conveyor systems cannot be blanked off, protected, or shut down.

3.3.2 Each fire watch attending worker(s) performing hot work shall be equipped with a fully-charged and operable fire extinguisher, and shall remain at the job site for 30 minutes from the time the hot work is completed unless the contractor's Hot Work Supervisor surveys the affected work area and determines that there is no further fire hazard.

3.3.3 Where several workers are performing hot work at one site, the fire watch shall have a clear view of and immediate access to each worker performing hot work.

3.3.3.1 No more than 4 workers shall be attended by a single fire watch.

3.3.4 In cases in which hot material from hot work may involve more than one level, as in trunks and machinery spaces, a fire watch shall be stationed at each level unless positive means are available to prevent the spread or fall of hot material.

3.3.5 In cases where hot work is to be performed on a bulkhead or deck, combustible material shall be removed from the vicinity of the hot work on the opposite side of the bulkhead, overhead, or deck, and a fire watch shall be posted at each location.

3.3.5.1 If multiple blind compartments are involved in any hot work job, fire watches shall be posted simultaneously in each blind area.
3.4 Locate oxygen, acetylene, fuel gas, or gas supply systems off the
ship. Manifolds connected to pierside supply systems may be placed on board
ships as long as they are located on a weather deck and equipped with a
shutoff valve located on the pier. The pierside shutoff valve shall be in
addition to the shutoff valve at the inlet to each portable outlet header
required by 2.2.

3.4.1 Liquid oxygen (LOX) tanks used for fuel gas/oxygen operations
shall be stored to prevent collisions by trucks, forklifts, falling objects,
etc.

3.4.2 LOX tanks shall be staged in designated locations on the quay
wall/pier to be determined jointly by the contractor/ship/SUPERVISOR.

3.4.3 When gas cylinders are in use on board ship, they shall be
located on the weather decks or in a location determined jointly by the
contractor/ship/SUPERVISOR and shall be secured and in an upright position.
The number of in-use cylinders shall be limited to those which are required
for work in progress and which have pressure regulators connected to the
cylinder valves. On-board reserve gas cylinders shall not exceed one-half the
number of in-use cylinders and shall be located in a remote area of the
weather decks or in a location determined jointly by the contractor/ship/
SUPERVISOR. Reserve acetylene cylinders shall be secured in an upright
position.

3.4.4 When not in use, gas cylinders and manifolds on board shall
have valves closed, lines disconnected, protective cover (cap) in place, and
shall be secured. Acetylene cylinders shall be secured in an upright
position.

3.4.4.1 In order to eliminate the possibility of fire in
confined and enclosed spaces as a result of gas escaping through leaking or
improperly closed gas valves, the gas supply to the torch shall be shut off at
the gas source whenever the torch is not to be used or whenever the torch is
left unattended for a substantial period of time, such as during the lunch
hour.

3.4.4.2 Overnight, at the change of shifts, or when the work
operation is complete, the torch and hose shall be removed from confined
spaces, including all tanks and voids.

3.4.4.3 Overnight, at the change of shifts, or when the work
operation is complete, fuel gas and oxygen hoses shall be immediately removed
from enclosed spaces unless alternate procedures are approved by the
SUPERVISOR.

3.4.5 Upon completion of oxygen - fuel gas system hook-up,
accomplish a pressure drop test to include the torch, hoses, and gages.
3.4.5.1 Apply pressure to the system. Back off pressure by turning off the valve supplying gases to the system. If the pressure on the gage drops, a leak in the system exists. If the pressure on the gage does not drop, the system is tight.

3.4.5.2 After applying pressure, wait 2 minutes to ensure pressure does not drop.

3.5 Use fire retardant materials aboard or immediately adjacent to the ship for staging, screening, temporary covers, shelters, deck covering, and ventilation ducts. Proper documentation of fire retardancy shall be available for review upon request.

3.5.1 Lumber, except that used for pallets, shall be fire retardant in accordance with Category One, Type I, of MIL-L-19140. Plywood and staging boards shall be Category 2, Type II, of MIL-L-19140.

3.5.2 Storage of material aboard ship shall be limited to that which is required for work in progress. Materials, trailers, temporary lights, flammable liquids, fueling of vehicles, and the rigging of hoses/welding leads/temporary lights aboard the ship shall comply with the following:
Material, including that stowed in bins that are placed and held temporarily on hangar decks, well decks, or tank decks shall not exceed 8 feet in height.
A 20-foot-wide lane shall be maintained the length of hangar decks to act as a fire break. Material shall occupy a deck space not to exceed 25-feet by 25-feet with adjacent 6-foot-wide aisles on each side for ready hose line access.

3.5.3 Prior to bringing equipment or working material aboard ship, its crating and packing shall be removed. If the equipment or material may be damaged during handling, the crating and packing shall be removed immediately after the equipment or working material is brought aboard and taken ashore for disposal. A small quantity of pallets may be staged in a location determined jointly by the contractor/ship/SUPERVISOR aboard ship for use in materials handling operations.

3.5.4 Trailers placed aboard the ship shall be equipped with an automatic or manual sprinkler system designed to provide 0.1 GPM per square foot of floor area and an audible alarm that will sound when the sprinkler system is activated. Tool issue shacks or other walk-in enclosures placed aboard the ship shall be constructed of fire retardant material, provided with at least one fire extinguisher of appropriate size and class at each access. The enclosure shall be supported at least 10 inches above the deck.

3.5.4.1 Smoke alarms, approved by Underwriter's Laboratory, shall be installed in enclosures and shall be audible outside the enclosures.

3.5.5 Temporary lights shall have 3-conductor cable, guard or shield, hook, and lamp holder. Exposed non-current-carrying metal parts of the fixture shall be grounded either through a third wire in the cable.
containing the current conductors, or through a separate wire which is grounded at the fixture's voltage source.

3.5.6 Flammable or combustible liquids with a flash point of 150 degrees Fahrenheit or less, including degreasers, solvents, and fuels, shall be kept in safety cans when not in actual use or when left unattended. These liquids shall be limited to one day's supply for on board use.

3.5.7 Fueling of vehicles or transfer of fuel between containers shall be accomplished at designated sites on weather decks or in a location determined jointly by the contractor/ship/SUPERVISOR. Notify ship's Officer of the Deck prior to the fueling or transfer operation. When fuel is transferred between containers, the containers shall be bonded and grounded to prevent static discharge.

3.5.7.1 Provide a minimum of 2 dry chemical portable extinguishers, each with an Underwriter's Laboratory rating of at least 60-B:C at the fueling site.

3.5.8 Rigging of hoses, welding leads, and temporary lights shall be kept clear of the decks on temporary trees or brackets and be arranged to minimize tripping and other safety hazards and to allow free access through doors, hatches, and passageways.

3.6 Accomplish temporary access requirements as follows:

3.6.1 Temporary access cuts may be made in fire zone boundaries provided they are equipped with fume-tight steel closures when installed. Boundary degradation by use of temporary access cuts or passage of service lines shall be permitted only upon granting of a written waiver by the SUPERVISOR, in conjunction with the ship's designated representative, for a limited time.

3.6.1.1 Submit one legible copy, in hard copy or electronic media, of a record of boundary openings and their locations to the SUPERVISOR and one additional copy to the ship's designated representative. Resubmit boundary opening data when any changes, additions, or deletions of boundary openings occur.

3.6.2 Ensure at least one unobstructed access on ships designed with 3 or fewer accesses to each main and auxiliary machine space and at least 2 unobstructed accesses on ships designed with 4 or more accesses to each main and auxiliary machinery space.

3.7 Accomplish a fire prevention and housekeeping inspection on a daily basis whenever work is in progress. The inspection shall be made jointly with the SUPERVISOR and the Commanding Officer's designated representative. A written report of the discrepancies and corrective action to be taken shall be prepared by the contractor and copies distributed to the SUPERVISOR and
3.8 Determine fire zone boundaries as follows:

3.8.1 The SUPERVISOR, Ship's Force, and the contractor shall establish fire zone boundaries prior to start of production work.

3.8.1.1 Existing transverse watertight, airtight, and fume-tight bulkheads shall be used as fire zone boundaries on ships built prior to the requirements for fire zones.

3.8.1.2 For ships having fire zones by design, the designated bulkheads shall be used as fire zones.

3.8.2 Fire zone boundaries shall be continuous through the vertical extent of the ship, from the keel up to the highest weather deck, excluding the superstructure.

3.8.2.1 For ships that have established fire zone boundaries that run from keel up through the superstructure, the fire zone boundaries as depicted on the ship's damage control diagrams shall be observed.

3.8.2.2 On aircraft carriers, provide for closing of hangar division doors in case of fire in the event division doors being repaired by the contractor are mechanically inoperative. As a minimum, rig chain falls to manually close doors in the event of fire. Exceptions shall be permitted only upon execution of a written waiver approved by the SUPERVISOR.

3.8.3 Ships under 600 feet in length shall have a minimum of 2 fire zone boundaries. Ships 600 feet and over in length shall have a minimum of 3 fire zone boundaries.

3.8.3.1 Indicate each fire zone by installing a sign adjacent to each entrance.

3.8.3.2 Service line(s) shall not be run through fire zone boundaries unless quick disconnects are installed in temporary service lines within 10 feet of the opening, door, or closure. The quick disconnects shall be marked with international orange tape and all service line(s) must be able to be secured and pulled back within 3 minutes. Fuel gas/oxygen/compressed gas hoses, steam lines, high pressure hoses (above 90 PSI), or hoses carrying hazardous/toxic/flammable materials shall not be run through fire zone boundaries unless expressly authorized in writing by the SUPERVISOR. Hose numbers or sizes shall not restrict free and easy access or closure of fire zone boundary doors.

3.9 Report verbally each accident/fire occurring on the vessel involving contractor/subcontractor personnel to the SUPERVISOR as soon as management becomes aware of such an event.
3.9.1 Submit a formal written report, in hard copy or electronic media, of the event to the SUPERVISOR within 24 hours of each accident requiring medical treatment, and each fire. The written report shall contain the name and ID number of each injured person, date and time of accident/fire, extent of each personal injury or property damage, contractor/subcontractor name, Job Order, type of accident/fire, location of event (ship name and hull number, space, compartment), and a brief description of the event including occurrences leading up to the accident/fire.

4. NOTES:

4.1 None.
1. SCOPE:

1.1 Title: Fire Protection at Contractor's Facility; accomplish

2. REFERENCES:

2.1 NFPA Standard 312, Standard for Fire Protection of Vessels During Construction, Repair, and Lay-up

2.2 NFPA Standard 1962, Standard for the Care, Use, and Service Testing of Fire Hose Including Couplings and Nozzles

2.3 29 CFR Part 1915, Occupational Safety and Health Standards for Shipyard Employment

3. REQUIREMENTS:

3.1 Provide fire protection in accordance with the requirements of 2.1 and 2.2 and this item.

3.2 Primary fire protection equipment shall consist of:

3.2.1 Fire pumps capable of providing the gallons per minute (GPM) flow specified in Table One at 100 PSIG with 2-1/2 inch fire hoses to ensure that GPM flow in Table One is uninterrupted for the entire availability. Flow and pressure shall be measured at the connection point to the ship's fire main.

3.2.1.1 Verify by the Pitot tube method or an in-line flow meter that the water supply specified in Table One is available. Water flow tests shall be accomplished prior to availability start date, each time the vessel shifts berths, and annually thereafter should the contract extend beyond one year.

3.2.2 Lighting provided for the ship/berthing barges topside area in the vicinity of each gangway. The term "ship" as used herein is synonymous with, and has the same definition as the term "vessel" as defined in 2.3.
3.2.3 Devices in place to alert contractor and local fire department. Devices shall also be in place on board the ship in the vicinity of each gangway, at convenient locations in the superstructure, main and auxiliary machinery spaces, and on the pier in close proximity to the ship.

3.2.4 A portable 300 KW diesel generator with associated cables, lugs/plugs to supply emergency power during transits to and from dry dock when ship's emergency power cannot be used.

3.3 When the ship's fire main is out of service, temporary primary fire protection shall consist of:

3.3.1 Fire pumps capable of providing the gallons per minute (GPM) flow specified in Table One at 100 PSIG with 2-1/2 inch hoses to ensure that GPM flow in Table One is uninterrupted for the entire availability. Flow and pressure shall be measured at the connection point to the temporary hose valve manifold stations.

3.3.2 Two and one-half inch fire hose and hose valve manifolds on the vessel and dry dock or marine railway so that all parts of the vessel and dry dock or marine railway can be reached by at least 2, one and one-half inch 100-foot hoses. The 100-foot hoses shall be preconnected and faked on racks nearby.

3.4 Emergency fire protection equipment, in addition to that required by 3.2 or 3.3, shall consist of:

3.4.1 Fire pumps capable of providing 500 GPM at 100 PSIG to hose valve manifolds located on the vessel. Flow and pressure shall be measured at the manifolds.

3.4.2 Two and one-half inch fire hoses and hose valve manifolds on the vessel and dry dock or marine railway so that all parts of the vessel and dry dock or marine railway can be reached by at least 2, one and one-half inch 100 foot hoses. The 100 foot hoses and nozzles shall be preconnected and faked on racks nearby.

3.4.2.1 The manifold stations shall be clearly identified, with sources of water and operating instructions.

3.4.2.2 Emergency fire protection shall be provided in the areas prior to placing any fire main section out of commission.

3.4.3 Water supply shall be available within three minutes of loss of primary source of fire main flow/pressure.

3.4.4 Emergency lighting and power, other than existing ship's emergency backup, shall be available for emergency lighting throughout the ship/barge and emergency devices using a separate source of energy or power line.
3.5 Primary, temporary primary, and emergency fire protection equipment shall consist of:

3.5.1 Fire hoses equipped with one and one-half inch combination straight stream and spray pattern nozzle. Charged hoses shall have recirculation capability which will prevent freezing of water in each hose.

3.5.2 Fire hoses shall be inspected and service-tested in accordance with 2.2 within 90 days before being placed in service for the first time and at least annually thereafter.

3.5.3 Portable communication devices shall be provided for use during fire fighting operations between site and fire and contractor's key control center.

3.5.4 Portable lighting devices shall be in place to assist in fire fighting operation when normal and emergency shipboard power fails.

3.5.5 Emergency backup support equipment (crane, forklift, trucks, pumps) to assist in securing or providing temporary services shall be provided.

3.5.6 Dewatering equipment (100 GPM minimum).

3.5.7 Portable fire pumps capable of a total of 500 GPM at 100 PSIG on board ship during berth shifts, including transits to and from dry dock, when ship's system cannot be used.

3.5.8 Install gages at connection to the ship's fire main and on all temporary and emergency fire main manifolds, and ensure that 100 PSIG is maintained at each gage uninterrupted for the entire availability.

3.6 Maintain available for review prior to commencement of work a written description detailing the integrated fire protection system which will be in effect during the performance of the Job Order. The description shall identify:

3.6.1 Total fire prevention program used, along with the types and frequency of tests of equipment and devices.

3.6.2 Detailed communication links (telephones, drop boxes, alarms, horns) location, testing interval, and their interface with municipal systems.

3.6.3 Normal and emergency sources of electric power, fire fighting water and lighting, testing interval, and their interface with municipal systems.
3.6.4 The location of all the normal and emergency backup support equipment to be used in support when combating a fire, and the equipment's testing cycle.

3.6.5 The shipyard organization to be used and their:

3.6.5.1 Designation and responsibility for all shifts

3.6.5.2 Training

3.6.5.3 Anticipated response times

3.6.5.4 Interface with municipal units

3.6.6 The general procedures directing contractor employees on:

3.6.6.1 Fire reporting

3.6.6.2 Fire responses

3.6.6.3 Fire fighting actions

3.6.6.4 Prolonged fire fighting responsibilities

3.6.7 The frequency testing cycle of the fire protection system.

3.7 The requirements of 3.6.6.1 shall be posted on the quarterdeck.

3.8 A fire fighting and fire prevention conference shall be conducted within five calendar days after arrival of the ship at the contractor's facility. The conference schedule shall be established at least five calendar days prior to the arrival of the ship. This conference shall familiarize the Ship's Force with the contractor's procedures for fire prevention and fire fighting and with the procedures that will be in use by municipal fire fighting organizations, as well as familiarize the contractor and the municipal fire fighting organizations with the ship arrangement, shipboard fire prevention, and fire fighting systems, equipment, and organization, and familiarize all parties with the scope of work and aspects of the work or ship conditions that have significance in fire prevention and fire fighting.

3.8.1 The conference shall specifically address the following matters:

3.8.1.1 Fire alarm and response procedures

3.8.1.2 Contractor fire fighting capability and procedures

3.8.1.3 Municipal fire fighting capability and procedures
3.8.1.4 Fire fighting jurisdictional cognizance

3.8.1.5 Communication system for fire reporting and control of fire fighting efforts

3.8.1.6 Shipboard arrangement including access routes, availability of fire fighting systems (installed and temporary), and communication systems

3.8.1.7 Shipboard fire fighting organization, systems, drills, and equipment

3.8.1.8 Ship, space, and equipment security consideration

3.8.1.9 Compatibility of ship, contractor, and municipal fire fighting equipment

3.8.1.10 Industrial work scope, including location of ship, and effect on fire fighting systems, access, and communications

3.9 A tour of the ship shall be conducted for municipal fire department personnel, the SUPERVISOR, Ship's Force, and contractor key personnel assigned specific responsibilities during fires to familiarize personnel concerned with the ship's normal access and anticipated condition while industrial work is in progress.

4. **NOTES:**

4.1 None.
<table>
<thead>
<tr>
<th>SHIP TYPE</th>
<th>FLOW, GPM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD Destroyer Tender</td>
<td>1875</td>
</tr>
<tr>
<td>AE Ammunition Ship</td>
<td>1875</td>
</tr>
<tr>
<td>AFS Combat Stores Ship</td>
<td>1875</td>
</tr>
<tr>
<td>AGDS Miscellaneous Auxiliary Ship</td>
<td>1875</td>
</tr>
<tr>
<td>AGF Miscellaneous Flagship</td>
<td>2500</td>
</tr>
<tr>
<td>AGM Missile Range Instrumentation Ship</td>
<td>1875</td>
</tr>
<tr>
<td>AGOR Oceanographic Research Ship</td>
<td>625</td>
</tr>
<tr>
<td>AGS Surveying Ship</td>
<td>1250</td>
</tr>
<tr>
<td>AH Hospital Ship</td>
<td>1250</td>
</tr>
<tr>
<td>AK Cargo Ship</td>
<td>1875</td>
</tr>
<tr>
<td>AKR Vehicle Cargo Ship</td>
<td>1875</td>
</tr>
<tr>
<td>A0 Oiler</td>
<td>1875</td>
</tr>
<tr>
<td>AOE Fast Combat Support Ship</td>
<td>1875</td>
</tr>
<tr>
<td>AOG Gasoline Tanker</td>
<td>1250</td>
</tr>
<tr>
<td>AOR Fleet Replenishment Oil er</td>
<td>1875</td>
</tr>
<tr>
<td>AOT Transport Oil er</td>
<td>1875</td>
</tr>
<tr>
<td>AP Transport Ship</td>
<td>1250</td>
</tr>
<tr>
<td>APL Berthing and Messing Barge</td>
<td>625</td>
</tr>
<tr>
<td>AR Repair Ship</td>
<td>1875</td>
</tr>
<tr>
<td>ARC Cable Repair & Laying Ship</td>
<td>1250</td>
</tr>
<tr>
<td>ARS Salvage Ship</td>
<td>625</td>
</tr>
<tr>
<td>AS Submarine Tender</td>
<td>1875</td>
</tr>
<tr>
<td>ASR Submarine Rescue</td>
<td>625</td>
</tr>
<tr>
<td>ATF Ocean Tug Fleet</td>
<td>625</td>
</tr>
<tr>
<td>ATS Salvage & Rescue Tug</td>
<td>625</td>
</tr>
<tr>
<td>BB Battleship</td>
<td>3500</td>
</tr>
<tr>
<td>CG Guided Missile Cruiser</td>
<td>1250</td>
</tr>
<tr>
<td>CGN Guided Missile Cruiser (Nuclear)</td>
<td>1250</td>
</tr>
<tr>
<td>CV Aircraft Carrier</td>
<td>3750</td>
</tr>
<tr>
<td>CVN Aircraft Carrier (Nuclear)</td>
<td>3750</td>
</tr>
<tr>
<td>DD Destroyer</td>
<td>1250</td>
</tr>
<tr>
<td>DDG Guided Missile Destroyer</td>
<td>1250</td>
</tr>
<tr>
<td>FF Frigate</td>
<td>1250</td>
</tr>
<tr>
<td>FFG Guided Missile Frigate</td>
<td>1250</td>
</tr>
<tr>
<td>FFT Frigate (Reserve Training)</td>
<td>1250</td>
</tr>
<tr>
<td>IX Unclassified Miscellaneous</td>
<td>1875</td>
</tr>
<tr>
<td>LCC Amphibious Command Ship</td>
<td>1250</td>
</tr>
<tr>
<td>LCU Landing Craft Utility</td>
<td>625</td>
</tr>
<tr>
<td>LHA/LHD Amphibious Assault Ship</td>
<td>3125</td>
</tr>
<tr>
<td>LKA Attack Cargo Ship</td>
<td>1875</td>
</tr>
<tr>
<td>LPD Amphibious Transport Dock</td>
<td>1875</td>
</tr>
<tr>
<td>LPH Amphibious Assault Ship</td>
<td>3125 **</td>
</tr>
<tr>
<td>SHIP TYPE</td>
<td>FLOW, GPM*</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>LSD Landing Ship Dock</td>
<td>2500 ***</td>
</tr>
<tr>
<td>LST Landing Ship Tank</td>
<td>1875 ***</td>
</tr>
<tr>
<td>MCM Mine Countermeasures Ship</td>
<td>625</td>
</tr>
<tr>
<td>MHC Minesweeping Coastal Ship</td>
<td>625</td>
</tr>
<tr>
<td>MSO Minesweeper-Ocean</td>
<td>625</td>
</tr>
<tr>
<td>PC Patrol Coastal</td>
<td>625</td>
</tr>
<tr>
<td>PHM Hydrofoil Missile Patrol Combatants</td>
<td>625</td>
</tr>
<tr>
<td>YRB Repair & Berthing Barge</td>
<td>625</td>
</tr>
<tr>
<td>YRBM Repair, Berthing & Messing Barge</td>
<td>625</td>
</tr>
<tr>
<td>YTB Harbor Tug (Large)</td>
<td>625</td>
</tr>
<tr>
<td>YTM Harbor Tug (Medium)</td>
<td>625</td>
</tr>
</tbody>
</table>

* Includes 25 percent for hotel services.

** Includes supply to operate 2 hangar sprinkler groups and 2, 2-1/2 inch hose lines.

*** Includes supply to operate one sprinkler group and 2, 2-1/2 inch hoses.
1. SCOPE:

1.1 Title: Process Control Procedure (PCP); provide and accomplish

2. REFERENCES:

2.1 Standard Items

3. REQUIREMENTS:

3.1 Submit one legible copy, in hard copy or electronic media, of each PCP not later than 7 working days prior to start of the process required by the procedure to the SUPERVISOR. The procedure shall contain the following minimum information:

3.1.1 Contractor's name and address

3.1.2 Process title, number, and date developed

3.1.3 Description of process, including critical factors which have direct bearing on the process quality and safety

3.1.4 Qualification requirements for the personnel performing the work

3.1.5 Inspection and documentation forms

3.1.6 Acceptance and rejection criteria

3.1.7 The method utilized to ensure personnel accomplishing the procedure have direct knowledge of the requirements prior to beginning work. A copy of the procedure shall be at the work site during the performance of work.

3.1.8 The method utilized to control the procedure

3.1.9 Identification of hazardous materials which will be used in the process or hazardous waste that will be generated by the accomplishment of the process and the methodology which will be utilized to minimize the
quantity of these materials which will require control and disposal. State if no hazardous material or waste is generated or used.

3.1.10 Approval signature and title of the contractor's representative and the date of submission

3.1.11 Government notification (G) for start of procedure (3.5)

3.2 Ensure process control documentation provides a record of the data required to control and determine satisfactory completion of the process.

3.3 Submit updated or changed procedures to the SUPERVISOR at least three working days prior to implementation.

3.4 Participate in a joint Ship's Force and SUPSHIP personnel safety brief, when directed by the SUPERVISOR, prior to start of recommended PCP. (V)(G) or (I)(G) "START OF PROCEDURE" (See 4.1)

3.5 Accomplish the requirements of the reviewed PCP.

4. NOTES:

4.1 The paragraph referencing this note is considered an (I)(G) if the procedure is for work identified in 009-12 or 009-32 of 2.1. If the procedure is for work that is not identified in 009-12 or 009-32 of 2.1, then the paragraph is considered a (V)(G).

4.2 Attachment A is provided as an aid to PCP development.
ATTACHMENT A

Process Control Procedure (PCP) Checklist

Identification

• Include the Process Title and Procedure Number with revision, as appropriate.
• List the Work Item and paragraph that the PCP fulfills.
• Include contractor's/subcontractor's name and address.
• Include space for the Approval Signature and title of the contractor's representative.
• Include spaces for the Date Developed and Date of Submission.
• Attach an approval letter from a previous SUPSHIP or Government review, if appropriate.

Personnel Qualifications

• List the qualifications of the personnel performing the work.
• Include a statement that a briefing will be conducted prior to beginning work to ensure personnel have direct knowledge of the requirements of the procedure and the safety requirements of the job.

Process Description

• List any specialized or critical equipment needed to perform the work.
• List any specialized or critical personnel safety equipment.
• State that Government Notification (V)(G) or (I)(G) will be made at the start of the process as applicable.
• Describe the process as related to the sequence of work.
• List the acceptance and rejection criteria used for determining satisfactory process completion.
• Provide inspections required for the process, to include (V), (I), and (G) symbols invoked by the work item applicable to the process.
• Provide inspection and documentation forms applicable to the process.
• Include a statement that a copy of the PCP will be provided at the work site during the performance of the work.

Hazardous Material

• State if no hazardous material/waste will be used or generated.
• Identify any hazardous material/waste used or generated during the performance of work. Include a Material Safety Data Sheet for each hazardous material that will be used aboard ship.
• Describe the methodology to limit the quantity that will require control.
• Describe the methods of the disposal of hazardous material or hazardous waste.
1. **SCOPE:**

 1.1 Title: Shipboard Asbestos-Containing Material (ACM); control

2. **REFERENCES:**

 2.1 29 CFR 1915.1001, Occupational Safety and Health Standards for Shipyard Employment, Asbestos

 2.2 MIL-STD-769, Thermal Insulation Requirements for Machinery and Piping

 2.3 40 CFR Part 61, National Emission Standards for Hazardous Air Pollutants

3. **REQUIREMENTS:**

 3.1 Consider insulation, lagging, deck tile, underlayment, gasket, shipboard cabling (see 4.2), and mastic to be asbestos-containing material (ACM) until it can be established by laboratory analysis, or other reliable method(s), that the material does not contain asbestos, *in accordance with 2.1*. This includes reusable covers as defined in 2.2.

 3.2 Apply the following requirements for the removal, disturbance, or disposal of all asbestos containing materials during the initial monitoring, daily monitoring, and control of ACM throughout the work areas, and to Class I, II, III, or IV activities as defined in 2.1.

 3.2.1 Ensure that responsibilities for personnel safety and environmental control of ACM existing or damaged during accomplishment of work are assigned and implemented.

 3.2.2 Maintain written substantiation of the credentials of the Qualified Person.

 3.2.2 The Qualified Person shall take airborne samples, monitor work practices, maintain daily logs, conduct on-site inspections, set up regulated areas, be capable of specifying the necessary protection and precautions to be taken during work with ACM, and accomplish the other requirements in accordance with Class I, II, III, and IV activities as defined...
in 2.1. The Qualified person shall have successfully completed an initial EPA or state approved 40-hour Asbestos Supervisor's Course and annual refreshers.

3.2.2 Individuals performing airborne asbestos analysis must have successfully completed a NIOSH 582 course or equivalent and be rated proficient in either AIHA's PAT program or AAR program. Persons performing analysis of fiber type on bulk samples must have completed a McCrone Course in analysis of bulk asbestos samples and be rated proficient in either the NVLAP or AIHA's asbestos program.

3.2.3 Copies of certifications, licenses, notifications (such as advance notification to OSHA of new or modified control technology to be used to reduce exposure), and other documentation required by federal, state, and local regulatory authorities, shall be maintained at the worksite.

3.2.4 Submit one legible copy, in hard copy or electronic media, of notifications made to regulatory authority, regarding ACM removal, to the SUPERVISOR within 2 working days of providing such notices to the regulatory authority.

3.2.5 Submit a written notice to the SUPERVISOR and to the Commanding Officer's designated representative, and post at the Ship's Quarterdeck or other designated location for each job or separate area of ACM removed or damaged aboard ship where there may be ACM at least 4 hours, but not more than 24 hours, prior to the start of work. The notice shall contain the following information:

3.2.5.1 Ship's name and hull number
3.2.5.2 Work Item number
3.2.5.3 Compartment
3.2.5.4 Class of activity and type of insulation, lagging, deck tile, underlayment, and mastic, i.e., ACM or possible ACM (provide basis for determination)
3.2.5.5 Date and time to start to work
3.2.5.6 Deliver notification for work planned over a weekend or Monday following that weekend to the Commanding Officer's designated representative no later than 0900 on the Friday immediately preceding that weekend.
3.2.5.7 Deliver notification of work planned on a federal holiday and on the day following the federal holiday to the Commanding
3.2.6 Personnel accomplishing ACM work shall have a direct knowledge of the requirements of this procedure prior to beginning work. All training shall be under the direct supervision of a Qualified Person as defined in 3.2.2.2.

3.2.7 Monitor the affected areas daily to ensure compliance with 2.1. Monitoring shall include adjacent spaces to ensure the work area containments and work practices are effective. Results of surveillance shall be documented and the documentation shall be provided to the SUPERVISOR.

3.2.8 Submit one legible copy, in hard copy or electronic media, of a list of regulated areas, decontamination areas, and engineering controls to be established in accordance with 2.1, to the SUPERVISOR.

3.2.8.1 Identify configuration of critical barriers or isolation methods.

3.2.8.2 Identify location/configuration of decontamination areas, including the equipment room, shower, if necessary, and clean change room.

3.2.8.3 Identify ventilation and filtration requirements, including the negative pressure enclosure(s) if necessary.

3.2.9 Isolate or blank the ship's ventilation systems in work areas to prevent asbestos contamination.

3.3 Post prominent caution signs as required by 2.1 outside of affected areas.

3.3.1 In addition to caution signs required by 2.1, provide danger signs at the entrance to affected areas.

3.3.1.1 Danger signs shall be 14 inches by 20 inches and be painted black and red for the top 5 inches and white for the remaining 9 inches.

3.3.1.2 The lettering shall be as follows with 3-inch minimum letters with an oval ring around them for the first line and one-inch minimum letters for the remaining lines:

...
3.4 Monitor work areas.

3.4.1 Determine areas of airborne concentrations and potential personnel exposure to airborne asbestos fibers in accordance with the requirements of 2.1.

3.4.2 Take air samples and monitor regulated areas in the vicinity of access openings which are not tightly secured.

3.4.2.1 If the airborne concentration of asbestos fibers is at, or exceeds, 0.1 fiber, longer than 5 micrometers, per cubic centimeter of air, corrective action shall be taken to reduce the concentration to less than 0.1 fiber, longer than 5 micrometers, per cubic centimeter of air.

3.5 Accomplish ACM removal as follows:

3.5.1 Secure and tag out ventilation systems securing the work area.

3.5.1.1 Blank ventilation systems to prevent contamination of the ventilation systems and other compartments.

3.5.2 Air discharged to the environment from any containment zone shall have passed through a HEPA filter and otherwise conform to 2.3. A negative pressure will be maintained in the containment area where possible.

3.5.3 Remove materials which may contain ACM, using wet work practices and engineering controls that will minimize airborne contamination in and adjacent to the work area.

3.5.3.1 Removal tools and work practices shall minimize the generation of airborne contamination and the deposit of ACM in the work area.

3.5.3.2 Equip vacuum cleaners used to help prevent the dispersion of asbestos fibers with HEPA filters.

3.5.3.3 Clear the work area of loose ACM, including ACM dust, prior to returning the area to normal status.
3.5.4 Contain edges of insulation exposed by removal operations by cutting the exposed surface true and square and sealing the surface. Encapsulate exposed ACM surfaces with insulating cement conforming to ASTM C195.

3.6 Dispose of ACM by one or a combination of both methods described below:

3.6.1 Bag method.

3.6.1.1 Collect and dispose of ACM waste, scrap, debris, and special clothing consigned for disposal, which may produce airborne concentrations of asbestos fibers, in sealed, impermeable polyethylene bags (minimum thickness, 6 mils). Prior to placing in bags, asbestos waste shall be wet down to reduce airborne concentrations of asbestos fibers.

3.6.1.2 Bag ACM scrap, debris, and waste at the worksite.

3.6.1.3 ACM shall be placed in sealed, 6-mil or heavier, impermeable polyethylene bags before removal from the work area. Pieces of insulation too large to fit into bags shall be encased in 6-mil, or heavier polyethylene film with edges sealed with tape conforming to MIL-C-20079.

3.6.1.4 Vacuum outer surfaces of bags containing ACM in affected areas immediately after removal from and adjacent to the worksite.

3.6.1.5 Place the ACM waste while wet in leak-tight double bags.

3.6.1.6 Affix a danger label, in accordance with 2.3, to each bag prior to removal from affected areas. Label shall read as follows:

DANGER
CONTAINS ASBESTOS FIBERS
AVOID CREATING DUST
CANCER AND LUNG DISEASE HAZARD

3.6.1.7 Affix a legible label to each bag stating the contractor's name, the name of the ship the asbestos was removed from, the name of the facility where the work was performed and date of the removal. The label shall be in permanent waterproof marking.

3.6.1.8 Dispose of bags containing ACM waste in accordance with applicable federal, state, and local regulations. Provide a copy of the completed Waste Shipment Record to the SUPERVISOR within 15 working days after initial shipment.

3.7 Monitor the area for asbestos upon completion of work and after cleanup.
3.7.1 The airborne concentration of asbestos fibers after work and cleanup shall be less than 0.1 fiber, longer than 5 micrometers, per cubic centimeter of air on an 8-hour, time-weighted average basis. The work space shall not be released for entry of unprotected personnel until verification has been provided to the SUPERVISOR that the airborne level of asbestos is less than the 0.1 fiber level.

3.7.1.1 Submit one legible copy, in hard copy or electronic media, of the lab analysis listing results of air monitoring certifying the area to be less than 0.1 asbestos fiber longer than 5 micrometers per cubic centimeter of air, to the SUPERVISOR.

3.8 Remove ACM from salvage or scrap equipment, piping, and structural components prior to delivery to the GOVERNMENT.

4. NOTES:

4.1 See additional notification requirements of NAVSEA Standard Item 009-01.

4.2 Shipboard cabling as used in 3.1 refers to all shipboard cabling, with the exception of low smoke, coaxial cables, and lamp cord cabling.
1. **SCOPE:**

 1.1 Title: Insulation and Lagging Requirements; accomplish

2. **REFERENCES:**

 2.1 Standard Items

 2.2 MIL-STD-769, Thermal Insulation Requirements for Machinery and Piping

 2.3 804-5959212, Surface Ship Machinery Insulation - Installation Details

 2.4 804-5959214, Piping Insulation - Installation Details

 2.5 804-5773931, Insulation for Compartments, Acoustic and Thermal
 Installation Details

 2.6 804-5773932, Insulation for Ducts, Acoustic and Thermal, Installation Details

 2.7 **46 CFR Part 164, Materials**

 2.8 4823-C-3160935, Fasteners for Insulation and Lagging

3. **REQUIREMENTS:**

 3.1 Install new insulation, lagging, and reusable covers in accordance with 2.2 through 2.6, and the following:

 3.1.1 Use of elastomeric foam conforming to MIL-P-15280 and polyphosphazene conforming to MIL-I-24703 is not permitted.

 3.1.2 MIL-I-22344 insulation shall not be installed on hot piping above one-inch nominal pipe size (nps) and shall be installed only on piping with a vertical orientation or in low traffic areas.

 3.1.3 Install Armstrong NH Armaflex, K-Flex ECO, or Electric Boat
 Corporation Specification No. 4013 Anti-Sweat and Refrigerant Insulation Systems (EB Spec. 4013) on anti-sweat and refrigeration systems that have an operating temperature range of minus 20 degrees to 180 degrees Fahrenheit.
3.1.3.1 Install with adhesive conforming to Armstrong 520 or Rubatex 373.

3.1.3.2 Install rewettatable fibrous glass cloth lagging conforming to MIL-C-20079, Type I, Class 6 or 8, in high traffic areas. In addition to the requirements of MIL-C-20079, rewettatable lagging shall meet the requirements of Section 164.004-3 of 2.7, unless otherwise approved by NAVSEA.

3.1.4 Utilize Polyimide foam insulation conforming to DOD-I-24688 for piping and machinery systems other than systems listed in 3.1.2, and with a maximum operating temperature of 370 degrees Fahrenheit.

3.1.5 Accomplish the requirements of 009-12 of 2.1.

3.1.6 Accomplish the requirements of 009-32 of 2.1 for surfaces to be insulated.

3.1.7 Secure reusable covers using snap fasteners or laced with copper, brass or soft steel galvanized wire through hooks or rings in accordance with 2.8.

3.1.7.1 Stamp the surface of the lacing washers, piece 200 of 2.7, on the reusable cover with one quarter inch high letters, NO AB, located close to the outer edge of the washer and visible when the reusable cover is installed.

3.2 Accomplish the requirements of 009-32 of 2.1 for new insulation, lagging, and reusable covers to match surrounding areas.

4. NOTES:

4.1 Known source for EB Spec. 4013:

General Dynamics Company
Dept. 447 Material Services
Attn: K. Hamler
75 Eastern Point Road
Groton, CT 06340-4899
Tel: 860-433-2373

4.2 Known sources for rewettatable fibrous glass cloth lagging:

BGF Industries, Inc.
3802 Robert Porcher Way
Greensboro, NC 27410
Tel: 800-925-1961

Alpha Associates
Two Amboy Avenue
Woodbridge, NJ 07095
Tel: 732-634-5700
1. SCOPE:

1.1 Title: Welding, Fabrication, and Inspection Requirements; accomplish

2. REFERENCES:

2.1 Standard Items

2.2 MIL-STD-1689, Fabrication, Welding, and Inspection of Ships Structure

2.3 American Bureau of Shipping (ABS) Rules for Building and Classing Steel Vessels

2.4 0900-LP-060-4010, Fabrication, Welding, and Inspection of Metal Boat and Craft Hulls

2.5 S9074-AQ-GIB-010/248, Requirements for Welding and Brazing Procedure and Performance Qualification

2.6 0900-LP-001-7000, Fabrication and Inspection of Brazed Piping Systems

2.7 S9074-AR-GIB-010/278, Requirements for Fabrication Welding and Inspection, and Casting Inspection and Repair for Machinery, Piping, and Pressure Vessels

2.8 MIL-STD-22, Welded Joint Design

2.9 MIL-STD-2035, Nondestructive Testing Acceptance Criteria

2.10 T9074-AS-GIB-010/271, Requirements for Nondestructive Testing Methods

2.11 DOD-STD-2185, Requirements for Repair and Straightening of Bronze Naval Ship Propellers

2.12 S9221-C1-GTP-010/020, Repair and Overhaul, Main Propulsion Boilers

2.13 MIL-STD-2191, Repair, Welding, Weld Cladding, Straightening, and Cold Rolling of Main Propulsion Shafting
3. **REQUIREMENTS:**

3.1 Utilize specific requirements of 2.2 through 2.12 listed in Tables One, 2, 3, and 4 of this item for determining the welder and brazer qualifications, electrodes, weld design, welding requirements, brazing requirements, welding procedures, brazing procedures, welding parameters and controls, inspection standards, and acceptance criteria.

3.2 Ground welding machines, for purposes of providing a return path for welding current, using a grounding bar or lead which shall be connected directly from the machine ground return connection to the ship's hull, sized on the basis of 1,000,000 Circular Mils per 1,000 amps per 100 feet, but in no event using less than a Number One cable (85,037 Circular Mils).

3.2.1 Welding machines used for welding on machinery, pressure vessels, or piping, rotating ordnance, electronic, or fire control equipment shall have the ground return connection in the immediate vicinity of the work to ensure that current does not flow through bearings, pipe hangers, or other areas where arcing or high resistance paths exist. For ships constructed of non-magnetic materials, the ground return cables shall be connected directly to the component being welded - as close to the weld zone as feasible.

3.2.2 Shipboard power distribution system shall not be used as the power source for welding equipment. **External power source shall be used.**

3.3 Accomplish the requirements of 009-09 of 2.1 for specific welding, brazing, and inspection operations as follows:

3.3.1 Class A-F, A-1, A-2, A-3, A-LT, P-1, P-LT, M-1, and T-1 welding, as defined by 2.7. These procedures shall include, as a minimum, the information required by Paragraph 4.1.3 of 2.7. Joint numbers shall not be duplicated on ship during the availability.

3.3.2 Class P-3A silver brazing, as defined by 2.6. The procedure shall include, as a minimum, the information required by Sections 4, 5, and 6 of 2.6.

3.3.2.1 All brazing of steam piping shall conform to 2.6, Class P-3a special category, including ultrasonic inspection, for all pipe sizes.

3.3.3 For propellers other than bronze, using 2.7 for guidance.

3.3.4 For propulsion shafting and rudder stocks, using 2.13 for guidance.

3.4 Do not deposit ferritic welds on welds made with austenitic or non-ferrous electrodes. Where the base material is ferrous and the existing weld is austenitic or non-ferrous, that weld shall be completely removed prior to welding with ferritic electrodes. The welding shall be accomplished in accordance with 2.2.
3.5 Utilize Attachment A to define combatant and non-combatant vessels and applicable table.

3.6 Where requirements in the repair and testing instructions for propulsion boilers conflict, 2.12 shall take precedence.

4. **NOTES:**

4.1 When this note is referenced and the fabrication document requires record retention, the inspection is to be annotated with an (I).

4.2 The paragraph referencing this note is considered an (I) if the welding/brazing is Class P-1, P-LT, P-3a, M-1 or T-1. If the welding/brazing is Class P-2, P-3b, M-2, or T-2, then the paragraph is considered a (V).

4.3 Brazing of steam piping is considered (V)(G).
<table>
<thead>
<tr>
<th>LINE</th>
<th>COLUMN</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SITUATION EVOLUTION</td>
<td>CLASS P-1, P-2 AND P-LT PIPING</td>
<td>CLASS P-3A AND P-3B PIPING</td>
<td>HARD FACING VALVE PARTS</td>
<td>CLASS A PRESSURE VESSEL</td>
<td>** PROPULSION BOILERS</td>
</tr>
<tr>
<td>1</td>
<td>WELDER AND BRAZER QUALIFICATION</td>
<td>S9074-AQ-GIB-010/248 PARAGRAPH 5</td>
<td>0900-LP-001-7000 SECTION 4</td>
<td>S9074-AQ-GIB-010/248, PARAGRAPH 5</td>
<td>S9221-C1-GTP-010/020</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>WELDING PROCEDURE</td>
<td>S9074-AQ-GIB-010/248 PARAGRAPH 4</td>
<td>NOT APPLICABLE</td>
<td>S9074-AQ-GIB-010/248, PARAGRAPH 4</td>
<td>S9221-C1-GTP-010/020</td>
<td>DOD-STD-2185 PARAGRAPH 4</td>
</tr>
<tr>
<td>3</td>
<td>BRAZING PROCEDURE</td>
<td>NOT APPLICABLE</td>
<td>0900-LP-001-7000 SECTION 4</td>
<td>NOT APPLICABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>SITUATION EVOLUTION</td>
<td>COLUMN</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>WORKMANSHIP REQUIREMENTS</td>
<td>S9074-AR-GIB-010/278 PARAGRAPH 7</td>
<td>0900-LP-001-7000 SECTION 5</td>
<td>S9074-AR-GIB-010/278 PARAGRAPHS 7 AND 11.6</td>
<td>S9221-C1-GTP-010/020</td>
<td>S9074-AR-GIB-010/278 PARAGRAPH 7</td>
</tr>
<tr>
<td>10</td>
<td>VISUAL INSPECTION</td>
<td>S9074-AR-GIB-010/278 PARAGRAPH 10 MIL-STD-2035 SECTION 4 (V) OR (I) "VISUAL INSPECTION" (SEE 4.2)</td>
<td>0900-LP-001-7000 SECTION 7 AND 8 (V) OR (I) "VISUAL INSPECTION" (SEE 4.2)</td>
<td>S9074-AR-GIB-010/278 PARAGRAPHS 11.6.3</td>
<td>S9074-AR-GIB-010/278 PARAGRAPH 10</td>
<td>MIL-STD-2035 SECTION 4 (I) "VISUAL INSPECTION"</td>
</tr>
</tbody>
</table>

* - PARAGRAPH 3.3.3 APPLIES
** - PARAGRAPH 3.6 APPLIES
<table>
<thead>
<tr>
<th>LINE</th>
<th>COLUMN</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITUATION EVOLUTION</td>
<td>CLASS P-1, P-2 AND P-LT PIPING</td>
<td>CLASS P-3A AND P-3B PIPING</td>
<td>HARD FACING VALVE PARTS</td>
<td>CLASS A PRESSURE VESSEL</td>
<td>"PROPULSION BOILERS"</td>
<td>"PROPPELLERS (BRONZE)"</td>
</tr>
<tr>
<td>ULTRASONIC INSPECTION (UT)</td>
<td>NOT APPLICABLE</td>
<td>0900-LP-001-7000 SECTIONS 6,7,8 AND 9 FOR CLASS P-3A PIPING ONLY (I) "UT"</td>
<td>NOT APPLICABLE</td>
<td></td>
<td>S9245-AR-TSM-010/PROP PARAGRAPH 5-7.5.2</td>
<td></td>
</tr>
<tr>
<td>LIQUID PENETRANT INSPECTION (PT)</td>
<td>S9074-AR-GIB-010/278 PARAGRAPH 10 T9074-AS-GIB-010/271 PARAGRAPH 5 MIL-STD-2035 SECTION 7 (NORMALLY ONLY P-1 AND P-LT) (I) "PT"</td>
<td>0900-LP-001-7000 SECTION 7 AND 8 (V) OR (I) "PT" (SEE 4.2)</td>
<td>S9074-AR-GIB-010/278 PARAGRAPH 11.6.3 MIL-STD-2035 SECTION 7 (I) "PT"</td>
<td>S9074-AR-GIB-010/278 PARAGRAPH 10 T9074-AS-GIB-010/271 PARAGRAPH 5 MIL-STD-2035 SECTION 7 (I) "PT"</td>
<td>MIL-STD-2035 SECTION 7 T9074-AS-GIB-010/271 PARAGRAPH 5 (I) "PT"</td>
<td></td>
</tr>
</tbody>
</table>

* - PARAGRAPH 3.3.3 APPLIES
** - PARAGRAPH 3.6 APPLIES
<table>
<thead>
<tr>
<th>LINE</th>
<th>COLUMN</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SITUATION EVOLUTION</td>
<td>MACHINERY CLASS M</td>
<td>TURBINE PARTS</td>
<td>CASTINGS</td>
<td>FORCED DRAFT BLOWERS</td>
<td>REDUCTION AND STEAM TURBINE DRIVEN AUXILIARY GEARS</td>
</tr>
<tr>
<td>1</td>
<td>WELDER AND BRAZER QUALIFICATIONS</td>
<td>S9074-AQ-GIB-010/248, PARAGRAPH 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>WELDING PROCEDURE</td>
<td>S9074-AQ-GIB-010/248, PARAGRAPH 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BRAZING PROCEDURE</td>
<td>NOT APPLICABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>WELDING REQUIREMENTS</td>
<td>S9074-AR-GIB-010/278, PARAGRAPH 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>FILLER MATERIAL</td>
<td>S9074-AR-GIB-010/278, PARAGRAPH 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>JOINT DESIGN</td>
<td>S9074-AR-GIB-010/278, PARAGRAPHS 9 AND MIL-STD-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>HEAT TREATMENT</td>
<td>S9074-AR-GIB-010/278, PARAGRAPHS 6 AND 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>WORKMANSHIP REQUIREMENTS</td>
<td>S9074-AR-GIB-010/278, PARAGRAPH 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>VISUAL INSPECT JOINT FIT-UP</td>
<td>S9074-AR-GIB-010/278, PARAGRAPHS 10 AND MIL-STD-22 (V) "JOINT FIT-UP"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>VISUAL INSPECTION</td>
<td>S9074-AR-GIB-010/278, PARAGRAPHS 10, 11, 14, (V) "VISUAL INSPECTION" (See 4.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIL-STD-2035 SECTION 4 (V) or (I) "VISUAL INSPECTION" (See 4.2)</td>
<td>S9074-AR-GIB-010/278, PARAGRAPHS 13, 15, 16, 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T9074-AS-GIB-010/271, PARAGRAPHS 3, 5, 6</td>
<td>S9074-AR-GIB-010/278, PARAGRAPHS 13, 15, 16, 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T9074-AS-GIB-010/271, PARAGRAPHS 3, 5, 6</td>
<td>S9074-AR-GIB-010/278, PARAGRAPHS 13, 15, 16, 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOT APPLICABLE</td>
<td>S9074-AR-GIB-010/278, PARAGRAPHS 13, 15, 16, 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>SITUATION EVOLUTION</td>
<td>MACHINERY CLASS M</td>
<td>TURBINE PARTS</td>
<td>CASTINGS</td>
<td>FORCED DRAFT BLOWERS</td>
<td>REDUCTION AND STEAM TURBINE DRIVEN AUXILIARY GEARS</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T9074-AS-GIB-010/271 PARAGRAPH 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIL-STD-2035 SECTION 8 (I) "UT"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIL-STD-2035 SECTION 7 (V) or (I) "PT" (See 4.2)</td>
<td>MIL-STD-2035 SECTION 7 (V) or (I) "PT" (See 4.2)</td>
<td>MIL-STD-2035 SECTION 7</td>
<td>MIL-STD-2035 SECTION 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIL-STD-2035 SECTION 6 (V) or (I) "MT" (See 4.2)</td>
<td>MIL-STD-2035 SECTION 6 (V) or (I) "MT" (See 4.2)</td>
<td>MIL-STD-2035 SECTION 6</td>
<td>MIL-STD-2035 SECTION 6</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>COLUMN</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>WELDER QUALIFICATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S9074-AQ-GIB-010/248, PARAGRAPH 5</td>
</tr>
<tr>
<td>2</td>
<td>WELDING PROCEDURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S9074-AQ-GIB-010/248, PARAGRAPH 4</td>
</tr>
<tr>
<td>4</td>
<td>JOINT DESIGN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-STD-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-STD-1689, PARAGRAPH 11</td>
</tr>
<tr>
<td>5</td>
<td>WELDING REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-STD-1689, PARAGRAPH 13</td>
</tr>
<tr>
<td>6</td>
<td>WORKMANSHIP REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-STD-1689, PARAGRAPHS 12 AND 14</td>
</tr>
<tr>
<td>7</td>
<td>VISUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-STD-1689, PARAGRAPHS 6, 7, AND 8</td>
</tr>
<tr>
<td></td>
<td>(I) If applicable; see 4.1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-STD-2035, SECTION 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T9074-AS-GIB-010/271, PARAGRAPH 8</td>
</tr>
<tr>
<td>8</td>
<td>RADIOGRAPHIC INSPECTION (RT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-STD-1689, PARAGRAPHS 6, 7, AND 8</td>
</tr>
<tr>
<td></td>
<td>(I) If applicable; see 4.1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-STD-2035, SECTION 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T9074-AS-GIB-010/271, PARAGRAPH 3</td>
</tr>
</tbody>
</table>

* - PARAGRAPH 3.4 APPLIES
<table>
<thead>
<tr>
<th>LINE</th>
<th>COLUMN</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>ULTRASONIC INSPECTION (UT)</td>
<td></td>
<td>*HIGH STRENGTH STEEL (HY-80/100, HSLA-80 AND STS)</td>
<td>ALUMINUM ALLOY</td>
<td>CHROMIUM NICKEL STEEL (STAINLESS)</td>
<td>COPPER AND/OR NICKEL BASE ALLOYS</td>
<td>SILICONE BRONZE ALUMINUM BRONZE</td>
</tr>
<tr>
<td></td>
<td>(I) If applicable; see 4.1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LIQUID PENETRANT INSPECTION (PT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(I) If applicable; see 4.1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MAGNETIC PARTICLE INSPECTION (MT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOT APPLICABLE</td>
</tr>
<tr>
<td></td>
<td>(I) If applicable; see 4.1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - PARAGRAPH 3.4 APPLIES
<table>
<thead>
<tr>
<th>LINE</th>
<th>COLUMN</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MATERIAL EVOLUTION</td>
<td>CARBON STEEL (MS)</td>
<td>***</td>
<td>HIGH STRENGTH STEEL (HY-80/100)</td>
<td>ALUMINUM ALLOY</td>
<td>CHROMIUM NICKEL STEEL (STAINLESS)</td>
<td>COPPER AND/OR NICKEL BASE ALLOYS</td>
</tr>
<tr>
<td>2</td>
<td>WELDER QUALIFICATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>WELDING PROCEDURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ELECTRODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>JOINT DESIGN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>WELDING REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>WORKMANSHP REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>VISUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>RADIOGRAPHIC INSPECTION (RT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* **TABLE 3**
WELDING, FABRICATION, AND INSPECTION OF SURFACE SHIP HULLS (NON-COMBATANT) * **

1. WELDER QUALIFICATION
2. WELDING PROCEDURE
3. ELECTRODE
4. JOINT DESIGN
5. WELDING REQUIREMENTS
6. WORKMANSHP REQUIREMENTS
7. VISUAL
8. RADIOGRAPHIC INSPECTION (RT)

ABS RULES, PART 2, CHAPTER 4, SECTION 1
TABLE 3
WELDING, FABRICATION, AND INSPECTION OF SURFACE SHIP HULLS (NON-COMBATANT)

<table>
<thead>
<tr>
<th>LINE</th>
<th>MATERIAL EVOLUTION</th>
<th>COLUMN A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>ULTRASONIC INSPECTION (UT)</td>
<td>ABS RULES, PART 2, CHAPTER 4, SECTION 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>LIQUID PENETRANT INSPECTION (PT)</td>
<td>ABS RULES, PART 2, CHAPTER 4, SECTION 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MAGNETIC PARTICLE INSPECTION (MT)</td>
<td>ABS RULES, PART 2, CHAPTER 4, SECTION 1</td>
<td>NOT APPLICABLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - IDENTIFICATION OF "SURVEYOR" IN ABS RULES SIGNIFIES SUPERVISOR OF SHIPBUILDING (SUPERVISOR) ACTION. THE SUPERVISOR MAY USE MIL-STD-1689 FOR GUIDANCE WHERE ADDITIONAL DIRECTION IS NECESSARY. SUCH GUIDANCE MAY BE USED TO: ESTABLISH NDT REQUIREMENTS, ESTABLISH WELDING/NDT PROCEDURE AND PERSONNEL QUALIFICATION REQUIREMENTS, OR TO DEFINE OTHER ATTRIBUTES LISTED IN THE "MATERIAL EVOLUTION" LINE OF TABLE 3.

** - THE SUPERVISOR MAY ALSO ALLOW THE SHIPBUILDER TO CHOOSE FROM THE FOLLOWING OPTIONS, PROVIDING:

- THE SHIPBUILDER'S UTILIZATION OF THE FOLLOWING OPTIONS SHALL RESULT IN NO ADDITIONAL COST TO THE GOVERNMENT.
- THE SHIPBUILDER SHALL UTILIZE THE FABRICATION DOCUMENT SELECTED FOR THE ENTIRE AVAILABILITY AND SHALL NOT SWITCH BACK AND FORTH BETWEEN DOCUMENTS.
- THE SHIPBUILDER SHALL NOTIFY THE SUPERVISOR OF WHICH FABRICATION DOCUMENT HAS BEEN SELECTED.

** OPTIONS:**

A) MIL-STD-1689 MAY BE UTILIZED BY THE SHIPBUILDER AT THE SHIPBUILDER'S DISCRETION. THE REQUIREMENTS OF TABLE 2 ABOVE WOULD THEN APPLY.

B) FOR DETERMINATION OF NDT METHOD(S) AND EXTENT OF NDT INSPECTION WHEN REPAIRS ARE TO BE ACCOMPLISHED, THE SHIPBUILDER MAY REQUEST TO UTILIZE THE SAME NDT REQUIREMENTS WHICH WERE INVOKED IN CONSTRUCTION OF THE VESSEL. IN SUCH CASES, THE SHIPBUILDER SHALL BE RESPONSIBLE TO DETERMINE THE ORIGINAL NDT REQUIREMENTS AND SUBMIT EVIDENCE SUCH AS DRAWINGS OR SPECIFICATIONS WHICH DETAIL THE REQUIREMENTS TO THE SUPERVISOR ALONG WITH A REQUEST FOR APPROVAL.

C) THE SHIPBUILDER MAY REQUEST TO UTILIZE PRE-ESTABLISHED WELDING AND/OR NDT PROCEDURES AND PERSONNEL QUALIFICATION PROGRAM(S) WHICH HAVE BEEN PREVIOUSLY UTILIZED IN THE PERFORMANCE OF SIMILAR ABS-ACCEPTED WORK. IN SUCH CASES, THE SHIPBUILDER SHALL SUBMIT EVIDENCE OF SUCH ABS ACCEPTABILITY TO THE SUPERVISOR ALONG WITH DESCRIPTIVE DETAILS AND SUPPORTING DOCUMENTATION FOR THE PROPOSED PROGRAM(S). SUCH DOCUMENTATION SHALL INCLUDE THE WELDING/NDT PROCEDURES AND METHODS OF WELDING/NDT PERSONNEL QUALIFICATION WHICH WERE UTILIZED IN FORMER ABS-ACCEPTED WORK. THE SHIPBUILDER SHALL ALSO SUBMIT OTHER SUPPORTING EVIDENCE WHICH MAY BE REQUESTED BY THE SUPERVISOR TO ESTABLISH THAT THE PROPOSED PROGRAMS HAVE BEEN PREVIOUSLY UTILIZED FOR SIMILAR ABS-ACCEPTED WORK.

*** - PARAGRAPH 3.4 APPLIES.
<table>
<thead>
<tr>
<th>LINE</th>
<th>COLUMNS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MATERIAL EVOLUTION</td>
<td>CARBON STEEL (MS)</td>
<td>*HIGH STRENGTH STEEL (HY-80/100)</td>
<td>ALUMINUM ALLOY</td>
<td>CHROMIUM NICKEL STEEL (STAINLESS)</td>
<td>COPPER AND/OR NICKEL BASE ALLOYS</td>
<td>SILICONE BRONZE ALUMINUM BRONZE</td>
</tr>
<tr>
<td>1</td>
<td>WELDER QUALIFICATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S9074-AQ-GIB-010/248, PARAGRAPH 5</td>
</tr>
<tr>
<td>2</td>
<td>WELDING PROCEDURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S9074-AQ-GIB-010/248, PARAGRAPH 4</td>
</tr>
<tr>
<td>3</td>
<td>ELECTRODE</td>
<td>0900-060-4010 SECTION 10 TABLE 10-1</td>
<td>0900-060-4010 SECTION 10 TABLES 10-2 AND 10-3</td>
<td>0900-060-4010 SECTION 10 TABLE 10-7</td>
<td>0900-060-4010 SECTION 10 TABLE 10-4</td>
<td>0900-060-4010 SECTION 10, TABLES 10-5 AND 10-6</td>
<td>S9074-AR-GIB-010/278 TABLE II</td>
</tr>
<tr>
<td>4</td>
<td>JOINT DESIGN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MIL-STD-22 0900-060-4010, SECTION 11</td>
</tr>
<tr>
<td>5</td>
<td>WELDING REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0900-060-4010, SECTION 13</td>
</tr>
<tr>
<td>6</td>
<td>WORKMANSHIP REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0900-060-4010, SECTION 14</td>
</tr>
<tr>
<td>7</td>
<td>VISUAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0900-060-4010, SECTIONS 6, 7, AND 8 T9074-AS-GIB-010/271, PARAGRAPH 8</td>
</tr>
<tr>
<td>8</td>
<td>RADIOGRAPHIC INSPECTION (RT)</td>
<td>0900-060-4010, SECTION 6, TABLE 6-1 AND SECTIONS 7 AND 8</td>
<td></td>
<td></td>
<td></td>
<td>T9074-AS-GIB-010/271, PARAGRAPH 3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ULTRASONIC INSPECTION (UT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T9074-AS-GIB-010/271, PARAGRAPH 6</td>
</tr>
<tr>
<td>10</td>
<td>LIQUID PENETRANT INSPECTION (PT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0900-060-4010, SECTIONS 6, 7, AND 8 T9074-AS-GIB-010/271, PARAGRAPH 5</td>
</tr>
<tr>
<td>11</td>
<td>MAGNETIC PARTICLE INSPECTION (MT)</td>
<td>0900-060-4010 SECTION 6</td>
<td></td>
<td></td>
<td></td>
<td>NOT APPLICABLE</td>
<td>T9074-AS-GIB-010/271, PARAGRAPH 4</td>
</tr>
</tbody>
</table>

* - PARAGRAPH 3.4 APPLIES
ATTACHMENT A
COMBATANT SURFACE SHIPS

WARSHIPS

<table>
<thead>
<tr>
<th>Aircraft Carriers:</th>
<th>CV</th>
<th>CVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Carrier</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aircraft Carrier (nuclear propulsion)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ASW Aircraft Carrier</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Combatants:</th>
<th>BB</th>
<th>CGN</th>
<th>DD</th>
<th>DDG</th>
<th>FF</th>
<th>FFG</th>
<th>FFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battleship</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided Missile Cruiser</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided Missile Cruiser (nuclear powered)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destroyer</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided Missile Destroyer</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frigate</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided Missile Frigate</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frigate (Naval Reserve Training)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patrol Combatants:</th>
<th>PHM</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrol Combatant Missile (hydrofoil)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Patrol Coastal</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

AMPHIBIOUS WARFARE SHIPS

<table>
<thead>
<tr>
<th>Amphibious Command Ship</th>
<th>LCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibious Assault Ship (general purpose)</td>
<td>LHA</td>
</tr>
<tr>
<td>Amphibious Cargo Ship</td>
<td>LKA</td>
</tr>
<tr>
<td>Amphibious Transport Dock</td>
<td>LPD</td>
</tr>
<tr>
<td>Amphibious Assault Ship (helicopter)</td>
<td>LPH</td>
</tr>
<tr>
<td>Dock Landing Ship</td>
<td>LSD</td>
</tr>
<tr>
<td>Amphibious Assault Ship (general purpose)</td>
<td>LHD</td>
</tr>
<tr>
<td>Tank Landing Ship</td>
<td>LST</td>
</tr>
</tbody>
</table>

AUXILIARY SHIPS

<table>
<thead>
<tr>
<th>Ammunition Ship</th>
<th>AE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combat Store Ship</td>
<td>AFS</td>
</tr>
<tr>
<td>Oiler</td>
<td>AO</td>
</tr>
<tr>
<td>Fast Combat Support Ship</td>
<td>AOE</td>
</tr>
<tr>
<td>Replenishment Oiler</td>
<td>AOR</td>
</tr>
<tr>
<td>Store Ship</td>
<td>AF</td>
</tr>
</tbody>
</table>
ATTACHMENT A

(Con't)

MINE WARFARE SHIPS

<table>
<thead>
<tr>
<th>Ship Type</th>
<th>Abbreviation</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine Countermeasures Support Ship</td>
<td>MCS</td>
<td>2</td>
</tr>
<tr>
<td>Mine Countermeasures Ship</td>
<td>MCM</td>
<td>2</td>
</tr>
<tr>
<td>Coastal Minehunter</td>
<td>MHC</td>
<td>2</td>
</tr>
</tbody>
</table>

COMBATANT SURFACE CRAFT

AMPHIBIOUS WARFARE CRAFT

<table>
<thead>
<tr>
<th>Craft Type</th>
<th>Abbreviation</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landing Craft, Air Cushion</td>
<td>LCAC</td>
<td>4</td>
</tr>
<tr>
<td>Landing Craft, Mechanized</td>
<td>LCM</td>
<td>4</td>
</tr>
<tr>
<td>Landing Craft, Personnel, Large</td>
<td>LCPL</td>
<td>4</td>
</tr>
<tr>
<td>Landing Craft, Utility</td>
<td>LCU</td>
<td>2</td>
</tr>
<tr>
<td>Landing Craft, Vehicle, Personnel</td>
<td>LCVP</td>
<td>4</td>
</tr>
<tr>
<td>Light Seal Support Craft</td>
<td>LSSC</td>
<td>4</td>
</tr>
<tr>
<td>Amphibious Warping Tug</td>
<td>LWT</td>
<td>4</td>
</tr>
<tr>
<td>Medium Seal Support Craft</td>
<td>MSSC</td>
<td>4</td>
</tr>
<tr>
<td>Swimmer Delivery Vehicle</td>
<td>SDV</td>
<td>4</td>
</tr>
<tr>
<td>Side Loading Warping Tug</td>
<td>SLWT</td>
<td>4</td>
</tr>
<tr>
<td>Special Warfare Craft, Light</td>
<td>SWCL</td>
<td>4</td>
</tr>
<tr>
<td>Special Warfare Craft, Medium</td>
<td>SWCM</td>
<td>4</td>
</tr>
</tbody>
</table>

PATROL CRAFT

<table>
<thead>
<tr>
<th>Craft Type</th>
<th>Abbreviation</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-Armored Troop Carrier</td>
<td>ATC</td>
<td>4</td>
</tr>
<tr>
<td>Patrol Boat</td>
<td>PB</td>
<td>4</td>
</tr>
<tr>
<td>River Patrol Boat</td>
<td>PBR</td>
<td>4</td>
</tr>
<tr>
<td>Patrol Craft (fast)</td>
<td>PCF</td>
<td>4</td>
</tr>
<tr>
<td>Fast Patrol Craft</td>
<td>PTF</td>
<td>4</td>
</tr>
</tbody>
</table>
ATTACHMENT A
(Con't)

NON-COMBATANT SURFACE SHIPS

AUXILIARY SHIPS

<table>
<thead>
<tr>
<th>Ship Type</th>
<th>Abbreviation</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary Crane Ship</td>
<td>ACS</td>
<td>3</td>
</tr>
<tr>
<td>Destroyer Tender</td>
<td>AD</td>
<td>3</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>AG</td>
<td>3</td>
</tr>
<tr>
<td>Deep Submergence Support Ship</td>
<td>AGDS</td>
<td>3</td>
</tr>
<tr>
<td>Miscellaneous Command Ship</td>
<td>AGF</td>
<td>3</td>
</tr>
<tr>
<td>Auxiliary General Frigate</td>
<td>AGFF</td>
<td>3</td>
</tr>
<tr>
<td>Missile Range Instrumentation Ship</td>
<td>AGM</td>
<td>3</td>
</tr>
<tr>
<td>Oceanographic Research Ship</td>
<td>AGOR</td>
<td>3</td>
</tr>
<tr>
<td>Ocean Surveillance Ship</td>
<td>AGOS</td>
<td>3</td>
</tr>
<tr>
<td>Surveying Ship</td>
<td>AGS</td>
<td>3</td>
</tr>
<tr>
<td>Auxiliary Research Submarine</td>
<td>AGSS</td>
<td>3</td>
</tr>
<tr>
<td>Hospital Ship</td>
<td>AH</td>
<td>3</td>
</tr>
<tr>
<td>Cargo Ship</td>
<td>AK</td>
<td>3</td>
</tr>
<tr>
<td>Auxiliary Cargo Barge/Lighter Ship</td>
<td>AKB</td>
<td>3</td>
</tr>
<tr>
<td>Auxiliary Cargo Float-On/Float-Off Ship</td>
<td>AKF</td>
<td>3</td>
</tr>
<tr>
<td>Gasoline Tanker</td>
<td>AOG</td>
<td>3</td>
</tr>
<tr>
<td>Transport Oiler</td>
<td>AOT</td>
<td>3</td>
</tr>
<tr>
<td>Transport</td>
<td>AP</td>
<td>3</td>
</tr>
<tr>
<td>Barracks Craft</td>
<td>APL</td>
<td>3</td>
</tr>
<tr>
<td>Repair Ship</td>
<td>AR</td>
<td>3</td>
</tr>
<tr>
<td>Cable Repairing Ship</td>
<td>ARC</td>
<td>3</td>
</tr>
<tr>
<td>Salvage Ship</td>
<td>ARS</td>
<td>3</td>
</tr>
<tr>
<td>Submarine Tender</td>
<td>AS</td>
<td>3</td>
</tr>
<tr>
<td>Submarine Rescue Ship</td>
<td>ASR</td>
<td>3</td>
</tr>
<tr>
<td>Fleet Ocean Tug</td>
<td>ATF</td>
<td>3</td>
</tr>
<tr>
<td>Salvage and Rescue Ship</td>
<td>ATS</td>
<td>3</td>
</tr>
<tr>
<td>Aviation Logistic Support Ship</td>
<td>AVB</td>
<td>3</td>
</tr>
</tbody>
</table>
ATTACHMENT A
(Con't)

NON-COMBATANT SURFACE CRAFT

SERVICE CRAFT

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFDB</td>
<td>Large Auxiliary Floating Dry Dock (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>AFDL</td>
<td>Small Auxiliary Floating Dry Dock (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>AFDM</td>
<td>Medium Auxiliary Floating Dry Dock (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>ARD</td>
<td>Auxiliary Repair Dry Dock (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>ARDM</td>
<td>Medium Auxiliary Repair Dry Dock (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>CSP</td>
<td>Causeway Section, Powered</td>
<td>3</td>
</tr>
<tr>
<td>CSNP</td>
<td>Causeway Section (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>IX</td>
<td>Unclassified Miscellaneous</td>
<td>3</td>
</tr>
<tr>
<td>YAG</td>
<td>Miscellaneous Auxiliary (self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YC</td>
<td>Open Lighter (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YCF</td>
<td>Car Float (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YCV</td>
<td>Aircraft Transportation Lighter (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YCSS</td>
<td>Cargo Semi-Submersible Barge</td>
<td>3</td>
</tr>
<tr>
<td>YD</td>
<td>Floating Crane (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YDT</td>
<td>Diving Tender (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YF</td>
<td>Covered Lighter (self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YFB</td>
<td>Ferryboat or Launch (self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YFD</td>
<td>Yard Floating Dry Dock (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YFN</td>
<td>Covered Lighter (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YFNB</td>
<td>Large Covered Lighter (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YFND</td>
<td>Dry Dock Companion Craft (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YFNX</td>
<td>Lighter (special purpose) (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YPF</td>
<td>Floating Power Barge (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YFR</td>
<td>Refrigerated Covered Lighter (self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YFRN</td>
<td>Refrigerated Covered Lighter (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YFRT</td>
<td>Covered Lighter (range tender) (self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YFU</td>
<td>Harbor Utility Craft (self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YG</td>
<td>Garbage Lighter (self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YGN</td>
<td>Garbage Lighter (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YHLC</td>
<td>Salvage Lift Craft, Heavy (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YLC</td>
<td>Salvage Lift Craft, Light</td>
<td>3</td>
</tr>
<tr>
<td>YM</td>
<td>Dredge (self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YNG</td>
<td>Gate Craft (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YO</td>
<td>Fuel Oil Barge (self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YOG</td>
<td>Gasoline Barge (self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YOGN</td>
<td>Gasoline Barge (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YON</td>
<td>Fuel Oil Barge (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YOS</td>
<td>Oil Storage Barge (non-self-propelled)</td>
<td>3</td>
</tr>
<tr>
<td>YP</td>
<td>Patrol Craft (self-propelled)</td>
<td>4</td>
</tr>
<tr>
<td>YPD</td>
<td>Floating Pile Driver (non-self-propelled)</td>
<td>3</td>
</tr>
</tbody>
</table>
SERVICE CRAFT

Floating Workshop (non-self-propelled)YR... 3
Repair and Berthing Barge (non-self-propelled)YRB... 3
Repair, Berthing and Messing Barge (non-self-propelled) ...YRBM.. 3
Floating Dry Dock Workshop (hull) (non-self-propelled)YRDH.. 3
Floating Dry Dock Workshop (machine) (non-self-propelled) .YRDM.. 3
Radiological Repair Barge (non-self-propelled)YRR.. 3
Salvage Craft Tender (non-self-propelled)YRST.. 3
Seaplane Wrecking Derrick (self-propelled)YSD. 3
Sludge Removal Barge (non-self-propelled)YSR.. 3
Large Harbor Tug ...YTL.. 4
Small Harbor Tug ..YTM.. 4
Medium Harbor Tug ...YTD.. 4
Torpedo Trials CraftYTT.. 4
Water Barge (self-propelled)YW.. 3
Water Barge (non-self-propelled)YWN.. 3

NOTES:

Letter prefixes to classification symbols may add identification:

E -- Prototype ship or craft that is in an experimental or developmental status.

T -- Assigned to MSC (Military Sealift Command)

F -- Being Constructed for a foreign government.

X -- Often added to existing classifications to indicate a new class whose characteristics have not been defined.
1. SCOPE:

1.1 Title: Meter; repair and calibrate

2. REFERENCES:

2.1 S9300-A6-GYD-010, Electrical Workmanship Inspection Guide for Surface Ships and Submarines

2.2 ISO 17025, General Requirements for the Competence of Testing and Calibration Laboratories, First Edition

2.3 ANSI/NCSL Z540-1, General Requirements for Calibration Laboratories and Measuring and Test Equipment

2.4 OD 45845, Metrology Requirements List

3. REQUIREMENTS:

3.1 Disconnect and remove each meter and associated impeders, reactors, resistor boxes, and shunts.

3.1.1 Record and retain hook-up data and mounting hardware.

(V) "CONDITION OF WIRE LEADS"

3.1.1.1 Inspect lead wires and insulation; broken or partially broken lead wires shall be cut back to remove damaged/questionable portions of the wire and new terminal ends installed in accordance with 2.1.

3.1.2 Remove existing and install new wire markers in place of wire markers found to be illegible. Install new wire markers where missing. New wire markers shall conform to SAE-AMS-DTL-23053, Class One, white, marked with indelible ink.

3.2 Disassemble and clean equipment to remove loose paint and foreign matter.

3.3 Repair each meter and associated equipment to manufacturer's specifications.
3.3.1 Remove existing and install new components in place of those found to be missing or defective.

3.3.2 Free-up and adjust moving parts.

3.3.3 Restore unit cases to original finish.

3.4 Assemble equipment. Install new seals and gaskets conforming to manufacturer's specifications.

3.5 Calibrate and adjust each meter, including associated accessories, to manufacturer's specifications, using appropriate calibration procedures and test equipment.

3.5.1 Calibration laboratories shall be accredited to either 2.2 or 2.3 by a Commercial Accreditation Activity or certified by a Navy Certification Activity to 2.3 for the specific measurement area required.

3.5.2 In the absence of manufacturer's specifications, tolerances shall be in accordance with Section 1 of 2.4.

3.5.3 Affix a calibration label denoting the name and location of the calibration facility, the date of calibration, and due date of next calibration, in accordance with Section 3 of 2.4 and the following, to the face of each meter.

3.5.3.1 The calibration interval shall be as designated on the Calibration Requirements List (CRL).

3.6 Install and connect each meter, including associated accessories, using hook-up data and mounting hardware retained in 3.1.1.

3.6.1 Install new fasteners in place of those found to be missing or defective, conforming to ASTM A449, Type I, zinc coated for bolts; ASTM A563, zinc coated for nuts; or selected and identified in accordance with SAEJ 2280.

3.6.2 Fasteners requiring a permeability factor of 2.0 or less shall conform to Grade 304 CRES.

3.7 Ensure correct indication of each meter during operational test of equipment.

3.8 Submit one legible copy, in hard copy or electronic media, of the calibration data to the SUPERVISOR within 5 working days of the calibration.
3.8.1 Provide the following data for each meter calibrated:

- Manufacturer of meter
- Model
- Serial Number, if assigned
- Tolerance
- As found condition
- Procedure used
- Final calibration results
- Calibration interval
- Calibration due date
- Location of installed meter

4. **NOTES:**

4.1 The SUPERVISOR will provide a copy of the CRL (also known as the Measure Format 310 Document) from the Chief Engineer.

4.2 The SUPERVISOR will provide a copy of the calibration data to the Ship's Force Calibration Coordinator for the purpose of updating the ship's RECALL list.

4.3 Contact one of the following commercial accreditation organizations for visit arrangements (to ISO 17025 or ANSI/NCSL Z540-1) and payment requirements.

- The American Association of Laboratory Accreditors
- The National Voluntary Laboratory Accreditation Program

4.4 Contact one of the following Navy Certification Activities for visit arrangements (to ANSI/NCSL Z540-1) and payment requirements:

FTSCLANT
POC Jim Waller
(757) 485-6242
FAX (757) 485-6279

FTSCPAC
POC Ken Wampler
(619) 556-2661
FAX (619) 556-6706
1. SCOPE:

1.1 Title: Gages and Thermometers; repair and calibrate

2. REFERENCES:

2.1 ISO 17025, General Requirements for the Competence of Testing and Calibration Laboratories, First Edition

2.2 ANSI/NCSL Z540-1, General Requirements for Calibration Laboratories and Measuring and Test Equipment

2.3 OD 45845, Metrology Requirements List

3. REQUIREMENTS:

3.1 Disconnect and remove each gage and thermometer.

3.1.1 Remove sealed gages as a complete unit.

3.2 Clear gage lines from instrument side of root connection of obstructions by blowing clean, dry air through the lines.

3.3 Disassemble and clean equipment to remove loose paint and foreign matter.

3.3.1 Do not disassemble sealed gage unit.

3.4 Repair the gages and thermometers to manufacturer's specifications.

3.4.1 Remove existing and install new components in place of those found to be missing or defective.

3.4.2 Free-up and adjust moving parts.

3.4.3 Restore unit cases to original finish.

3.5 Reassemble equipment.

3.6 Calibrate and adjust each gage and thermometer to the manufacturer's specifications, using appropriate calibration procedures and test equipment.
3.6.1 Calibration laboratories shall be accredited to either 2.1 or 2.2 by a commercial Navy Accreditation Activity or certified by a Navy Certification Activity to 2.2 for the specific measurement area required.

3.6.2 In the absence of manufacturer's specifications, tolerances shall be in accordance with 2.3.

3.6.3 Affix a calibration label denoting the name and location of the calibration facility, the date of calibration, and due date of next calibration in accordance with 2.3 and the following, to the face of each unit.

3.6.3.1 The calibration interval shall be as designated on the Calibration Requirements List (CRL).

3.7 Reinstall and reconnect each unit. Install new seals, gaskets, and fasteners.

3.7.1 Fasteners shall conform to ASTM A449, Type I, zinc coated for bolts; ASTM A563, zinc coated for nuts; or selected and identified in accordance with SAEJ 2280.

3.7.1.1 Fasteners requiring a permeability factor of 2.0 or less shall conform to Grade 304 CRES.

3.8 Ensure correct indication of each gage and thermometer during operational test of equipment.

3.9 Submit one legible copy, in hard copy or electronic media, of the calibration data to the SUPERVISOR within 5 working days of the calibration.

3.9.1 For each gage or thermometer calibrated, provide the following data:

- Manufacturer of gage or thermometer
- Model
- Serial Number, if assigned
- Tolerance
- As found condition
- Procedure used
- Final calibration results
- Calibration interval
- Calibration due date
- Location of installed gage or thermometer

4. NOTES:

4.1 The SUPERVISOR will provide a copy of the CRL (also known as the Measure Format 310 Document) from the Chief Engineer.
4.2 The SUPERVISOR will provide a copy of the calibration data to the Ship's Force Calibration Coordinator for the purpose of updating the ship's RECALL list.

4.3 Contact one of the following commercial accreditation organizations for visit arrangements (to ISO 17025 or ANSI/NCSL Z540-1) and payment requirements.

The American Association of Laboratory Accreditors
The National Voluntary Laboratory Accreditation Program

4.4 Contact one of the following Navy Certification Activities for visit arrangements (to ANSI/NCSL Z540-1) and payment requirements:

FTSCLANT
POC Jim Waller
(757) 485-6242
FAX (757) 485-6279

FTSCPAC
POC Ken Wampler
(619) 556-2661
FAX (619) 556-6706

4.5 This item does not apply to oxygen gages.
1. SCOPE:

1.1 Title: Rotating Machinery; balance

2. REFERENCES:

2.1 S9245-AR-TSM-010/PROP, Marine Propeller Inspection, Repair and Certification

3. REQUIREMENTS:

3.1 Measure and record the maximum eccentricity of the rotor shaft and installed components relative to the points of support using dial indicators.

3.2 Balance rotating machinery assemblies or components in accordance with the following requirements and procedures:

 3.2.1 Except for propellers, if the design operating speed of the component to be balanced is less than 150 revolutions per minute (RPM), the rotor including shaft shall be balanced by symmetrically supporting the rotor on 2 knife edges and applying a correction to attain a gravity balance.

 3.2.2 Except for propellers, if the design operating speed of the component to be balanced is equal to or greater than 150 RPM, the rotor including shaft shall be balanced with equipment which requires rotation of the work piece.

 3.2.3 Propellers shall be balanced in accordance with 2.1.

 3.2.4 Types of correction:

<table>
<thead>
<tr>
<th>TYPES OF CORRECTION</th>
<th>N 1/</th>
<th>ROTOR CHARACTERISTIC 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-plane</td>
<td>0 - 1000</td>
<td>L/D Less than or Equal to 0.5</td>
</tr>
<tr>
<td></td>
<td>0 - 150</td>
<td>L/D Greater than 0.5</td>
</tr>
<tr>
<td>2-plane</td>
<td>Greater than 1000</td>
<td>L/D Less than or Equal to 0.5</td>
</tr>
<tr>
<td></td>
<td>Greater than 150</td>
<td>L/D Greater than 0.5</td>
</tr>
</tbody>
</table>
3.2.5 Allowable unbalance: The values determined by the following formulas are permitted in each plane of correction. However, if unbalance is measured in 2 or more planes, the resultant unbalance forces cannot exceed the allowable amount determined by single plane correction.

\[
U = \begin{cases}
\frac{4W}{N} & \text{for maximum operating speeds in excess of 1000 RPM, or} \\
4000\frac{W}{N^2} & \text{for maximum operating speeds between 150 RPM and 1000 RPM, or} \\
0.177W & \text{for maximum operating speeds below 150 RPM}
\end{cases}
\]

\(U\) = Maximum allowable residual unbalance in ounce-inches
\(W\) = Weight of rotating parts in pounds
\(N\) = Maximum operating RPM of rotating parts being balanced

3.2.6 When the computation for converting displacement measurements to ounce-inches of force unbalance is an approximation, verification shall be made by adding a trial weight to the rotor, equal and opposite to the calculated ounce-inches of force. If putty is used as a trial weight, it shall be removed, weighed and a permanent compensating weight shall be installed in its place.

3.3 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.1 and 3.2 to the SUPERVISOR. The report shall include the following information:

3.3.1 Ship's name and hull number
3.3.2 Contractor and subcontractor
3.3.3 Job Order and Work Item number
3.3.4 Unit and component identification
3.3.5 Manufacturer and model number of balance machine
3.3.6 Date of last calibration, by whom it was calibrated, and when the next calibration is due for the balancing machine

3.3.7 Maximum total indicated runout of rotor or balancing arbor

3.3.8 Weight of rotor assembly in pounds

3.3.9 Design operating RPM of rotor

3.3.10 Computation of allowable unbalance in ounce-inches

3.3.11 Measured unbalance, prior to and after balancing, in ounce-inches

3.4 Submit one legible copy, in hard copy or electronic media, of a report listing computations or procedures for converting displacement measurements to ounce-inches of unbalance force to the SUPERVISOR, when the machine used to balance components indicates displacement measurements in lieu of direct unbalance forces.

4. NOTES:

4.1 None.
1. SCOPE:

1.1 Title: Electronic Equipment; repair

2. REFERENCES:

2.1 Equipment Technical Manual

2.2 407-5291780, Standard Electromagnetic Interferences (EMI) Survey Procedures

2.3 SE000-01-IMB-010, Navy Installation and Maintenance Book (NIMB), Section VI, Electronics Installation and Maintenance Book - General Maintenance (Source CD: N0002400003)

2.4 SE000-01-IMB-010, Navy Installation and Maintenance Book (NIMB), Section IX, Installation Standards (Source CD: N0002400003)

2.5 S9300-A6-GYD-010, Electrical Workmanship Inspection Guide for Surface Ships and Submarines

2.6 IA PUB-5239-31, Information Assurance Shipboard Red/Black Installation Publication

2.7 NSTISSAM TEMPEST/2-95, Red/Black Installation Guidance (FOUO)

2.8 MIL-STD-1310, Shipboard Bonding, Grounding, and Other Techniques for Electromagnetic Compatibility and Safety

3. REQUIREMENTS:

3.1 Disassemble equipment for cleaning, inspection, and repair, using 2.1 for guidance.

(V) "VISUALLY INSPECT"

3.1.1 Visually inspect components prior to cleaning to detect evidence of casualties and deteriorating conditions that may not be apparent after cleaning.
3.1.2 Clean equipment and remove foreign matter.

3.1.3 Dry equipment, removing moisture and cleaning solvents.

3.1.4 Inspect equipment for applicable electromagnetic interference (EMI) fixes using Shipboard Electromagnetic Compatibility Improvement Program (SEMCIP) Technical Assist Network (STAN) in accordance with 2.2.

3.1.4.1 Submit one legible copy of a report, in hard copy or electronic media, listing the applicable EMI fixes not installed and EMI fixes that have been improperly installed, to the SUPERVISOR.

(V) "INSPECT AND TEST TO DESIGN CHARACTERISTICS"

3.2 Inspect and test electrical and mechanical components, assemblies, subassemblies, equipment enclosures, internal circuitry, and enclosure hardware to design characteristics and determine missing and defective components, circuitry, and enclosure hardware in accordance with 2.1.

3.2.1 Remove existing and install new electrical and mechanical components, assemblies, subassemblies, internal circuitry, and enclosure hardware in place of those found to be missing or defective. New material shall conform to the requirements of 2.1.

3.2.1.1 Soldering, desoldering, and removal of components and circuitry shall be in accordance with Section 4 of 2.3.

3.2.1.2 Miniature and microminiature repair of printed circuit boards shall be in accordance with Sections 5 and 6 of 2.3.

3.2.1.3 New wiring shall conform to MIL-DTL-16878. Wire size and color code shall be in accordance with 2.1. Individual wires in harnesses and chassis wiring may be plain white conductors with sleeve identification markers at each end, stenciled with indelible ink to indicate color coding.

(V) "INSPECT SHIELDING TERMINATIONS"

3.3 Inspect braided wire shielding terminations for conformance to Paragraph 2-19.3 of 2.4.

3.3.1 Remove existing and install new grounding sheath connectors in place of those found to be missing or defective. Installation shall be in accordance with Paragraph 2-14 of 2.4.

(V) "INSPECT WIRE CONNECTIONS"

3.4 Inspect terminal board wire connections for termination with lugs conforming to SAE-AS7928 of each conductor at the terminal board connections.
3.4.1 Remove existing and install new lugs in place of those found to be missing or defective, using 2.5 for accept or reject criteria. New lugs shall conform to SAE-AS7928.

(V) "INSPECT WIRE MARKERS"

3.5 Inspect for missing and defective wire markers.

3.5.1 Remove existing and install new wire markers in place of those found to be missing or defective, using 2.5 for accept or reject criteria. New wire markers shall conform to SAE-AMS-DTL-23053, Class One, white, marked with indelible ink.

3.5.1.1 Sleeving shall be marked in accordance with 2.1.

3.6 Correct discrepancies found in terminal board connections in accordance with 2.1 and as modified by applicable field changes identified on the field change accomplished plate.

(V) "INSPECT FOR SLACK"

3.7 Inspect existing cabling and cable harnesses between hinged parts and between chassis and parts which are subject to removal for slack to prevent breaking of individual wires by repeated flexing and for chafing protection.

3.7.1 Provide slack in accordance with Paragraph 2-15 of 2.4 to prevent breaking of individual wires.

3.7.2 Install new chafing protection in accordance with Paragraph 2-15 of 2.4.

3.8 Tie loose harness lacing in accordance with Paragraph 2-15.2 of 2.4.

3.9 Secure loose wiring harness clamps and install new plastic clamps where found to be missing or defective, in accordance with Paragraph 2-15.3 of 2.4.

3.10 Adjust relays and burnish contacts in exposed type relays and switches.

3.11 Remove high spots on pinion and gear teeth by stoning.

3.12 Adjust and align mechanical components in accordance with 2.1.

3.13 Assemble equipment using 2.1 for guidance.

3.13.1 Tighten loose controls and hardware. Free-up binding in moving parts, controls, switches, chassis slides, and runners.

3.13.2 Lubricate equipment in accordance with 2.1.
3.13.3 Install heat dissipating tube shields conforming to MIL-S-24251.

3.14 Bond and ground equipment in accordance with 2.6 through 2.8.

3.15 Energize the equipment; calibrate, adjust, and align to achieve optimum operational characteristics in accordance with 2.1.

3.16 Update field change accomplished plate to indicate completed field changes when the Work Item directs the installation of new field changes.

4. **NOTES:**

4.1 Equipment technical manual will be listed in the invoking Work Item.

4.2 Shipboard Electromagnetic Compatibility Improvement Program (SEMCIP) Technical Assist Network (STAN) referred to in 3.1.4 is available at www.semcip.com.
1. **SCOPE:**

1.1 Title: Rotating Electrical Equipment; repair

2. **REFERENCES:**

2.1 Standard Items

2.2 Equipment Technical Manual

2.3 S9086-KC-STM-010/CH-300, Electric Plant - General

2.4 S9086-KE-STM-000/CH-302, Electrical Motors and Controllers

2.5 S9086-KN-STM-010/CH-310, Electrical Power Generators and Conversion Equipment

2.6 S9086-HN-STM-010/CH-244, Propulsion Bearings and Seals

2.7 0900-LP-060-2010, Electrical Machinery Repair, Electrical Motor Repair, Shop Procedures Manual

2.8 S9310-AC-HBK-010, Commutator/Slip Ring Maintenance Handbook

2.9 MIL-STD-1310, Shipboard Bonding, Grounding, and Other Techniques for Electromagnetic Compatibility and Safety

3. **REQUIREMENTS:**

3.1 Accomplish preliminary repair preparations as follows:

3.1.1 Prior to disconnecting equipment:

3.1.1.1 Record and retain electrical hook-up data. Record and retain air gap readings. Record and retain bearing clearances for sleeve bearing equipment only.

3.1.1.2 Inspect couplings for cracks, broken segments, wear, and misalignment in excess of tolerances specified in 2.2.
3.1.2 Disconnect the equipment electrically and mechanically, using 2.2 for guidance.

3.1.2.1 Matchmark, identify, and retain chocks, shims, shock mounts, sound damping pads, and other accessories associated with equipment.

3.1.2.2 Record shaft thrust and run out readings.

3.2 Remove equipment including rotating components connected directly to the shaft.

3.3 Inspect foundations for cracks, areas of distortion, and deterioration in excess of 25 percent of the thickness of each member of the structure.

3.4 Submit one legible copy, in hard copy or electronic media, of a report listing inspection results, missing parts, defective parts, and measurements taken in 3.1 and 3.3 to the SUPERVISOR.

3.5 Matchmark, disassemble, and inspect the equipment removed in 3.2, using 2.2 through 2.7 for guidance.

3.6 Accomplish 500 volt megger insulation resistance test, using Paragraphs 300-3.2.2 through 300-3.2.3, 300-3.4.8, 300-3.4.11, and 300-5.3.7.1 of 2.3 for guidance. Record data.

3.6.1 Disconnect solid-state devices and ground temperature sensing leads prior to measuring insulation resistance of windings.

3.7 Accomplish a DC resistance test of windings, using a Wheatstone or Kelvin bridge, or with an ohmmeter capable of resolving one milliohm (.001 ohm). Record phase balance for multi-phase equipment, using Paragraph 5.22 of 2.7 for guidance. Record data.

3.8 Accomplish a voltage surge test in accordance with Paragraphs 300-3.5.4 through 300-3.5.5 of 2.3. Record data.

3.9 Accomplish a DC HI POT test in accordance with Paragraph 300-3.5.2 through 300-3.5.2.3.4 of 2.3. Record data.

3.10 Accomplish a Polarization Index Test in accordance with Paragraph 300-3.4.12 of 2.3. Record data.

3.11 Measure resistance value of each winding temperature detector, heater, and heater strip using low voltage ohmmeter. Record data.

3.12 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.5 through 3.11 to the SUPERVISOR.
3.13 Clean the equipment and windings in accordance with Paragraphs 300-4.5.1 through 300-4.5.5 of 2.3.

3.13.1 Dry the equipment by placing it in an oven in accordance with Paragraph 300-5.3.2.3 of 2.3.

3.14 Allow to cool to ambient temperature and accomplish a 500-volt megger insulation resistance test, using Paragraphs 300-3.2.2 through 300-3.2.3, 300-3.4.8, 300-3.4.11, and 300-5.3.7.1 of 2.3 for guidance. Record data.

3.15 Accomplish a DC HI POT test in accordance with Paragraphs 300-3.5.2.3 through 300-3.5.2.3.4 of 2.3. Record data.

3.16 Repeat cleaning, drying, and testing in 3.13 through 3.15 if DC HI POT test readings are questionable, or if insulation resistance readings are not in accordance with the following:

3.16.1 DC generators and motors (except propulsion and auxiliary generators for submarines) including exciters, Table 300-3-4 of 2.3.

3.16.2 DC propulsion generators and motors and DC auxiliary generators for submarines, Table 300-3-5 of 2.3.

3.16.3 AC generators and motors other than propulsion, Table 300-3-6 of 2.3.

3.16.4 AC propulsion generators and motors, Table 300-3-7 of 2.3.

3.17 If satisfactory readings are not obtained after the second cleaning, repeat 3.13 through 3.15.

3.18 Notify the SUPERVISOR if satisfactory readings are not obtained after a third cleaning.

3.19 Accomplish a DC resistance test of windings, using a Wheatstone or Kelvin bridge, or with an ohmmeter capable of resolving one milliohm (0.001 ohm). Record phase balance for multi-phase equipment, using Paragraph 5.22 of 2.7 for guidance. Record data.

3.20 Accomplish a voltage surge test in accordance with Paragraphs 300-3.5.4 through 300-3.5.5 of 2.3. Record data.

3.21 Submit one legible copy, in hard copy or electronic media, of a report listing winding defects such as opens, grounds, shorts, reversed or unbalanced coil groups or phases incorrect connections, cracked or brittle insulation, and loose bands, fillers, wedges, and connections to the SUPERVISOR.

3.21.1 Include test results from 3.14 through 3.17, 3.19 and 3.20.
3.22 Protect the windings and machined surfaces and clean the equipment housing exterior, including fan(s), and interior and exterior of end bells to bare metal.

3.22.1 Prime equipment housing, fan(s), and end bells with one coat F-84 alkyd zinc molybdate TT-P-645 (1.5 mils dry film thickness).

3.23 Inspect and test non-wound rotors for loose or cracked bars, localized overheating, and rubbing in accordance with 2.7. Inspect wound rotors, slip ring leads, and armatures for insulation damage and burns/hot spots. Inspect for loose coils and slot wedges. Inspect slip rings and commutators for damage and for wear limits, using 2.2 for criteria. Record data.

3.24 Inspect and dimensionally measure end bells, frame, rabbet fits, shaft, sleeve and pedestal bearings, keyways, fan and running surfaces for wear, eccentricity, and other defects, using 2.2 for accept or reject criteria, and 2.6 for location and type of measurements to be taken. Record data.

3.25 Inspect brush rigging for cracks, chips, worn areas, distortion, spring condition, and insulating material for cracks and arc paths. Record data.

3.26 Inspect leads and terminal lugs for damage and defects. Identify and tag leads with aluminum wrap-around bands with metal stamped or embossed markings. Record data.

3.27 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.23 through 3.26 to the SUPERVISOR.

(V) "VARNISH TEMPERATURE, VISCOSITY, AND GEL TIME TESTS"

3.28 Select the proper insulating process based on winding insulation classifications and to meet state or local air pollution standards.

3.28.1 Select varnish methods and material, using Paragraphs 300-4.5.8 through 300-4.5.8.2 of 2.3 for guidance.

3.28.1.1 Maintain the varnish in accordance with Paragraphs 300-4.5.8.3 through 300-4.5.8.3.3 of 2.3 and the varnish manufacturer's instructions.

3.28.1.2 Maintain a current revision of the varnish manufacturer's instructions on storage, maintenance, and use of the type of varnish to be applied.

3.28.1.3 Maintain a record of varnish temperature, viscosity and, for solventless varnish, gel time tests. Tests must show varnish is
within varnish manufacturer's recommendations and have been accomplished in
the intervals specified by the varnish manufacturer. The record must also
show the varnish is being stored as recommended by the varnish manufacturer.

3.29 Varnish windings in accordance with Paragraphs 300-4.5.8.2 of 2.3 and
the varnish manufacturer's instructions.

3.29.1 Do not immerse the leads.

3.29.2 Wipe surfaces that affect assembly, such as rabbet fits and
mounting flanges, with a cloth moistened with a solvent after draining and
before baking.

3.30 Remove excess varnish run-off from the component locations described
in 3.29.2, after baking. Apply a thin coat of air dry varnish to metal
surfaces exposed by the removal process in accordance with Paragraph
300-4.5.8.5 and 300-4.5.8.6 of 2.3.

3.31 Repeat tests described in 3.14, 3.15, 3.19, and 3.20.

3.32 Accomplish an AC HI POT test in accordance with Paragraphs 300-3.5.3
through 300-3.5.3.2.9 of 2.3. Record data.

3.33 Accomplish a 500-volt megger insulation resistance test, using
Paragraphs 300-3.2.2 through 300-3.2.3, 300-3.4.8, 300-3.4.11, and 300-5.3.7.1
of 2.3 for guidance. Record data.

3.34 Measure resistance value of each winding temperature detector, using
a low voltage ohmmeter. Record data.

3.35 Submit one legible copy, in hard copy or electronic media, of a
report listing results of the requirements of 3.31 through 3.34 to the
SUPERVISOR.

3.36 True the commutator or collector rings. Eccentricity shall not
exceed the requirements of 2.8. Resurface or machine each individual
collector ring to the same exact diameter to allow symmetrical brush holder to
ring clearance spacing. Ensure metal shavings are not permitted to
contaminate the rotor or stator assembly.

3.36.1 Each cut shall not exceed 0.010 inch. Finish thickness shall
not be less than design wear tolerance as shown in 2.2.

3.36.2 Undercut the mica between the commutator bars with the edge of
the mica not exceeding a depth of 5/64-inch below the bars.

3.36.3 Chamfer the bar edges and remove rough surfaces in accordance
with Paragraph 5-2-4 of 2.8.
3.36.4 Burnish the commutator with a very fine commercial burnishing stone conforming to A-A-58052. Polish collector rings to a mirror finish.

3.37 Accomplish the requirements of 009-15 of 2.1 for each rotating assembly.

3.38 Accomplish the following for the brush rigging:

3.38.1 Disassemble the brush rigging.

3.38.2 Remove foreign matter.

3.38.3 Replate existing cadmium-plated parts with zinc in accordance with ASTM A153 after removal of cadmium plating. Replate zinc-plated parts in accordance with ASTM A153.

3.38.4 Recondition threads of plated parts.

3.38.5 Assemble brush rigging.

3.39 Repair lightly scored areas of frame, end bells, and shaft by manual methods. Recondition threads and fit key to keyway. Step keys shall not be used.

3.39.1 Apply a thin coat of petrolatum to unpainted mating surfaces except for explosion-proof motors which shall have clean, dry mating surfaces.

3.40 Prepare and refinish equipment. Protect machine surfaces, windings, and nameplates from being painted or otherwise damaged.

3.40.1 Accomplish the requirements of 009-32 of 2.1 for each housing, fan, and interior and exterior of each end bell.

3.41 Accomplish the requirements of 009-32 of 2.1 for the foundations of the equipment removed in 3.2.

3.42 Accomplish the following on equipment having other than sleeve-type bearings unless otherwise specified in the invoking Work Item, using 2.7 for guidance.

3.42.1 Install new bearings, seals, fittings, lock washers, and locknuts conforming to 2.2, using 2.6 and Chapter 6 of 2.7 for guidance.

3.42.1.1 Install new Type 111, Class 8 (sealed) bearings with a C3 radial internal clearance in vaneaxial and tubeaxial fan motors originally furnished with Type 111 bearings. Install Type 120 bearings in vaneaxial and tubeaxial fan motors originally furnished with Type 120 bearings.
3.42.1.2 Install new label plates with the inscription "DO NOT LUBRICATE" on equipment with sealed bearings (Type 111, Class 8 or Type 120).

3.42.2 Lubricate bearings with grease conforming to DOD-G-24508 as required in Paragraphs 244-1.7.7.1 and 244-1.7.7.3 of 2.6.

3.43 Assemble the equipment disassembled in 3.5, using 2.2 through 2.7 for guidance.

3.43.1 Do not use materials containing silicone in the repair and assembly of equipment with commutator or collector rings.

3.43.2 Install new fasteners conforming to MIL-DTL-1222, Type I or II, Grade 5, zinc coated.

3.43.3 Fasteners requiring a permeability factor of 2.0 or less shall conform to Grade 304 CRES.

3.43.4 Install new gaskets on covers, inspection plates, and between the external connection box and the frame. Gaskets shall conform to MIL-PRF-1149 unless otherwise specified in 2.2.

3.43.5 Set brush holders not less than 1/16-inch or more than 1/8-inch from commutator or collector rings unless otherwise specified in 2.2.

3.43.6 Set brush holders in electrical neutral plane and stagger brushes for maximum coverage of the commutator, in accordance with Paragraph 300-4.7.7.1.10 of 2.3.

3.43.7 Center the brush holder over the collector rings.

3.43.7.1 Ensure the brushes do not extend beyond the edge of the collector rings.

3.43.8 Install new brushes in accordance with 2.2. Sand new brushes to fit curvature of the commutator or collector rings, using Paragraph 4-4-4.2 through 4-4-4.4 of 2.8 for guidance.

3.43.8.1 Brushes shall have a surface contact of 100 percent and shall not be chipped, cracked, or broken.

3.43.8.2 Remove sand, carbon, and other foreign matter resulting from fitting new brushes.

3.43.9 Adjust spring tension of brushes in accordance with 2.2.

3.43.10 Adjust air gap as specified in 2.2, plus or minus 10 percent.

3.43.11 Rotate shaft by hand a minimum of three revolutions. Rubbing or binding of the rotating assembly not allowed.
3.43.12 Install label plates conforming to MIL-DTL-15024 for those found to be missing or damaged.

(V)(G) "NO-LOAD SHOP TEST"

3.44 Accomplish a no-load shop test of the motor for a minimum of one-half hour.

3.44.1 Verify proper direction of rotation.

3.44.2 After one-half hour, record current and voltage in each phase, speed and bearing temperature rise measured on the equipment's exterior near each bearing.

3.44.3 Submit one legible copy, in hard copy or electronic media, of the recorded data to the SUPERVISOR.

3.45 Install equipment removed in 3.2.

3.45.1 Remove existing and install new foundation fasteners conforming to MIL-DTL-1222, Type I or II, Grade 5, zinc coated, and self-locking hexagon nuts conforming to NASM-25027, excluding body-fitted bolts and studs.

3.45.2 Remove existing galled or distorted body-fitted bolts and studs and install new fitted bolts and studs conforming to MIL-DTL-1222, Type I, Grade 5.

3.45.3 Fasteners, body-fitted bolts, and studs requiring a permeability factor of 2.0 or less shall conform to Grade 304 CRES.

3.45.4 Align equipment in accordance with 2.2. Measure and record facial and peripheral coupling data.

3.45.4.1 Install chocks, shims, shock mounts, and sound damping pads.

3.45.4.2 Accomplish the requirements of 009-58 of 2.1 for driver and pump shafts.

3.45.5 Connect electrical cables to equipment, using data retained in 3.1.1.1.

3.45.6 Bond and ground equipment in accordance with 2.9, using new ground straps.

3.45.7 Rotate shaft by hand a minimum of three revolutions. Rubbing or binding of rotating assembly not allowed.
3.45.8 Measure and record the air gap and bearing clearance (sleeve bearing equipment only), insulation resistance (at 500 volts DC), and thrust.

(V)(G) "OPERATIONAL TEST"

3.46 Accomplish an operational test of the equipment at full nameplate load or maximum system capacity for a minimum of one hour after temperatures stabilize, unless otherwise specified in the invoking Work Item.

3.46.1 Verify proper direction of rotation.

3.46.2 Verify/establish oxide film coating of the commutator/collector rings, using 2.8 for guidance.

3.46.3 Record current, voltage, frame and bearing temperature rise, and speed at 15 minute intervals.

3.46.3.1 Bearing temperatures shall not exceed 180 degrees Fahrenheit, unless otherwise specified in the invoking work item or equipment technical manual.

3.46.4 Measure and record hot insulation resistances of windings to ground immediately upon completion of test, using a 500-volt megger.

3.47 Submit one legible copy, in hard copy or electronic media, of a report listing data recorded in 3.45.4, 3.45.8, 3.46.3, and 3.46.4 to the SUPERVISOR.

4. NOTES:

4.1 Equipment technical manual and drawings will be listed in the invoking Work Item.

4.2 Shop test of generator will be addressed in the invoking Work Item.

4.3 The use of silicone is not allowed on any rotating electrical machinery with brushes.
1. SCOPE:

 1.1 Title: Magnetic Material; control

2. REFERENCES:

 2.1 None.

3. REQUIREMENTS:

 3.1 Provide and implement a procedure for maintaining a maximum permeability factor of 2.0 on board mine warfare ships and craft for material and equipment installed, repaired, or relocated during the accomplishment of work required by the Job Order. The procedure shall have been reviewed and accepted by the SUPERVISOR prior to the implementation.

 3.1.1 The procedure requires a one-time submittal/acceptance unless Standard Items and/or references change or are updated.

 3.1.2 Describe a receipt inspection system to verify Government, contractor, and subcontractor furnished material is in compliance with the permeability limits.

 3.1.3 Describe controls used in fabrication work to ensure compliance with the permeability limits after fabrication.

 3.1.4 Describe the method used to determine magnetic content of materials removed from or brought on board the ship or craft including monitoring station locations.

 3.1.5 Identify type of instrumentation, conforming to Method 3 of ASTM A342, used to measure the magnetic permeability of material.

 3.1.6 Describe the record and reporting system utilized to list material required, but determined to have exceeded the permeability factor 2.0 after fabrication and the maximum dimension of the part exceeds 2 inches or the maximum dimension of all parts having a similar function in a 30 foot section of the ship exceeds 60 inches. This list shall include material and equipment removed, repaired, installed, or relocated. The record and reporting system shall contain description, magnetic dimensions, approximate weight,
location installed on board ship or craft, and a record verifying that the item is contained in the current "Location of Magnetic Material Book" or a record of waiver granted for installation.

3.2 Submit a request for deviation to the SUPERVISOR for items not having a ship specific waiver and not contained in the current "Location of Magnetic Material Book" prior to installation of any new or existing material and/or equipment required but determined to exceed the permeability limit described in 3.1.6.

3.2.1 Submit one legible copy, in hard copy or electronic media, of a report furnishing documentation provided by supplier, as required by 3.1.6.

4. NOTES:

4.1 The magnetic field of mine warfare ships and craft consists of the superposition of the magnetic field from 4 basic sources: ferrous field, eddy current field, ship service stray field, and minesweep generator stray field. The stray field sources are the electric currents in cables and wiring associated with the operation of the equipment of the ship or craft. The ferrous field and eddy current field sources are as follows:

4.1.1 Ferrous Field Source: The ferrous field sources are the items on or part of the ship or craft which use a material in their construction that exhibits a relative magnetic permeability different than 1.0, the relative magnetic permeability of air. Each ferrous field source acts like a bar magnet whose magnetic field depends upon the material's relative magnetic permeability, volume (not mass), and shape of the earth's magnetic field. At a point or location external to a ferrous field source, the magnetic field of this source is essentially the same whether the source is hollow (such as a block or pedestal). A material whose relative magnetic permeability is 2.0 or less is arbitrarily defined to be nonmagnetic when used in conjunction with mine warfare ships and craft; otherwise, the material is said to be magnetic. Whether the material of an item is classified magnetic or nonmagnetic, according to the above arbitrary definition, a change in relative magnetic permeability of the material will, in general, result in a change in the magnetic field associated with this item.

4.1.2 Eddy Current Field Source: The eddy current field sources are the items on or part of the ship or craft which use a material in their construction that exhibits an electrical conductivity. A material whose electrical conductivity is less than 10.0 percent of the electrical conductivity of copper (1.7241 x 10-6 ohm-cm at 20 degrees Centigrade) is arbitrarily defined to be nonconductive when used in conjunction with mine warfare ships and craft; otherwise, the material is said to be electrically conductive. Each eddy current field source acts like a generator when it oscillates in the earth's magnetic field due to the rolling and pitching of the ship or craft. The current in this source, resulting from the generator action, has associated with it a magnetic field - an eddy current field. The magnitude of this field is dependent upon the conductivity of the material,
the size of the electrical path in the material, the cross-sectional area of
the electrical path, and the orientation of the source with respect to the
earth's magnetic field due to the rolling and pitching of the ship or craft.

4.1.3 If an item is both highly magnetic and electrically
conductive, such as mild steel or steel, the ferrous field will mask out the
eddy current field. If an electrically conductive item is located inside a
highly magnetic enclosure, such as mild steel or steel, the enclosure will
mask the magnetic effects of its contents and will appear as if it were a
solid magnetic block.

4.2 The SUPERVISOR will provide written direction for accomplishment of
one of the following prior to reinstallation of temporarily removed existing
or new material/equipment as a result of the deviation request.

4.2.1 Authorization for deviation request.

4.2.2 Identification and authorization of an acceptable Contractor
Furnished Material (CFM) substitute material or equipment.

4.2.3 Receipt of an acceptable Government Furnished Material (GFM)
substitute material or equipment.

4.2.4 Technical direction and information for manufacturing of
acceptable material or equipment.

4.2.5 Other direction as determined acceptable by the ship class
planning yard or higher authority.
1. **SCOPE:**

 1.1 Title: Provisioning Technical Documentation (PTD); provide

2. **REFERENCES:**

 2.1 9090-1500, Policies and Procedures Manual, Provisioning, Allowance, and Pitting Out Support (PAFOS), Chapter 4, Provisioning

 2.2 Interactive Computer Aided Provisioning System (ICAPS)

3. **REQUIREMENTS:**

 3.1 Provide Provisioning Technical Documentation (PTD) in accordance with 2.1, for all new and/or modified Contractor Furnished (CF), Allowance Parts List (APL) worthy, Hull, Mechanical, and Electrical (HM&E) and/or Electronics components. PTD shall include a Provisioning Parts List (PPL) and Engineering Data for Provisioning (EDFP).

 3.1.1 PPL shall identify each part subject to failure/replacement, or required for maintenance of the component, and shall include the following MIL-PRF-49506 Data Product Deliverables (DPDs):

 3.1.1.1 0870 Provisioning Contract Control Number (PCCN)

 3.1.1.2 0890 Provisioning List Item Sequence Number (PLISN)

 3.1.1.3 0370 Indenture Code for non-electronic components

 3.1.1.4 1030 Reference Designation for electronic components

 3.1.1.5 0140 Commercial and Government Entity (CAGE) Code

 3.1.1.6 1050 Reference Number

 3.1.1.7 0480 Item Name

 3.1.1.8 0930 Quantity Per Assembly (QPA)

 3.1.1.9 0950 Quantity Per End Item (QPEI)
3.1.1.10 1470 Unit of Issue (UI)

3.1.1.11 1500 Unit of Issue Price (UI Price)

3.1.1.12 S008 Component Identification Data (CID): Enter all available data

3.1.2 Ship Level Provisioning Parts List (SLPPL) shall include items determined not to be APL worthy in accordance with Appendix G of 2.1, and shall include the MIL-PRF-49506 DPDs identified in 3.1.1.

3.1.3 Statements of Prior Submission (SPS) shall be submitted in lieu of PTD, whenever PTD which meets the requirements of the contract has previously been furnished to the Government. An SPS certifies that all replacement parts are identical to those provided by the previously furnished PTD. The SPS shall apply to the end item or to any component thereof and shall include:

3.1.3.1 End item part number

3.1.3.2 Manufacturer's CAGE

3.1.3.3 Manufacturer's drawing number and revision

3.1.3.4 RIC (APL number)

3.1.3.5 Certification statement certifying that all replacement parts are identical to those identified by the APL or previously furnished PTD

3.1.4 If there are any changes to replacement parts, a PTD package (PPL and EDFP) that identifies the changes shall be submitted in lieu of an SPS.

3.2 An EDFP shall be provided with each PPL and SLPPL submittal. **EDFP shall be marked with Distribution Statements in accordance with DoD Directive 5230.24.**

3.3 Provide a Contractor Furnished Material (CFM) report and a copy of the Purchase Order and receipt document for each procurement of equipment or components for which PTD or SPS is required. The report shall include Work Item Number, Alteration Number, Drawing and Piece Number, Description, Quantity, Purchase Order Number, and required delivery date.

3.3.1 Submit one legible copy, in hard copy or electronic media, of the CFM report to the SUPERVISOR within 10 days after start of availability and provide subsequent monthly updates to the SUPERVISOR.
3.4 Submit data for PPLs and SLPPLs via 2.2, or in accordance with the ICAPS compatible format identified in Appendix K of 2.1. Submit SPSs in electronic format (spreadsheet or document) via 3.5-inch diskettes, compact disks, or electronic mail within 20 days after release of the contractor's component or equipment purchase order.

3.4.1 Submit PTD via the SUPERVISOR to:

NSWCCD-SSES
Attn: Code 9451
5001 S. Broad St.
Philadelphia, PA 19112-5083
E-mail: Charles.R.Simmons@navy.mil

4. NOTES:

4.1 EDFP is required for all systems or equipment that are acquired for Navy use and for which PTD is being acquired. EDFP is the data acquired to support Line Material Item supportability analysis. It is the technical data that provides definitive identification of dimensional, material, mechanical, electrical, or other characteristics adequate for provisioning of the support items of the end article(s) on contract. EDFP consists of but is not limited to data such as specifications, standards, drawings, photographs, sketches and descriptions, and the necessary assembly and general arrangement drawings, schematics, drawings, schematic diagrams, wiring and cable diagrams, etc. This data is necessary for the assignment of Source, Maintenance, and Recoverability (SMR) codes to assignment of Item Management Codes, prevention of proliferation of identical items in the Government inventory, maintenance decisions, and item identification necessary in the assignment of a National Stock Number (NSN).

4.2 2.1 is available at:

4.3 2.2 is available for download from:

https://icaps.navsea.navy.mil
1. **SCOPE:**

 1.1 Title: Government Property; control

2. **REFERENCES:**

 2.1 Federal Acquisition Regulation (FAR) Part 45, Government Property
 2.2 Defense FAR Supplement (DFARS) Part 245, Government Property

3. **REQUIREMENTS:**

 3.1 Provide and maintain a property control system for government property in accordance with 2.1 and 2.2. The property control system shall include the following functional elements, modified by the additional requirements in the following paragraphs:

 3.1.1 Property Management
 3.1.2 Acquisition
 3.1.3 Receiving
 3.1.4 Identification
 3.1.5 Records
 3.1.6 Movement
 3.1.7 Storage
 3.1.8 Physical Inventories
 3.1.9 Reports
 3.1.10 Consumption
 3.1.11 Utilization
 3.1.12 Maintenance
3.1.13 Subcontractor Control

3.1.14 Disposition

3.1.15 Contract Property Close-out

3.2 Provide for receipt of Government Furnished Property (GFP) as follows:

3.2.1 Submit the names and signatures of persons authorized to receive and account for GFP to the SUPERVISOR.

3.2.2 Inspect GFP immediately upon receipt for possible shipping damage.

3.2.2.1 Note any damage on carrier's copy of the Government Bill of Lading and notify the SUPERVISOR.

3.2.2.2 Forward one signed copy of the Shipping Document (DD Form 1348-1) and one copy of the Government Bill of Lading to the SUPERVISOR.

3.2.3 Inspect GFP within 5 working days of receipt to verify conformance with description and requirements.

3.2.4 Submit one legible copy, in hard copy or electronic media, of a report within 2 working days after inspection to the SUPERVISOR listing product quality deficiencies, including the following:

3.2.4.1 Date discovered

3.2.4.2 National Stock Number (if applicable)

3.2.4.3 Nomenclature

3.2.4.4 Manufacturer

3.2.4.5 Manufacturer's Part Number/Identification Number

3.2.4.6 Contract Number

3.2.4.7 Item condition (new or overhauled/repaired)

3.2.4.8 A specific description of the defect(s), listing drawing or technical manual dimensions, required and actual

3.2.4.9 If material is defective due to mishandling, rust, or moisture
3.3 Maintain records for GFP, containing the following information:

3.3.1 Ship's name and hull number
3.3.2 Job Order and Work Item numbers
3.3.3 Date received
3.3.4 Shipping document or Bill of Lading number
3.3.5 Date issued
3.3.6 Unit price and quantity

3.4 Dispose of government property as follows:

3.4.1 Return material purchased from the Government under the Cash Sale (Bailment) procedure and not incorporated into the end product being procured under the contract, or consumed directly in the performance of such contract, to the Government at the contractor's expense in the same condition as received. Submit one legible copy, in hard copy or electronic media, of turn-in document (DD 1348-1) showing material returned for credit, to the SUPERVISOR.

3.4.2 Process material permanently removed from the ship for replacement, substitution, or elimination, whether serviceable or not, including equipment units, parts, and items determined by the SUPERVISOR to be of value to the Government as follows. A written certification shall accompany the inventory schedule submitted to the SUPERVISOR for equipment that has been purged of fluorocarbon or halon materials.

3.4.2.1 Inventory, identify, and tag or otherwise mark such property. Identification shall include ship's name and hull number, Job Order and Work Item numbers, part number/stock number, and item description.

3.4.2.2 Assemble equipment prior to delivery to the Government except as specifically directed in the Work Item.

3.4.2.3 Remove valves or drill holes in empty gas cylinders prior to delivery to the Government.

3.4.2.4 Remove the chemicals from fire fighting bottles, remove valves/stems, triple rinse the bottle, and stencil the bottle "Triple Rinsed".

3.4.2.5 Clean each item to be disposed of free of grease and/or substances considered to be hazardous in nature prior to delivery to the Government.
3.4.2.6 Submit one legible copy, in hard copy or electronic media, of the inventory to the SUPERVISOR. The inventory shall be signed by the contractor's representative and submitted when directed by the SUPERVISOR, or in any case, immediately following the completion of each Job Order.

3.5 Submit Final Termination of Inventory Report within 14 days after completion of availability.

4. NOTES:

4.1 None.
1. **SCOPE:**

 1.1 Title: Logistics and Technical Data; provide

2. **REFERENCES:**

 2.1 None.

3. **REQUIREMENTS:**

 3.1 Complete Attachment A for all Government Furnished Material (GFM) and Contractor Furnished Material (CFM) equipment or components installed or permanently removed. This applies to all configuration changes, including alterations and repairs.

 3.1.1 Provide individual Attachment A forms for each piece of equipment or component.

 3.1.2 Submit data required by Attachment A, in electronic format (spreadsheet or word processing document), via 3.5-inch diskettes, compact disks, or electronic mail, to the SUPERVISOR no later than 5 working days after installation or removal of GFM and CFM equipment or components.

 3.2 Submit all copies of technical manuals, Maintenance Index Pages (MIP), and Maintenance Requirements Cards (MRC) received with GFM and CFM equipment to the SUPERVISOR no later than 5 working days after receipt of equipment.

 3.3 Data received in 3.2 required for installation and testing will be provided to the contractor.

4. **NOTES:**

 4.1 The technical point of contact for the requirements contained in this NAVSEA Standard Item is the local NSA logistics representative.
ATTACHMENT A
EQUIPMENT/COMPONENT LOGISTICS AND TECHNICAL DATA
NAVSEA STANDARD ITEM 009-21

DATE: ________________

ALL DATA FIELDS ARE MANDATORY FILL. WRITE "NONE" WHERE NOT APPLICABLE.

SHIP NAME: __ HULL: ____________

SPEC PKG. NO.: ______________ AUTHORITY (WORK ITEM): ________________

ACTION: __________ RIC: ___

SERIAL NUMBER: ___

VALVE MARK/ELECTRICAL SYMBOL NUMBER: ______________________________

QUANTITY: __________________ LOCATION: _______________________________

RIC NOMENCLATURE: ___

TM(S) RECEIVED: ___

PMS MIP/MRC'S RECEIVED: __

OBRP(S) RECEIVED: __

INSTALLATION DRAWING NO: __

RIC CHARACTERISTICS:

1. MFR - ________________________________

2. MFR DWG - ________________________________

3. MFR ID - ________________________________

4. NSN - ________________________________

CIRCLE ONE: GFM or CFM

COMMENTS: __

REPORTING CONTRACTOR: ___

PRINTED NAME: __

SIGNATURE: ______________________ PHONE: ____________________________
1. **SCOPE:**

 1.1 Title: Shipboard Electric Cable; test

2. **REFERENCES:**

 2.1 None.

3. **REQUIREMENTS:**

 3.1 Accomplish an insulation resistance test of each electric cable conductor using a 500 volt, direct current megger.

 3.1.1 Disconnect low voltage equipment associated with circuits to be tested to prevent damage during tests.

 3.1.2 Minimum acceptable readings of each cable conductor to ground and between conductors:

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Insulation Resistance (Megohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting Circuit</td>
<td>0.5</td>
</tr>
<tr>
<td>Power Circuit</td>
<td>1.0</td>
</tr>
<tr>
<td>Degaussing Circuit</td>
<td>0.1</td>
</tr>
<tr>
<td>Interconnecting Control Circuit</td>
<td>1.0</td>
</tr>
<tr>
<td>Interior Communication Circuit</td>
<td>0.2</td>
</tr>
<tr>
<td>Sound Powered Telephone Circuit (with telephone disconnected)</td>
<td>0.05</td>
</tr>
</tbody>
</table>

 3.1.3 Minimum acceptable reading of coaxial cable:

<table>
<thead>
<tr>
<th>Length (Feet)</th>
<th>Insulation Resistance (Megohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 (or less)</td>
<td>40,000</td>
</tr>
<tr>
<td>200</td>
<td>20,000</td>
</tr>
<tr>
<td>500</td>
<td>8,000</td>
</tr>
<tr>
<td>1,000</td>
<td>4,000</td>
</tr>
</tbody>
</table>

 3.1.4 Discharge coaxial cable to ground following insulation resistance test.
3.2 Test each cable conductor for continuity and complete circuit. Ensure terminal connections are tight.

3.3 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.1 and 3.2, including circuit number, lead numbers, and readings obtained, to the SUPERVISOR within 48 hours of completion of tests.

3.3.1 Identify defective cables by circuit number, lead numbers, type, size, approximate length, and readings obtained.

4. **NOTES:**

4.1 None.
1. **SCOPE:**

1.1 Title: Interferences; remove and install

2. **REFERENCES:**

2.1 Standard Items

2.2 S9086-RK-STM-010/CH-505, Piping Systems

2.3 S9086-VG-STM-010/CH-634, Deck Coverings

3. **REQUIREMENTS:**

3.1 Do not remove components from the following systems as interferences, except when the scope of work requires repairs to components of these systems or when specified in the Work Item:

3.1.1 Main steam and catapult systems

3.1.2 Gaseous oxygen piping systems which operate at pressures higher than 100 PSIG, liquid oxygen piping from oxygen plant to the liquid oxygen charging carts, and the overboard drain piping from the liquid oxygen storage plant and spillage drain

3.1.3 Degaussing systems

3.1.4 Electric cables which cannot be removed without cutting

3.1.5 Hydraulic systems

3.1.6 High pressure air systems. High pressure air systems are those systems designed for pressures of 1000 PSIG or greater.

3.1.7 Life support systems

3.1.8 Cryogenic systems

3.1.9 Spring hangers
3.1.10 Ship's strength members involving structural integrity

3.1.11 Halon systems

3.1.12 LEVEL I systems

3.1.13 Sonar dome pressurization system

3.1.14 Passive countermeasure materials

3.1.15 Ballistic plating - DDG-51 Class only

3.1.16 Waveguides

3.2 Submit one legible copy, in hard copy or electronic media, of a report of components of the systems listed in 3.1 that must be removed as interferences and the work is not required by the Work Item, to the SUPERVISOR. The report shall list the following information:

3.2.1 Identification of the item to be removed or disturbed

3.2.2 Necessity for the action

3.2.3 Protective measures which will be taken to protect equipment from damage or contamination

3.2.4 Alignment procedures and details for tests which will be accomplished to verify acceptability after reinstallation

3.3 The SUPERVISOR will review and respond to the report required by 3.2 and if removal of the components is approved, an appropriate change to the Work Item will be prepared.

3.4 Visually examine interferences prior to and during removal for previous damage and deterioration.

3.4.1 Submit one legible copy, in hard copy or electronic media, of a report listing previously damaged and deteriorated interferences to the SUPERVISOR within five working days after removal.

3.5 Material containing asbestos which requires removal as an interference shall not be reinstalled.

3.5.1 Submit one legible copy, in hard copy or electronic media, of a report listing location and system identification of asbestos removed and non-asbestos installed which has not been identified elsewhere in the Job Order, to the SUPERVISOR.

3.6 Remove interferences.
3.6.1 Protect interferences from damage or loss and prevent contamination of removed components and remaining parts of the system.

3.6.2 Install identification tags on interferences to indicate the ship's name, hull number, location, and work item number prior to removal from system or shipboard location. Tags must endure repair process.

3.7 Reinstall interferences.

3.7.1 Install interferences which were neither reported as previously damaged or deteriorated nor rendered unsuitable for reinstallation during removal.

3.7.2 Install interferences reported in 3.4.1 in the as-found condition or after authorized repairs have been accomplished.

3.7.3 Install new material in place of material rendered unsuitable for reinstallation during removal or storage.

3.7.3.1 New material shall be equal in composition, strength, design, type, and size as existed prior to removal of the interferences.

3.7.4 Accomplish the requirements of 009-12 of 2.1.

3.7.5 Accomplish the requirements of 009-71 of 2.1 for non-mechanical joints.

3.7.5.1 Test pressure and test medium shall be in accordance with 2.2.

3.7.6 Accomplish the requirements of 009-37 of 2.1.

3.7.7 Install new insulation and lagging in place of that removed as interference.

3.7.7.1 Install new reusable covers except when reinstallation of existing reusable covers is listed in the invoking Work Item.

3.7.7.2 Accomplish the requirements of 009-11 of 2.1.

3.7.8 Install new silicone coated aluminized cloth spray shields on mechanical joints and components in accordance with ASTM F1138 in place of those removed as interference.

3.7.9 Install new fasteners and gaskets in accordance with Section 5 of 2.2, when reinstalling interferences.

3.7.10 Accomplish the requirements of 009-32 of 2.1 for new and disturbed surfaces.
3.7.11 Restore compartment, equipment, and systems labeling.

3.7.12 Install new deck covering in place of that removed or damaged as interference in accordance with 2.3.

3.7.12.1 New material shall be equal to existing in color and composition.

(V)(G) "STRENGTH, TIGHTNESS, AND OPERATIONAL TESTS"

3.8 Align and accomplish appropriate strength, tightness, system cleanliness, and operational tests and ensure that the reinstalled interferences perform their normal functions within the system.

3.8.1 Tests shall be listed in the contractor's inspection system.

4. **NOTES:**

4.1 An interference is any part of a ship, whether installed or portable, that must be moved or disturbed in the accomplishment of work specified in the Job Order.
1. **SCOPE:**

1.1 Title: Isolation, Blanking, and Tagging Requirements; accomplish

2. **REFERENCES:**

2.1 S0400-AD-URM-010/TUM, Tag-Out Users Manual

2.2 845-4612172, Hydrostatic Test Blanks

2.3 MIL-STD-777, Schedule of Piping, Valves, Fittings, and Associated Piping Components for Naval Surface Ships

2.4 802-5959353, MIL-STD-777 Modified for DDG-51 Class, Schedule of Piping, Valves, Fittings, and Associated Piping Components

3. **REQUIREMENTS:**

3.1 Notify the Commanding Officer's designated representative in writing of equipment, systems, circuits, components, piping, and valves that require isolation to accomplish work in the Work Item before any work is started on each individual Work Item so that tag-outs can be accomplished as required by ship's instructions, accomplishing the requirements of 2.1.

3.2 Accomplish the requirements of Appendix C of 2.1 for unmanned craft and barges.

3.2.1 Position equipment to achieve required isolation, deenergization, and depressurization, and install tags when tag-out of equipment, systems, circuits, components, piping, or valves is required.

3.3 Verify use of sufficient tags to prevent operation of equipment, systems, circuits, components, piping, or valves from all stations that could exercise control.

3.3.1 Ensure the isolation, deenergization, and depressurization of mechanical, electrical, electronics, and pressure systems has been accomplished.
3.3.2 A contractor's designated representative shall legibly sign on a ship's tag-out record sheet and tags after installation, indicating repair activity satisfaction with the completeness, accuracy, and adequacy of the tag-out and alerting personnel removing tags that contractor concurrence is required.

3.3.3 Train and qualify contractor's designated representative in accordance with 2.1.

3.3.3.1 Submit one legible copy of the program to be utilized to train and qualify contractor's designated representatives in accordance with 2.1 to the SUPERVISOR.

3.4 Post warning signs and barriers and install temporary positive means to prevent closure or movement of components that create a safety hazard at hull and deck openings.

3.5 Install and maintain blanks and plugs, painted blaze orange, on piping, valves, equipment, ventilation systems, on components being stored, installed, or removed, on openings aboard ship resulting from the removals, immediately upon each removal, and on openings requiring isolation to accomplish work in the Work Items including tanks. The use of cloth, polyvinyl sheet, paper, tape, and rubber sheeting as blanks is prohibited on non-pressurized systems. DC plugs, wood, or wood products are prohibited as blanks on pressurized systems, but may be used on non-pressurized systems.

3.5.1 Blanks installed on equipment, valves, and piping openings in systems which are subject to pressure shall be in accordance with 2.2 to withstand maximum system pressure and secured in place with gaskets and fasteners in accordance with 2.3 and 2.4.

3.5.1.1 Pressure blanks shall have a positive means of attachment for affixing tags.

3.5.2 Blanks/plugs installed on openings in equipment, valves, and piping systems not subject to pressure shall preclude entry of foreign material and protect flanges and threaded areas.

3.5.3 Remove blanks/plugs installed in 3.4 immediately prior to installing piping, valves, or equipment and when work requiring isolation is complete.

3.5.4 Provide and maintain a written record of temporary blanks/plugs used, documented on a signed and dated check-off sheet verifying installation and removal. Include system/equipment name or tank number and location (frame, port, starboard, below or above water line).

3.5.4.1 Maintain the list for the duration of the availability.
3.5.4.2 Submit one legible copy, in hard copy or electronic media, of the temporary blank/plug record and check-off sheet to the SUPERVISOR. For tanks, this submittal must take place prior to final closing and shall be at the job site.

3.5.5 Piping, ventilation, and equipment components designated as scrap prior to removal do not need to be blanked to maintain cleanliness. However, precautions shall be taken to preclude spillage of system contents.

3.6 Install identification tags on each removed piping section, valve, ventilation system, and equipment indicating the location, system, ship's name and hull number, and Work Item number prior to removal from system. Tags must endure repair process.

3.7 Tape and insulate cable ends disconnected from equipment to prevent shorting out or grounding in the event a system is accidentally energized.

3.7.1 Tag each cable indicating circuit number and location of panel and fuse box-energizing cable.

3.7.2 Install dust covers on equipment connectors following disconnection of cable plugs.

3.8 Do not disturb, modify, remove, energize, or operate any switch, fitting, valve, or other equipment affixed with a ship's isolation or DANGER tag.

3.8.1 Do not remove or relocate ship's isolation or DANGER tags.

3.8.2 Verify removal and clearance of all isolation or DANGER tags in accordance with ship's instruction before the equipment is operationally tested or operated.

3.9 Notify the Commanding Officer's designated representative immediately when the contractor's work is complete and the system, piping, or circuit is ready for activation to accomplish removal of tags.

3.9.1 The contractor's representative shall sign the ship's tag-out log sheet to show concurrence in tag removal and clearance before removal.

3.9.2 Ship's Force personnel will remove tags after contractor's concurrence and clearance has been recorded and removal is authorized by the Commanding Officer's designated representative.

4. NOTES:

4.1 When a component is tagged more than once, a DANGER tag takes precedence over other tags.
4.2 The term "Shipyard(s)" as used in 2.1 means a public Naval Shipyard or a NAVSEA 04XQ approved new construction shipyard.

4.3 The term "RA" as referred to in 2.1 is the contractor awarded the Job Order.

4.4 Ship's Force personnel will position equipment to achieve required isolation, deenergization, and depressurization, and install tags when tag-out of equipment, systems, circuits, components, piping, or valves is required.

4.5 Where use of the Shift Operations Management System (SOMS) is required by ship's instruction, a Local Standard Item shall be invoked in the Job Order.

4.6 2.1 (TUM) is available on-line at:

1. **SCOPE:**

 1.1 Title: Structural Boundary Test; accomplish

2. **REFERENCES:**

 2.1 MIL-STD-777, Schedule of Piping, Valves, Fittings, and Associated Piping Components

 2.2 802-5959353, MIL-STD-777 Modified for DDG-51 Class, Schedule of Piping, Valves, Fittings, and Associated Piping Components

3. **REQUIREMENTS:**

 3.1 Accomplish a preliminary air test of spaces in accordance with the following:

 3.1.1 Install expandable plugs or blanks painted blaze orange in associated tank piping at the first valve, flange, mechanical joint, or piping terminating in the tank.

 3.1.1.1 Submit one legible copy, in hard copy or electronic media, of a report listing the location of each expandable plug and blank to the SUPERVISOR.

 3.1.2 Install 2 independent pressure gages.

 3.1.2.1 Gage range shall be such that the test pressure is in the middle third of the scale.

 3.1.3 Install 2 relief valves set at 15 percent above test pressure.

 3.1.4 Install one vent valve.

 3.1.5 The air source shall not exceed 25 PSIG and shall have a supply capability less than the exhaust capability of either relief valve.

 3.1.6 Apply a soap solution to the opposite side of the structure and inspect for leakage.
3.1.7 Submit one legible copy, in hard copy or electronic media, of a report listing results of the preliminary air test, to the SUPERVISOR.

3.1.8 Remove each expandable plug or blank upon completion of repairs and testing, and install new gaskets and fasteners in accordance with applicable Categories and Groups of 2.1 or 2.2.

3.1.8.1 Submit one legible copy, in hard copy or electronic media, of a report listing the location of each expandable plug and blank removed to the SUPERVISOR.

(V)(G) "UNOBSTRUCTED FLOW"

3.1.9 Accomplish unobstructed airflow test of air escape and overflow piping.

(I)(G) or (V)(G) "AIR TEST" (See 4.1)

3.2 Accomplish an air test of spaces in accordance with the following:

3.2.1 Install expandable plugs or blanks painted blaze orange in associated tank piping, including overflow and air escape piping to the overboard discharge or connection to a common tank overflow or air escape header, at the first valve, flange, or mechanical joint.

3.2.1.1 Submit one legible copy, in hard copy or electronic media, of a report listing the location of each expandable plug and blank to the SUPERVISOR.

3.2.2 Install 2 independent pressure gages.

3.2.2.1 Gage range shall be such that the test pressure is in the middle third of the scale.

3.2.3 Install 2 relief valves set at 15 percent above test pressure.

3.2.4 Install one vent valve.

3.2.5 The air source shall not exceed 25 PSIG and shall have a supply capability less than the exhaust capability of either relief valve.

3.2.6 Apply a soap solution to the opposite side of the structure, associated tank piping, overflow and air escape piping, and inspect for leaks.

3.2.7 Remove each expandable plug or blank upon completion of repairs and testing, and install new gaskets and fasteners in accordance with applicable Categories and Groups of 2.1 or 2.2.
3.2.7.1 Submit one legible copy, in hard copy or electronic media, of a report listing the location of each expandable plug and blank removed to the SUPERVISOR.

(V)(G) "UNOBSTRUCTED FLOW"

3.2.8 Accomplish unobstructed airflow test of air escape and overflow piping.

(I)(G) or (V)(G) "AIR HOSE TEST" (See 4.1)

3.3 Accomplish a local air hose test in accordance with the following:

3.3.1 Air hose nozzle shall be as close as possible and pressure directed at the structure under test in a manner most likely to disclose leaks.

3.3.1.1 The minimum nozzle diameter shall be 3/8 inch and the nozzle pressure shall be 90 PSIG.

3.3.2 Apply a soap solution to the opposite side of the structure and inspect for leakage.

(I)(G) or (V)(G) "WATER HOSE TEST" (See 4.1)

3.4 Accomplish a water hose test in accordance with the following:

3.4.1 Use a one and one-half inch hose with a minimum nozzle diameter of one-half inch at 50 PSIG nozzle pressure at a maximum distance of 10 feet from the surface being tested.

3.4.2 The stream of water shall be directed against the structure in a manner most likely to disclose leaks. The opposite side of the structure shall be inspected to detect and locate leaks.

(I)(G) or (V)(G) "VACUUM BOX TEST" (See 4.1)

3.5 Accomplish a local vacuum box test in accordance with the following:

3.5.1 Install a vacuum box with a clear cover over the entire joint or fitting being tested.

3.5.1.1 Install the vacuum box so that the pressure differential is in the direction of an air test.

3.5.2 Apply a soap solution to the structure being tested.

3.5.3 Draw a vacuum of at least 10.2 inches of mercury and inspect for leaks.
4. **NOTES:**

4.1 The paragraph referencing this note is considered (I)(G) if the test is for work that requires record retention by the fabrication document. If the test is for work that does not require record retention, then the paragraph is considered to be (V)(G).

4.2 Associated piping is defined as, "An assembly of pipe, tubing, valves, fittings, and related components forming a whole or a part of a system which starts or terminates in subject area, thus being common to and associated with same."
1. SCOPE:

1.1 Title: Material Identification and Control (MIC) for Level I Systems; accomplish

2. REFERENCES:

2.1 0948-LP-045-7010, Material Control Standard (Non-Nuclear
2.2 0948-LP-045-7020, Material Control Standard (Material Designators) |
2.3 S9086-GY-STM-010/CH-221, Boilers

3. REQUIREMENTS:

3.1 Provide and maintain a Material Identification and Control (MIC) System in accordance with 2.1 and 2.2 for both Government furnished and contractor furnished materials utilized in the installation, alteration, and repair of systems or portions of systems designated as MIC LEVEL I by Work Items in the Job Order. The system shall be described in a written procedure and shall be available for review and acceptance by the SUPERVISOR prior to the initiation of productive work. It shall specifically address, as a minimum, the following:

3.1.1 Assignments of responsibility for identification and control of LEVEL I material including working level instructions for:

3.1.1.1 Procurement of LEVEL I material.

3.1.1.2 Receipt inspection and verification of LEVEL I material including marking requirements.

3.1.1.3 Storage of LEVEL I material including segregation from non-LEVEL I materials.

3.1.1.4 Handling and issue of LEVEL I material.

3.1.1.5 Control of LEVEL I material during installation.

3.1.1.6 Maintaining the integrity and continuity of marking LEVEL I material from receipt inspection through installation.
3.2 Submit one legible copy, in hard copy or electronic media, of the LEVEL I certification, inspection, and installation records to the SUPERVISOR at the completion of work and/or a minimum of 24 hours prior to system testing/operation.

4. NOTES:

4.1 LEVEL I designation applies only to materials specified in 2.1 and Figure 221-2-12 of 2.3.

4.2 Certification records in 3.2 are those records which provide Objective Quality Evidence (OQE) as defined in 2.1.
1. **SCOPE:**

 1.1 Title: Metal-Sprayed Coating System for Corrosion Protection; accomplish

2. **REFERENCES:**

 2.1 Standard Items

 2.2 MIL-STD-2138, Metal-Sprayed Coatings for Corrosion Protection Aboard Naval Ships (Metric)

 2.3 0948-LP-045-7010, Material Control Standard (Non-Nuclear)

3. **REQUIREMENTS:**

 3.1 Accomplish the requirements of 2.2 for metal-sprayed aluminum coating applications.

 3.2 Apply manufacturer's proprietary coating system to the flame-sprayed components in accordance with manufacturer's instructions, in lieu of the epoxy system MIL-DTL-24441.

 3.3 Maintain segregation and record identification markings of Material Identification and Control (MIC) LEVEL I material. Restore LEVEL I markings after coating process in accordance with 2.3.

 3.3.1 Accomplish the requirements of 009-27 of 2.1.

4. **NOTES:**

 4.1 None.
1. **SCOPE:**

1.1 Title: Asbestos-Free Pipe Hanger Liner Material; install

2. **REFERENCES:**

2.1 None.

3. **REQUIREMENTS:**

3.1 Install new fibrous glass pipe hanger liners in lieu of liners containing asbestos material. This requirement applies only where hangers and pipes are removed or new hangers are being installed.

3.2 New liner material shall be in accordance with MIL-C-20079, Type II, Class 4, for temperatures over 180 degrees Fahrenheit up to 650 degrees Fahrenheit.

3.3 For services above 650 degrees Fahrenheit where minimum contact area type hanger designs (similar to that shown in MSS SP-58) are required, no liner material is used.

4. **NOTES:**

4.1 None.
1. **SCOPE:**
 1.1 Title: Boiler Sample Tubes; inspect

2. **REFERENCES:**
 2.1 S9221-C1-GTP-010, Repair and Overhaul Main Propulsion Boilers

3. **REQUIREMENTS:**
 3.1 Remove tubes using tube sampling methods in accordance with Paragraph 3.4 of 2.1.

 3.1.1 Cut generating tubes removed as samples 8 to 10 inches above the water drum.

 3.2 Identify and metal-tag tubes, tube stubs, and tube sections removed, with ship's name and hull number, Work Item number, boiler number, tube designation, bottom and top of sections, segment sequence, upstream side (furnace face), and downstream side of gas flow.

 3.2.1 Cut tube removed into 3-foot minimum segments and split longitudinally by mechanical method with tube dry (no oil) so that upstream side (furnace face) half is split from side downstream of gas flow half.

 3.2.1.1 There shall be 2 distinct, individual halves to each segment, tube stub, and bend.

 3.2.1.2 Each half (waterside/steamside and fireside) shall remain intact.

 3.2.2 Identify and metal-tag each segment and half in accordance with 3.2 so that full length of tube may be reconstructed and placement oriented.

 3.3 Inspect tube segments for the following:

 3.3.1 Steamsides/watersides:

 3.3.1.1 Oil deposits
3.3.1.2 Loose sludge
3.3.1.3 Hard baked-on sludge
3.3.1.4 Scale
3.3.1.5 Scabs/tubercles
3.3.1.6 Pitting
3.3.1.7 High temperature oxides
3.3.1.8 Waterside grooves
3.3.1.9 Corrosion fatigue fissures
3.3.1.10 General waterside thinning
3.3.1.11 Waterside burning
3.3.1.12 Waterside abrasion
3.3.1.13 Die marks
3.3.1.14 Steam tracking
3.3.1.15 Stress corrosion cracking (caustic embrittlement)

3.3.2 Firesides:
3.3.2.1 General fireside thinning
3.3.2.2 Fireside burning
3.3.2.3 Tube enlargement
3.3.2.4 Swaging
3.3.2.5 Sagging
3.3.2.6 Warping
3.3.2.7 Heat blisters
3.3.2.8 Thermal cracks
3.3.2.9 Mechanical fatigue cracks
3.3.2.10 Steam gouging
3.3.3 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.3 to the SUPERVISOR.

3.4 Collect samples (equal to a heaping tablespoon each) of waterside soft and hard deposits for each boiler.

3.4.1 Soft deposits - Place the tube segments in a vise with the waterside up and wirebrush watersides. Collect loose residue in a bottle. Label bottle with the title Soft Deposits, ship, boiler number, and tube number.

3.4.2 Hard deposits - Place the tube segment in a vise with the waterside up and power wirebrush watersides to remove loose residue. Crimp the tube segment slowly allowing flakes of hard sludge to fall back into the tube. Collect the loose flakes in a bottle. Label bottle with title Hard Deposits, ship, boiler number, and tube number.

3.5 Package tubes, deposit samples, and a copy of report (3.3.3) and send to a laboratory qualified to accomplish chemical analysis.

3.5.1 Analyze the tube samples for the following:

3.5.1.1 Tube wall thickness at zero, 90, 180, and 270 degree positions.

3.5.1.2 Extent of pitting (major pit depths and average overall pitting).

3.5.1.3 Thickness of hard scale mineral deposits.

3.5.2 Analyze deposit samples for specific mineral composition in percentages of calcium, magnesium, and silicon oxide.

3.5.3 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.5.1 and 3.5.2 to the SUPERVISOR.

3.5.3.1 Include negative report.

4. NOTES:

4.1 Sample tube(s) replacement will be included in the invoking Work Item.
1. SCOPE:

1.1 Title: Boiler Waterjet Cleaning; accomplish

2. REFERENCES:

2.1 S6300-AE-MMA-010, High Pressure Waterjet Wastewater Recycling System

3. REQUIREMENTS:

3.1 Accomplish the requirements of this item for waterjet cleaning of boiler watersides, using manufacturer's equipment manual and 2.1 for guidance.

3.1.1 Portable extension lights shall conform to MIL-F-16377/49, Symbol 306.2 or MIL-F-16377/52, Symbol 286.

3.1.1.1 Ground each light fixture at the voltage source.

3.1.2 The high pressure waterjet cleaning unit shall be operated at no more than 10,000 pounds per square inch (PSI).

3.1.3 Rope off and post warning signs in the areas where the unit is operating, where the high pressure hose is run, and where the waterjet cleaning is to be accomplished.

3.1.4 Unit shall be stopped immediately if high pressure leaks occur in pump, piping, high pressure hose, or hose couplings.

3.1.5 While personnel are waterjetting, lance operator shall be in direct visual contact with control gun operator stationed outside of boiler. Control gun operator shall also maintain direct person-to-person voice communication with pump operator, using telephone, radio, or other positive direct means. Communication relay through intermediaries is not acceptable.

3.1.6 The control gun operator shall be able to regulate the flow of water to permit the system to be pressurized during the actual tube cleaning and have the nozzle pressure reduced to zero while the operator removes the lance from one tube and inserts it into the next tube to be cleaned.
3.2 Cleaning equipment shall meet minimum requirements listed herein:

3.2.1 Supply hose from the pump to the control gun shall be 1/2-inch inside diameter (I.D.) with 30,000 PSI minimum burst pressure and shall not exceed 400 feet in length. A 15 foot length of supply hose shall be attached between the control gun and the flexible lance.

3.2.2 Provide a high pressure return line from the control gun dump connection to the waterjet supply tank, on units that discharge pressure to the bilges between cycles.

3.2.3 Tube cleaning nozzle shall be non-rotating. Orifices in the nozzles shall be angled back 30 degrees. Nozzles shall have a minimum of 18 orifices evenly spaced around the circumference. Each orifice shall be 0.024 inch in diameter, plus or minus 0.001 inch.

3.2.4 Fan pattern nozzle attached to a rigid lance for cleaning drum and header surfaces.

3.2.5 Lance and nozzle burst pressure ratings shall be 25,500 PSI minimum. Lance shall be 0.229 inch or larger I.D. and shall have a smooth Teflon core, and shall not exceed 25 feet in length.

3.2.6 Waterjet cleaning solution shall consist of one pound of sodium nitrite to 100 gallons of clean, fresh water.

3.3 Maintain operating pressures and flow rates for boiler cleaning as follows:

3.3.1 Boiler tube cleaning - 10,000 PSI maximum, 9,000 PSI minimum pump discharge pressure at 20 gallons per minute.

3.3.2 Drum and header surface cleaning - 7,500 PSI maximum, 6,500 PSI minimum pump discharge pressure, at 12 to 14 gallons per minute.

3.4 Verify waterjet cleaning equipment capability prior to commencement of work.

3.4.1 Place the lance and nozzle which will be utilized in waterjet cleaning securely into a container. Ensure lance cannot break loose and that unit output is 20 gallons per minute.

3.5 Accomplish cleaning operations as follows:

3.5.1 Lance and nozzle shall traverse the entire length of every tube cleaned.

3.5.1.1 Downcomer, riser, and support tubes shall be traversed twice.
3.5.2 The lance and nozzle shall traverse the tubes at a maximum rate of one foot per second.

3.5.3 A fan nozzle shall be used to clean entire interior drum surfaces.

3.6 Pump waterjet wastewater effluent from boiler to a holding container or a waterjet wastewater recycling unit. Do not drain wastewater to bilges.

3.6.1 Waterjet wastewater recycling filter process shall be capable of filtering the wastewater effluent to meet the following criteria:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended Solids</td>
<td>< 10 mg/L</td>
</tr>
<tr>
<td>Sodium Nitrite</td>
<td>1100 - 1300 mg/L</td>
</tr>
<tr>
<td>Ph</td>
<td>6.5 - 8.5</td>
</tr>
<tr>
<td>Nitrate</td>
<td>< 10 mg/L</td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>< 5 mg/L</td>
</tr>
</tbody>
</table>

3.6.1.1 Recycled wastewater discharge samples shall be taken every 3,000 gallons to ensure levels do not exceed the above criteria.

3.6.1.2 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.6.1.1 to SUPERVISOR.

3.6.2 Remove and dispose of spent chemicals and solutions in accordance with federal, state, and local regulations.

3.7 Dry tubes, headers, drums, and downcomers using clean, dry air immediately upon completion of waterjet cleaning. Remove pockets of water and dry surfaces using clean rags.

(V) "CLEANLINESS"

3.8 Inspect surfaces to ensure the following requirements are met:

3.8.1 Surfaces shall be dry.

3.8.2 There shall be no evidence of flash rusting.

3.8.3 There shall be a streaking effect seen when looking into the tubes. The streaking effect shall begin within one to 2 inches from the tube end and continue through the visible length of the tube.

3.8.4 Soft deposits and obstructions shall be removed.

3.8.4.1 Submit one legible copy, in hard copy or electronic media, of a report listing location of obstructions that cannot be removed by waterjet cleaning to the SUPERVISOR.
3.8.5 Residual sodium nitrite deposits remaining after the surfaces are dried is acceptable.

4. **NOTES:**

4.1 None.
1. **SCOPE:**

 1.1 **Title:** Cleaning and Painting Requirements; accomplish

2. **REFERENCES:**

 2.1 Standard Items

 2.2 S9086-VD-STM-010/020/030/CH-631, Preservation of Ships in Service

 2.3 S9086-VG-STM-010/CH-634, Deck Coverings

 2.4 ASTM F718, Shipbuilders and Marine Paints and Coatings Product/Procedure Data Sheet

 2.5 29 CFR 1915, Occupational Safety and Health Standards for Shipyard Employment, Subparts C and Z

 2.6 Systems and Specifications, Steel Structures Painting Manual, Volume 2

 2.7 NACE Book of Standards

 2.8 ASTM D4417, Standard Test Methods for Field Measurement of Surface Profile of Blast Cleaned Steel

 2.9 ISO 8502-3, Assessment of Dust on Steel Surfaces Prepared for Painting (Pressure Sensitive Tape Method)

 2.10 S9086-CN-STM-020/CH-79, Damage Control - Practical Damage Control

 2.11 S9086-RK-STM-010/CH-505, Piping Systems

3. **REQUIREMENTS:**

 3.1 Accomplish the requirements of 009-09 of 2.1 for coating system applications in the following tables for areas listed in 3.4:
3.2 Provide a written notice to the SUPERVISOR and the Commanding Officer's designated representative of potential exposure of personnel to toxic or hazardous substances.

3.2.1 Post the notice at the ship's Quarterdeck or other designated location for each job or separate area at least 4 hours, but not more than 24 hours, prior to the start of work. The notice shall contain the following information:

3.2.1.1 Ship's name and hull number
3.2.1.2 Work Item number
3.2.1.3 Compartment or frame number
3.2.1.4 Identification of hazard
3.2.1.5 Date and time of work process
3.2.1.6 Identification of engineering and work practice controls

3.2.2 Deliver notification of work planned over a weekend or Monday following that weekend to the Commanding Officer's designated representative not later than 0900 on the Friday immediately preceding that weekend.

3.2.3 Deliver notification of work planned on a federal holiday and on the day following the federal holiday to the Commanding Officer's designated representative not later than 0900 on the last working day preceding the federal holiday.

3.3 Submit material certification of abrasive blast media conforming to MIL-A-22262 or A-A-1722 prior to blasting. The abrasive blast medium must be listed on the Qualified Products List (QPL), or have written notification from NAVSEA indicating QPL approval.

3.3.1 Spongejet media and process may be used as an alternative to obtain SSPC-SP-10 or SSPC-SP-11 cleanliness.

3.3.2 Recyclable ferrous metallic abrasive materials conforming to AB-3 of 2.6 may be used as an abrasive blast media for steel substrates.
3.3.2.1 Cleanliness of recyclable ferrous metallic abrasive materials shall be measured and maintained in accordance with the requirements of AB-2 of 2.6.

3.3.2.2 Submit one legible copy, in hard copy or electronic media, of the results of the quality control requirements of Paragraph 6 of AB-2 and quality assurance test required by Paragraph 5 of AB-3.

3.4 Record and maintain in-process records as blasting, painting, inspections, and tests are being accomplished. Provide a hard copy to the SUPERVISOR at the conclusion of each evolution involving (G) points by the end of the work shift or prior to the start of the next evolution requiring documentation, whichever is sooner, for preservation of the following critical coated areas. These records shall be in accordance with Section 11 of 2.2 and Paragraph 634-3.35 of 2.3, and shall include 3.4.1 through 3.4.9:

Surfaces

Freeboard	Steel and aluminum
Hangar, flight, catapult, and vertical replenishment decks	Steel and aluminum
AFFF station decks and coaming	Steel and aluminum
Chain lockers	Steel and aluminum
RAST track trough	Steel and aluminum
Interior surfaces of intake vent plenums, defined as combustion air intakes (gas turbine, diesel, and steam) and other vent system intake plenums with openings greater than 7 square feet	Steel and aluminum
Uptake spaces	Steel and aluminum
Tanks (including sumps)	Steel and aluminum
Voids	Steel and aluminum
Cofferdams	Steel and aluminum
Well deck overheads	Steel and aluminum
Bilges	Steel and aluminum
Underwater hull surfaces (including capastic shields)	All

3.4.1 Surface preparation method, including name of abrasive and QPL 22262 revision number from which the product was purchased, or copy of NAVSEA product approval letter and surface profile readings.

3.4.2 Ambient and metal surface temperatures, relative humidity, and dew point at 4-hour intervals, unless otherwise specified in 2.2 or 2.3 during preservation process. Information for environment shall be recorded from conditions on-site, in close proximity to the structure.

3.4.3 Name of paint/non-skid, manufacturer, batch number, and date of manufacture and expiration, including original manufacturer's certificate of compliance and material conformance test data in accordance with Section 11 of 2.2.
3.4.4 Material safety data sheets and 2.4 for each proprietary coating used

3.4.5 Surface conductivity

3.4.6 Elapsed time between coats

3.4.7 Dry film thickness (DFT) for the total system

3.4.8 Name and type of spray equipment utilized

3.4.9 Record temperature of paint and non-skid storage 24 hours in advance of use. Temperature shall be maintained within the limits specified in 2.2 and 2.3 and shall be recorded once per shift during the 24-hour period prior to use.

3.4.10 Submit one legible copy, in hard copy or electronic media, of recorded in-process information on QA Checklist Forms 631-12.5 of 2.2 (see 4.7) and Figure 634-3-25 of 2.3 to the SUPERVISOR within 24 hours of completion of preservation of each separate location identified in the invoking Work Item.

3.4.11 Submit one legible copy, in hard copy or electronic media, of the manufacturer's warranty documents to the SUPERVISOR when specified in the Job Order.

3.5 Consider marine coatings to contain heavy metals (e.g., lead, cadmium, or chromium), hexavalent chromium, crystalline silica and/or other toxic or hazardous substances.

3.5.1 Submit one legible copy, in hard copy or electronic media, of the written rationale when no personnel monitoring will be conducted, providing the basis for the decision not to engage in personnel monitoring to the SUPERVISOR, prior to the disturbance of coatings.

3.5.2 Submit one legible copy, in hard copy or electronic media, of the laboratory analysis listing results of personnel monitoring to the SUPERVISOR within 10 working days of any such testing.

3.6 Accomplish preservation operations in accordance with the following:

(I) or (I)(G) "ENVIRONMENTAL READINGS" (See 4.4)

3.6.1 Ambient and metal surface temperatures, relative humidity, and dew point at a minimum of 4-hour intervals during the preservation process shall be recorded from conditions on-site, in close proximity to the structure being coated.
3.6.1.1 These environmental readings shall be taken from 48 hours prior to, to 48 hours after, the application of a coat of paint. For potable and feedwater tanks, environmental readings shall be taken from the start of surface preparation to 7 days after application of the final coat.

3.6.2 Coatings, with the exception of non-skid, applied on areas listed in 3.4 shall be applied only when the temperature of the prepared substrate is greater than 50 degrees Fahrenheit and a minimum of 5 degrees Fahrenheit above the dew point.

3.6.2.1 International Interbond 998, Alocit 28.15, and all MIL-PRF-23236, Type VII, Class 17 products, are exempt from dew point and relative humidity requirements.

(I) or (I)(G) ‘CLEANLINESS’ (See 4.4)

3.6.3 Accomplish degreasing/cleaning a maximum of 4 hours prior to surface preparation to ensure removal of surface contaminants, such as sea salts, loose rust, dust, mud, marine growth, grease, oil, and other petroleum products.

3.6.3.1 If evidence of contamination exists, accomplish degreasing/cleaning a maximum of 4 hours prior to application of each coat of paint to ensure removal of surface contaminants.

3.6.4 Accomplish the safety precautions as specified in 2.2, 2.5, and the Job Order during surface preparation and the application or removal of marine coatings.

3.6.5 Painters and coating inspectors shall be certified in accordance with Section 11 of 2.2.

3.6.5.1 Companies performing preservation of areas listed in 3.4 shall be certified in accordance with QP-1 of 2.6.

3.6.5.2 Plural Component Pump Tenders and Coating Applicators shall be certified in accordance with SSPC Marine Plural Component Applicator Certification (PCAC), or NAVSEA 05M approved equivalent.

3.6.6 For areas listed in 3.4, blasters shall be certified in accordance with SSPC-C-7 or NAVSEA 05M approved equivalent, and Section 11 of 2.2.

3.6.7 Select the specific requirements of 2.2, 2.3, 2.6, and 2.7 for determining the type of surface preparation required and coating system options that are available for use in accomplishing the work specified unless otherwise directed in the Work Item.
3.6.8 For non-skid coatings, requirements outlined in Paragraph 634-3.27 of 2.3 shall be followed.

3.6.8.1 Companies performing non-skid application shall be certified in accordance with QP-1 of 2.6.

3.6.9 Limit surfaces being prepared for preservation in size to an area which can be coated prior to the occurrence of flash rusting and/or oxidation. Remove any flash rust prior to painting, except as follows:

3.6.9.1 Surfaces cleaned by waterjetting shall meet the applicable Standard for flash rust.

3.6.9.2 Detergents and inhibitors shall not be used in the waterjetting water without written approval from the coating manufacturer and the SUPERVISOR.

3.6.10 For steel and aluminum plates, shapes, and ferrous piping, abrasive blast equal to NACE 2/SSPC-SP-10 of 2.6 and 2.7, with a surface profile that meets the requirements of 3.6.18, and prime, prior to shipboard installations except in the areas where weld joints remain to be accomplished, or unless specified otherwise in the invoking Work Item. Non-ferrous piping, which is to be preserved shipboard, shall be hand tool (non-impact tools only) cleaned in accordance with SSPC-SP-2 of 2.6. Preservation of non-ferrous piping one inch or less does not require preparation.

3.6.11 For touch up, disturbed, and/or inaccessible areas, the minimum surface preparation shall be that shown in the applicable Tables, except that an SSPC-SP-11 is acceptable for areas originally requiring an NACE 2/SSPC-SP-10 or NACE 5/SSPC-SP-12.

3.6.11.1 Touch-up is defined within this Standard Item as preservation operations on cumulative surface areas less than one percent of the total area being preserved, with no individual area greater than 10 square feet. Included under touch-up operations are new and disturbed areas of less than 10 square feet. The requirements of 3.1, 3.4, 3.6.1, 3.6.3, 3.6.18, 3.6.19, 3.8.8, 3.14, and 3.15 are waived for these touch-up areas. Paragraph 3.6.20 (surface preparation) shall be verified by the accomplishing activity as (1) inspections prior to coating applications. This waiver does not apply to potable or feedwater tanks; no requirements shall be waived for the touch up of potable or feedwater tanks.

3.6.11.2 Disturbed areas are defined as any surface that requires cleaning and/or painting due to existing paint finish being damaged in the accomplishment of work specified by the Job Order.

3.6.11.3 Closure plates/hull accesses and their associated welds will not be considered a disturbed surface and shall be cleaned and painted by the applicable table. Deviations to the requirements may be
authorized by the SUPERVISOR based on size, location, application, or severity of condition of coating system being applied.

3.6.11.4 Although spot repair, partial preservation, and full preservation are different in the proportions of area being preserved, each shall meet the requirements stated in this document as if full preservation were being done.

3.6.11.5 Spot repair is defined as a small, localized area being preserved that is greater in size than what is defined as touch-up.

3.6.11.6 Partial preservation is defined as preservation of a section of an entire space or location.

3.6.11.7 Full preservation is defined as preservation of an entire space or location.

3.6.12 Feather edges of well-adhered paint remaining after cleaning for all surface preparation methods.

3.6.13 Clean, prior to painting, insulation and lagging free of foreign matter and contaminants that would prevent adherence of paint.

3.6.14 Clean and dry prepared and previously painted surfaces free of foreign matter which will affect adherence of paint coatings. Inclusions such as dust and debris in the paint film shall be removed prior to the application of the next coat.

3.6.15 Remove foreign matter and debris resulting from cleaning operations.

3.6.16 Record and restore existing painted labels, compartment designations, hull markings, and other painted information which will be removed or covered during cleaning and painting operations.

3.6.17 Install masking material for protection of equipment and items not to be painted during preservation. Shipboard items not to be painted are listed in Paragraphs 631-8.22 of 2.2.

(I) or (I)(G) "SURFACE PROFILE" (See 4.4)

3.6.18 Following blasting or waterjetting operations, surface peak-to-valley profile must be checked. Five profile readings shall be taken for the first 1,000 square feet (with a minimum of 5 profile readings taken); for each additional 1,000 square feet, 2 profile readings shall be taken. Each group of profile readings shall average 2 to 4 mils, with no reading less than one mil nor more than 5 mils. If such profile is not present, proper profile must be established. Profile readings shall be taken in accordance with Method C of 2.8.
3.6.18.1 When surface profile requirements of the manufacturer's instructions are greater than that specified in this item, they shall supersede this item.

3.6.18.2 Waterjetting will not establish a profile. If this method is employed and a profile does not exist or is insufficient to meet the requirements, the contractor will still be required to establish sufficient profile.

3.6.18.3 Spongejet may not establish a sufficient profile. If this method is employed and the profile is insufficient to meet the requirements, the contractor will still be required to establish sufficient profile.

3.6.18.4 Following power tool cleaning to SSPC-SP-11, surface profile shall be checked. Five profile readings shall be taken for the first 1,000 square feet (with a minimum of 5 profile readings taken); for each additional 1,000 square feet, 2 profile readings shall be taken.

(I)(G) "CONDUCTIVITY MEASUREMENT"

3.6.19 Accomplish conductivity measurements for the Tables and Lines listed in 3.1.

3.6.19.1 Accomplish surface conductivity checks using available field or laboratory test equipment on the freshly prepared surface. Five determinations shall be conducted every 1,000 square feet. Areas less than 1,000 square feet shall have 5 determinations made. For immersed applications, such as tanks and bilges, conductivity measurements shall not exceed 30 microsiemens/cm. For non-immersed applications, conductivity measurements shall not exceed 70 microsiemens/cm. Samples shall be collected using the Soluble Salt Conductivity Measurement According to Bresle Method or approved equivalent. If conductivity measurements exceed the respective values, water wash the affected areas with fresh water. Dry the affected areas and remove all standing water. Accomplish surface conductivity checks on affected areas. Repeat step until satisfactory levels are obtained.

3.6.19.2 Accomplish the requirements of 3.6.19 and 3.6.19.1 within 4 hours prior to application of each coat of paint, if evidence of contamination of the surface exists.

(I) or (I)(G) "SURFACE PREPARATION" (See 4.4)

3.6.20 Verify surface preparation for the coating systems specified in Tables One through 5 in accordance with 2.2 through 2.4, 2.6, and 2.7.

3.6.20.1 Surface cleanliness for dust shall meet Rating 1, Class 2, of 2.9.

3.7 Store paint in a cool, dry place, do not expose to freezing temperatures or direct sunlight, and in accordance with manufacturer's
instructions. Storage of non-skid coatings shall be in accordance with Table 634-3-6 of 2.3.

3.8 Coating systems shall be applied in accordance with the applicable tables and 2.2. Paints shall not be thinned.

3.8.1 A tack coat is defined as a layer of paint with a reduced film thickness (e.g., 1-2 mils, vice 5 mils); it does not imply to add thinner.

3.8.2 When using 2-part coating systems (epoxies and polyurethanes), use of "partial kits" is prohibited unless using verified proportioning equipment or other verified measuring equipment (gravimetric).

3.8.3 For commercial underwater hull coating systems including anti-corrosive paints and anti-fouling paints, the manufacturer's primer must be used with his anti-fouling coating. No substitution is allowed.

3.8.3.1 Successive coats of anti-corrosive paints shall be of a contrasting color.

3.8.4 Utilize water-based latex fire retardant paints in preference to chlorinated alkyd based fire retardant paints. Such paints are available under MIL-PRF-24596 or a Naval Sea Systems Command (NAVSEA) approved product (Formula 25A). Accomplish the surface preparation and coating application requirements of 2.2 when using water-based paints.

3.8.5 Apply the first coat of MIL-P-15931 (Formulas 121/129) or MIL-PRF-24647 anti-fouling paint when the last coat of epoxy paint is still slightly tacky (approximately 4 to 6 hours after paint application) and in accordance with 2.4. Tacky is defined as the curing (drying) stage when a fingertip pressed lightly against the film leaves only a slight impression and none of the film sticks to the finger. If the epoxy is hard (usually 8 hours after application), apply a tack coat of epoxy paint one to 2 mils wet film thickness (WFT) over previously painted surfaces. The tack coat shall be allowed to cure (dry) to when a fingertip pressed lightly against the film leaves only a slight impression and none of the film sticks to the finger, then apply the next full coat of the system.

3.8.6 Mix and apply the approved proprietary coatings in accordance with manufacturer's instructions, except for requirements when invoked for surface preparation and minimum DFT as specified in Tables One through 5. The requirements of 3.8.5 also apply to manufacturers' proprietary coatings.

3.8.7 Mix and apply the Navy Polyamide Epoxy MIL-DTL-24441 coatings in accordance with the following, except the DFT shall be as specified in Tables One through 5. The MIL-DTL-24441 coatings mixing ratio is one-to-one by volume. The components of the various formulas are not interchangeable. Blend each component thoroughly prior to mixing the components. After mixing equal volumes of the 2 components, the mixture must be thoroughly stirred.
For Type III only, the stand-in times listed below must be observed. There is no induction time for Type IV.

3.8.7.1 Stand-in time (induction time) is defined as the time immediately following the mixing of the components A and B during which the critical reaction period of these components is initiated and is essential to the complete curing of the coating. During stand-in time the mixture must be thoroughly stirred at least once every 20 minutes to avoid hot spots caused by localized overheating from the chemical reaction.

<table>
<thead>
<tr>
<th>Surface Temperature at Job Site (Degrees Fahrenheit)</th>
<th>Stand-In Time in Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 to 50</td>
<td>2 hours at 70 degrees Fahrenheit (paint temperature)</td>
</tr>
<tr>
<td>50 to 60</td>
<td>2 hours at job site temperature</td>
</tr>
<tr>
<td>60 to 70</td>
<td>One hour to 1-1/2 hours at job site temperature</td>
</tr>
<tr>
<td>70 and Above</td>
<td>1/2 to one hour at job site temperature</td>
</tr>
</tbody>
</table>

(I) or (I)(G) "STRIPE COAT INSPECTION" (See 4.4)

3.8.8 For all areas where stripe coating is required, as denoted in Tables One through 5, apply stripe coat to edges, weld seams, welds of attachments and appendages, cutouts, corners, butts, foot/handholds (including inaccessible areas such as back side of piping, under side of I-beams), and other mounting hardware (non-flat surface) in accordance with 2.4. Stripe coat these areas after the prime coat has dried. Stripe coating applied shall be neat in appearance, minimizing extra thickness applied to edges as well as streaks and drops of paint. The stripe coat shall encompass all edges as well as at least a one-inch border outside each edge and weld.

3.8.8.1 Each stripe coat shall be of the specified paint system and shall be a different color from both the paint over which it is being applied and the next coat in the system (if a product only comes in 2 colors, the stripe coat shall contrast with the color of the previous coat). First coat inspection shall be conducted prior to stripe coat application.

3.8.9 Drying time between coats of specified coating for potable and feedwater tanks shall be a minimum of 48 hours at a minimum temperature of 70 degrees Fahrenheit, using heated air if necessary to maintain temperature. Ventilation shall be sufficient to ensure continuous flow of air through the tanks with at least one complete air change every 4 hours. Mixing and stand-in times (induction times) shall be in accordance with manufacturer's instructions.

3.8.10 Following coating applications, potable and feedwater tanks shall be continuously ventilated for at least 7 consecutive days prior to filling with water. Maintain a minimum temperature of 70 degrees Fahrenheit.
within the tanks. Ventilation shall ensure continuous flow of air with a minimum of one complete air change every 4 hours. Verify and document daily that ventilation is properly installed and running.

3.8.10 Freshly painted potable water tanks shall be rinsed at least twice with fresh water to ensure cleanliness of tank.

3.9 Prior to application of any solvent-based alkyd coating, such as MIL-PRF-24635, over an epoxy coating, allow epoxy to dry until it is no longer tacky (as defined in 3.8.5). It shall be dry to the touch but not fully cured before overcoating with any solvent-based alkyd coating.

3.10 Prior to application of any water-based coating, such as MIL-PRF-24596, over an epoxy coating, allow epoxy to dry at least 16 hours before overcoating with any water-based coating.

3.11 Overcoating of MIL-DTL-24441 with MIL-DTL-24441:

3.11.1 If less than 7 days has elapsed since the application of the prior coat, the next coat may be applied after visual inspection to confirm the absence of grease, dirt, salts, or other surface contaminants. If surface contamination is suspected as a result of visual inspection, or for other reasons, the entire surface shall be cleaned using a fresh water and detergent wash, followed by a fresh water rinse sufficient to remove all detergent and contaminants. The next coat of MIL-DTL-24441 shall be applied after surfaces are completely dried.

3.11.2 If more than 7 days but less than 30 days has elapsed since the application of the prior coat, the entire surface shall be cleaned using a fresh water and detergent wash followed by a fresh water rinse sufficient to remove all detergent and contaminants. Ensure the surface has fully dried, then apply a tack coat (one to 2 mils WFT) of the last coat applied or Formula 150. The tack coat shall be allowed to cure (dry) to when a fingertip pressed lightly against the film leaves only a slight impression and none of the film sticks to the finger, then apply the next full coat of the system. This condition can only be met one time during the painting system application.

3.11.3 If greater than 30 days has elapsed since the application of the prior coat, the entire surface shall be cleaned using a fresh water and detergent wash, followed by a fresh water rinse sufficient to remove all detergent and contaminants. After allowing the surface to dry, the surface shall be lightly abraded to degloss the epoxy, using a brush-off abrasive blast (preferred), power sanding, or hand sanding using 80-120 grit, then apply the next full coat of the system.

3.12 Intentionally left blank.

3.13 Overcoating of non-MIL-DTL-24441 epoxy coatings:
3.13.1 Follow the manufacturer's direction for the allowable overcoat window, not to exceed 30 days. The 30-day maximum may be extended beyond 30 days if specifically approved in writing by NAVSEA. Where the base coat and topcoat are provided from different manufacturers, the term "manufacturer" refers to the manufacturer of the base coat. A tack coat shall not restart the 30-day window.

3.13.1.1 If either the manufacturer's recommendation or the 30-day window (or a specific extension approved by NAVSEA) has been exceeded, the coating shall be reactivated by either following the manufacturer's recommendation for re-activating the surface or cleaning the entire surface using a fresh water and detergent wash, followed by a fresh water rinse sufficient to remove all detergent and contaminants. After allowing the surface to dry, the surface shall be lightly abraded to degloss the epoxy, using a brush-off abrasive blast (preferred), power sanding, or hand sanding using 80-120 grit.

3.13.2 Comply with the time requirements of 2.3 for application of non-skid over primer coat.

(1) or (1)(G) "DRY FILM THICKNESS" (See 4.4)

3.14 Measure DFT of each coat applied for the coating systems listed in Tables One through 5. This includes any stripe coats.

3.14.1 When measuring full coats to determine total system thicknesses denoted in Tables One through 5, DFT readings shall not be taken in areas where stripe coatings have been applied.

3.14.2 DFT readings for each coat shall be taken in accordance with Method PA-2 of 2.6.

3.14.2.1 WFT readings are required in lieu of DFT readings for any coat that must be in a tacky state (as defined in 3.8.5) when the next coat is applied. Refer to film thickness conversion table in 2.6. WFT equals DFT divided by percent solids by volume (when percent solids by volume is expressed as a decimal, i.e., 60 percent equals 0.60).

3.14.3 A WFT gage shall be used to verify the application of proper paint thickness for the primer coat of all coating systems listed in Tables One through 5. Readings shall be taken to confirm this, but need not be recorded.

3.14.4 For underwater hull paint systems, record a minimum of 30 DFT readings per 1,000 square feet. Baseline DFT readings of underwater hull paint system shall be taken after final coat is applied and Quality Assurance spot readings in accordance with 2.6 are completed.

3.14.5 Apply an additional coat of any single coat of a multiple coat system when that coat measures less than its specified DFT. Multiple coats shall be of contrasting color. DFT of each coat, including an
additional coat if applied, shall not exceed the specified maximum thickness for each coat.

(I)(G) "HOLIDAY INSPECTION"

3.15 Perform a visual holiday check on each coat of the system for areas listed in 3.4. Any holiday found shall be marked and touched up.

3.15.1 Remove masking material and paint overspray after cleaning and painting operations are completed.

4. NOTES:

4.1 Thicknesses specified in Tables One through 5 are DFT and are minimum requirements, unless otherwise specified.

4.2 Total DFT encountered during removal may exceed specified table thicknesses.

4.3 Total removal of ablative coating is not required in accordance with Paragraph 631-5.2.3.3 of 2.2. The Work Item will specify the degree of removal.

4.4 The paragraphs referencing this note are considered an (I)(G) if the inspection/test is on a critical surface as listed in 3.4. If the inspection/test is not on a critical surface as listed in 3.4, then the paragraph is considered a (I). These inspection point requirements also apply to build-up coats to obtain proper millage.

4.5 The word "new" in "new and disturbed surfaces" refers to all material installed on the ship by the contractor regardless of source.

4.6 Structural requirements of Notes (23) and (24) will be addressed by the invoking Work Item.

4.7 QA Checklist Forms referred to in 3.4.10 are invoked by Advance Change Notice 7A to 2.2.

4.8 Preservation Process Instructions (PPIs) provide detailed instructions and procedures for specific ship preservation evolutions to include safety precautions, surface preparation, selection of appropriate coating systems, and third-party quality assurance check points. See new Section 12 of 2.2 for details. Section 12 is provided in ACN 5A (Control Number N00024-00-FJB25).

4.9 SSPC training information can be found at http://www.sspc.org.

4.10 Table One is for underwater hull areas. Table 2 is for exterior areas. Table 3 is for interior spaces. Table 4 is for tanks and voids. Table 5 is for miscellaneous areas.
(1) Use Sherwin Williams P23RQ62/P23VQ80 in lieu of P23RQ82/P23VQ80 and use P23AQ61/P23VQ80 in lieu of P23AQ81/P23VQ80 for cold weather applications below 50 degrees Fahrenheit. Do not apply coating below 35 degrees Fahrenheit without approval of the SUPERVISOR.

(2) Boottop - The boottopping is defined as the black area from minimum load waterline at which the ship is expected to operate to 12 inches above the maximum load waterline. The black paint is an anti-fouling paint conforming to MIL-PRF-24647 for a 5-year, 7-year, or 10 to 12-year service life, or MIL-P-15931 for 2-year service life. Haze gray shall be carried to the black anti-fouling paint which marks the upper boottop paint. Do not apply the black anti-fouling paint over haze gray MIL-PRF-24635.

(3) Ameron Amercoat 235 can be used for cold weather application below 40 degrees Fahrenheit. Apply at 5 mils DFT (minimum) per coat. Do not apply coating below 35 degrees Fahrenheit without approval of the SUPERVISOR.

(4) Use International FCA 321 in lieu of FPA 327, or KHA414 in lieu of KHA062, for cold weather application below 50 degrees Fahrenheit. Do not apply coating below 35 degrees Fahrenheit without approval of the SUPERVISOR.

(5) Use Hempel Hempadur 4514U in lieu of 4515 for cold weather applications below 50 degrees Fahrenheit. Do not apply coating below 35 degrees Fahrenheit without approval of the SUPERVISOR.

(6) A minimum of 24 hours drying time shall be allowed after last coat prior to undocking.

(7) To ensure a continuous primer base, areas adjacent to those being coated with proprietary primer and non-skid listed on QPL's for MIL-PRF-24667 shall be coated with the same primer and compatible topcoat.

(8) These systems shall also be invoked for catapult wing voids and catapult exhaust blowdown trunks.

(9) DOD-E-24607, chlorinated alkyd, may also be used. MIL-PRF-24596, Type 1, Grade C, Classes 1 and 2, or DOD-E-24607 must be used if surface and ambient temperature are less than 50 degrees Fahrenheit.

(10) The "inner shield" is defined as the portion of the capastic shield that extends 3 ft. from the anode in all directions. The "outer shield" is defined as the portion of the capastic shield from the inner shield to a distance of 6 ft. from the anode. Repair of the inner shield area is required when total deteriorated inner shield surface area is from 0 to 2 percent, and no single deteriorated area is greater than one square foot. Repair of the outer shield area is required when total deteriorated outer...
shield surface area is from 0 to 10 percent, and no single spot is
greater than one square foot. Replacement (new installation) of the
entire capastic shield is required when either of the above criteria is
exceeded (damage to the inner shield is greater than 2 percent, OR
damage to the outer shield is greater than 10 percent, OR any single
spot damage is greater than one square foot).

(11) The following steps shall be used for repair/replacement of capastic
shields. Ensure QA checkpoints are conducted in accordance with 3.4.

a. Protect surrounding area from damage. Mask anode surfaces with
heavy cardboard or plywood.

b. Abrasive blast.

c. For repair, areas of undamaged capastic shall be roughened and
feathered into the bare metal areas to provide a profile for
adhesion of the new capastic. Feather edges at least 1 inch using
power tools or hand sanding. To prevent fracturing of shield, do
not feather using abrasive blasting.

d. The capastic material shall be mixed, applied, and cured in
accordance with manufacturer's instructions.

e. The capastic should be fairied in and made smooth from the anode for
a distance of at least 10 inches to minimize hull turbulence.

f. After the capastic has cured, sanding shall be accomplished to
smooth any rough areas and to degloss the surface for the
Anticorrosive to be applied over it.

g. During visual inspection, ensure anode surfaces are undamaged and
free of paint and capastic.

h. The anode should remain covered with heavy cardboard or plywood to
prevent damage or contamination by the ship's underwater hull
coating system until just before undocking.

(12) These systems may also be invoked for preservation of decks in spaces
that are prone to wear and do not receive deck covering.

(13) Anchors below lower boottopping limit shall be painted in accordance
with normal underwater hull anti-corrosion/anti-fouling system.

(14) For MCM, and MHC ships, use black walnut shells for abrasive blast
media.
(15) Anchor chain and detachable links shall be marked and color coated in accordance with NSTM Chapter 581 unless otherwise directed by the Work Item.

(16) Apply one mist coat (1-2 mils) of Ameron PSX 700 after blast and prior to remaining coats where invoking Work Item requires anchor chain inspections prior to preservation.

(17) Colors shown in Tables 631-8-13 and 631-8-14 of 2.2, shall be specified by TYCOM or ship's Commanding Officer in accordance with Chapter 631-8.23.4.

(18) Restore each compartment marking in accordance with 2.10 and 2.11.

(19) MIL-PRF-24667 non-skid systems shall be applied as complete systems (primer, intermediate coat when MIL-PRF-24667, Type III, coatings are invoked, non-skid, and color topping) from the same manufacturer except for the color topping. When a manufacturer does not have approved color topping, use another compatible manufacturer's color topping. MIL-PRF-24667, Type I, when required, shall be specified in the invoking Work Item. Boundaries of areas receiving non-skid not specified by specific ship's drawings shall be in accordance with 2.3.

(20) Prior to accomplishing painting of wooden underwater hulls, allow the hull to dry to a moisture content of 15 percent. Readings shall be taken with an electronic moisture meter, Sovereign Moisture Master or equal. Cover grounding plates and zinscs prior to painting.

(21) Blasted surface metal must be degreased following walnut shell blasting. Even traces of residual oil will degrade coating adhesion. Appropriate safety precautions for working with flammable solvents must be enforced. Alternate procedure is a vigorous soap and water wash followed by pressurized fresh water rinse. Do not use a detergent and fresh water washdown when using aluminum oxide as an abrasive blast medium.

(22) Peripheral deck edging and areas not receiving non-skid may substitute the manufacturer's color topping for MIL-PRF-24635.

(23) For non-edge retentive coatings, radiusing of edges is recommended to ensure maximum service life. If edges are not radiused, the service life could be substantially reduced.

(24) Deburring and grinding of weld spatter is recommended to ensure maximum service life. If weld spatter is not removed, the service life of the coating could be substantially reduced.
(25) Power impact tool cleaning using power-driven needle guns, chipping or scaling hammers, rotary scalers, single or multiple-piston scalers, or other similar impact cleaning tools shall not be utilized in the cleaning methods.

(26) Maintain the relative humidity in the tank or void space at a maximum of 50 percent from the start of abrasive blasting to cure of the topcoat.

(27) Finish coats for boats and craft shall be as specified in Paragraph 631-9.3.4 through 631-9.3.5 of 2.2 unless otherwise specified in the invoking Work Item.

(28) Thermal insulation shall be soap and water cleaned and hand sanded.

(29) Three coats of MIL-24441, Type III, at 3-4 mils per coat can be substituted for 2 coats of MIL-24441, Type IV, at 4-6 mils per coat, for total system DFT of 8-12 mils. Three full coats and 2 stripe coats of MIL-24441, Type III, at 3-4 mils per coat can be substituted for 2 full coats and 1 stripe coat of MIL-24441, Type IV, at 4-6 mils per coat, for total system DFT of 8-12 mils.

(30) Grit blasting to near white metal is the preferred method of surface preparation. Only where grit blasting is not possible should power tool cleaning be used. Power tool cleaning should not be used for well deck areas frequently exposed to LCAC exhaust.

(31) A low pressure (3,000 to 5,000 psi) fresh water washdown of the well deck area shall be performed before either grit blasting or power tool cleaning to remove dirt, oil, grease, salts, and loosely adherent coatings.

(32) Upon completion of surface preparation, pH measurements must be taken. The pH must be in the range of 6.5 to 7.5. If it is not, the surface must be washed with fresh water until the required pH is obtained.

(33) Runs, sags, and drips may appear in the coating due to its solvent-free nature and application properties. In the normal application of this product, the appearance of runs, sags, and drips is only superficial and is not detrimental to the coating system. In these cases, no action shall be taken. In cases where the conditions are determined to be detrimental (coating in excess of 50 mils DFT) to the effectiveness of the coating system, immediate action shall be taken. If the wet run, sag, or drip occurs on a dry surface, brush out the run, sag, or drip and reapply the prime coat directly over the brushed out area. If the run, sag, or drip has dried, then the affected area shall be scraped or mechanically removed and the prime coat shall be reapplied.

(34) These systems may also be invoked for preservation of well deck bulkheads and decks.
NOTES OF TABLES ONE THROUGH 5
(Con't)

(35) These systems shall also be invoked for barricade stanchions and wells, catapult jet blast deflector pits, and associated void spaces.

(36) SSPC-SP-11 shall be the surface preparation method used, even if 2.4 has a more stringent requirement.

(37) Total DFT specified in Table 4 for potable water tanks shall not be exceeded except in isolated areas adjacent to shapes and stiffeners. In no case shall the maximum DFT be exceeded by 2 mils. The isolated areas shall be less than 2 percent of the total area.

a. For touch-up or overcoating intact aged paint in good condition, the same requirements for each coat apply, and the total film thickness maximum requirement may be corrected to allow for thickness of underlying aged paint. Requirement is to avoid excess thickness in individual coats. High DFT resulting from the application of extra coats of paint is not considered to be a problem below 35 mils total DFT.

(38) Maintain the relative humidity in the tank at a maximum of 85 percent from the start of abrasive blasting to cure of the topcoat. By allowing 85 percent vice 50 percent relative humidity, this will reduce the service life of the tank from 15-20 years to 10-12 years.

(39) Ameron Amercoat 892HS shall not be used for surfaces that exceed 700 degrees Fahrenheit.

(40) Avoid excessive power wire brushing that results in a polished surface.

(41) Apply 3 coats of a vapor barrier coating compound, MIL-PRF-19565, in contrasting colors (white-orange-white), to insulation within laundries, sculleries, galleys, drying rooms, and to insulation on the warm side of refrigerated stores spaces.

(42) High temperature areas of exhaust pipe exteriors include BLISS caps, air eductors, and exhaust stacks.

(43) In lieu of white, use Light Gray, Color No. 26373 (Low Solar Absorption only). In lieu of black, use Ocean Gray, Color No. 26173 (Low Solar Absorption only).

(44) These systems shall also be invoked for Aircraft Electrical Servicing Stations (AESS) trunks.

(45) PCMS tile on the bow flares shall be painted with the same topcoat as the freeboard.

(46) Intentionally left blank.
(47) The topcoats for ordnance/non-ordnance pyrotechnic locker sun shields shall be painted white (FED STD 595, Color No. 17875) or as directed by NAVSEA.
<table>
<thead>
<tr>
<th>TABLE ONE STEEL SURFACES</th>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D</th>
<th>E KEEL TO BOTTOM OF BOOTTOP</th>
<th>F BOOTTOP</th>
<th>G DRAFT MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10 OR WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L</td>
<td>TWO COATS AMERON AMERCOAT 385, 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td></td>
<td></td>
<td>2 COATS F-121A, 2 - 3 MILS/COAT, MIL-P-15931</td>
<td>ONE COAT MIL-PRF-24535 LT GRAY, COLOR NO. 26737 (LOW SOLAR ABSORPTION ONLY) TO BOOTTOPPING & BELOW, 2 - 3 MILS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERGARD 264-FPJ 034/FPA 327 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA303/KHA062 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERTUF 262-KHA302/KHA062 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 235 RED, 4 - 6 MILS -- & -- ONE COAT AMERON AMERCOAT 235 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 230 RED, 4 - 6 MILS -- & -- ONE COAT AMERON AMERCOAT 230 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23RH02/P23VQ30, 4 - 6 MILS -- & -- ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23AQ81/ P23VQ80, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td>SAME AS LINE ONE -- OR -- 2 COATS SHERWIN WILLIAMS SEAGUARD MARINE N50R100, 2 - 3 MILS/COAT</td>
<td>SAME AS LINE ONE -- OR -- 2 COATS SHERWIN WILLIAMS SEAGUARD MARINE N50B100, 2 - 3 MILS/COAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA327 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERGARD 264-FPJ 034/FPA 327 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td>ONE COAT INTERSLEEK 381 LIGHT PINK, BXA380/BXA381, 3 - 5 MILS -- & -- ONE COAT INTERSLEEK 425 HAZE GRAY, BXA816/ BXA821/BXA822 OR BLACK, BXA819/BXA821/BXA822, 5 - 7 MILS</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
</tbody>
</table>

<p>| SEE NOTE (3) | SEE NOTES (2), (6) & (27) | SEE NOTES (2), (6) & (27) | ONE COAT COLOR NO. 26173 (FED STD 595) MIL-PRF-24635 OCEAN GRAY (LOW SOLAR ABSORPTION ONLY) ABOVE BOOTTOPPING, 2 - 3 MILS |</p>
<table>
<thead>
<tr>
<th>TABLE ONE STEEL SURFACES</th>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D</th>
<th>E KEEL TO BOTTOM OF BOOTTOP</th>
<th>F BOOTTOP</th>
<th>G DRAFT MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL FPL 274/PFA 327 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERGARD 254-FPJ 034/PFA 327 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td>ONE COAT INTERNATIONAL BRA 642 BLACK, ONE COAT BRA 640 RED, (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>2 COATS INTERNATIONAL BRA 642 BLACK, (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA303/KHA062 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERTUF 262-KHA302/KHA062 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 235 RED, 4 - 6 MILS -- & -- ONE COAT AMERON AMERCOAT 235 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td>ONE COAT AMERON ABC 3 BLACK, ONE COAT AMERON ABC 3 RED (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>2 COATS AMERON ABC 3 BLACK, (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 230 RED, 4 - 6 MILS -- & -- ONE COAT AMERON AMERCOAT 230 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT HEMPEL HEMPADUR 4150-50630 RED, 4 - 6 MILS -- & -- ONE COAT HEMPEL HEMPADUR 45150-11480 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23RQ02/P23VQ00, 4 - 6 MILS -- & -- ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23A081/P23VQ00, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
</tr>
</tbody>
</table>

UP TO 7 YEARS SERVICE LIFE
<table>
<thead>
<tr>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D KEEL TO BOTTOM OF BOOTTOP</th>
<th>E BOOTTOP</th>
<th>F DRAFT MARKS</th>
<th>G DRAFT MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERGARD 254-FPJ 034/FPA 327 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td>ONE COAT INTERNATIONAL BRA 640 RED, ONE COAT BRA 642 BLACK, ONE COAT BRA 640 RED (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>3 COATS INTERNATIONAL BRA 642 BLACK (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA 303/KHA 062 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERTUF 262-KHA 302/KHA 062 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td>ONE COAT INTERNATIONAL BRA 640 RED, ONE COAT BRA 642 BLACK, ONE COAT BRA 640 RED (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>3 COATS INTERNATIONAL BRA 642 BLACK (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 235 RED, 4 - 6 MILS -- & -- ONE COAT AMERON AMERCOAT 235 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td>ONE COAT AMERON ABC 3 RED, ONE COAT AMERON ABC 3 BLACK, ONE COAT AMERON ABC 3 RED (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>3 COATS AMERON ABC 3 BLACK (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 230 RED, 4 - 6 MILS -- & -- ONE COAT AMERON AMERCOAT 230 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td>ONE COAT AMERON ABC 3 RED, ONE COAT AMERON ABC 3 BLACK, ONE COAT AMERON ABC 3 RED (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>3 COATS AMERON ABC 3 BLACK (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50630 RED, 4 - 6 MILS -- & -- ONE COAT HEMPEL HEMPADUR 4511400 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td>ONE COAT HEMPEL OLYMPIC 76600-51110 RED (MIL-PRF-24647), ONE COAT HEMPEL OLYMPIC 76600-19990 BLACK (MIL-PRF-24647), ONE COAT HEMPEL OLYMPIC 76600-51110 RED (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>3 COATS HEMPEL OLYMPIC 76600-19990 BLACK (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23RQ82/P23VQ80, 4 - 6 MILS -- & -- ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23AQ81/P23VQ80, 4 - 6 MILS, 10 MILS MIN</td>
<td></td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30RQ10, ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30BQ12 -- & -- ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30RQ10 (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>3 COATS SHERWIN WILLIAMS SEAGUARD MARINE P30BQ12 (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>SURFACE PREPARATION</td>
<td>PRIMER</td>
<td>KEEL TO BOTTOM OF BOOTTOP</td>
<td>BOOTTOP</td>
<td>DRAFT MARKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDERWATER HULL (STRUTS, RUDDERS, & OTHER CAVITATION PRONE AREAS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 235 RED, 4 - 6 MILS</td>
<td>ONE COAT AMERON AMERCOAT 235 GRAY, 4 - 6 MILS</td>
<td>ONE COAT 3M CO. NO. EC-2216, 4 - 5 MILS</td>
<td>ANTIFOULING PAINT SAME AS SURROUNDING HULL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE NOTE (3)</td>
<td>SEE NOTE (3)</td>
<td>3 COATS, 5 - 6 MILS/COAT</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 230 RED, 4 - 6 MILS</td>
<td>ONE COAT AMERON AMERCOAT 230 GRAY, 4 - 6 MILS</td>
<td>SAME AS LINE 20</td>
<td>SAME AS LINE 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327, 4 - 6 MILS</td>
<td>ONE COAT INTERNATIONAL INTERGARD 264-FPJ 034/FPA 327, 4 - 6 MILS</td>
<td>SAME AS LINE 20</td>
<td>SAME AS LINE 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA03/KHA062 RED, 4 - 6 MILS</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA03/KHA062 GRAY, 4 - 6 MILS</td>
<td>SAME AS LINE 20</td>
<td>SAME AS LINE 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50630 RED, 4 - 6 MILS</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-11480 GRAY, 4 - 6 MILS</td>
<td>SAME AS LINE 20</td>
<td>SAME AS LINE 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23AQ81/P23VQ80, 4 - 6 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23AQ81/P23VQ80, 4 - 6 MILS</td>
<td>SAME AS LINE 20</td>
<td>SAME AS LINE 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDERWATER HULL (CAPASTIC SHIELDS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>WHITE METAL BLAST, NACE 1/SSPC-SP-5</td>
<td>INNER SHIELD: ONE COAT US FILTER, ELECTROCATALYTIC, CAPASTIC™, PART NO. 35524, 100 MILS MIN</td>
<td>ANTI-CORROSIVE PAINT SAME AS SURROUNDING HULL</td>
<td>ANTIFOULING PAINT SAME AS SURROUNDING HULL</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE ONE ALUMINUM SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C</td>
<td>D</td>
<td>E KEEL TO BOTTOM OF BOOTTOP</td>
<td>F BOOTTOP</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>UNDERWATER HULL (KEEL TO BOOTTOP, INCLUDING PROPELLSHIFT OUTBOARD BEARING VOIDS)</td>
<td>27</td>
<td>NEAR WHITE METAL BLAST USING GARNET OR BLACK WALNUT SHELLS OR WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2L</td>
<td>ONE COAT INTERNATIONAL INTERGARD 264 FPL 274/FPA 327 RED, 4 - 6 MILS, WITHIN 4 HOURS AFTER SURFACE PREPARATION</td>
<td>SEE NOTE (4)</td>
<td>ONE COAT INTERNATIONAL INTERGARD 264-FPJ 034/FPA 327 GRAY, 4 - 6 MILS</td>
<td>SEE NOTE (4)</td>
<td>ONE COAT INTERNATIONAL INTERSLEEK 425 BXA 816/BXA 821/BXA 822 HAZE GRAY, 5 - 7 MILS</td>
</tr>
<tr>
<td>UNDERWATER HULL APPLIES TO EMBARKED BOATS AND CRAFT ONLY</td>
<td>28</td>
<td>SAME AS LINE 27</td>
<td>ONE COAT E-PAINT EP PRIMER 1000, 4 - 6 MILS</td>
<td>ONE COAT E-PAINT EP PRIMER 1000, 4 - 6 MILS</td>
<td>ONE COAT E-PAINT SN-1, 5 - 7 MILS WFT/COAT (3-4 MILS DFT/COAT) GRAY - & - ONE COAT E-PAINT SN-1, 5 - 7 MILS WFT/COAT (3-4 MILS DFT/COAT) GRAY</td>
<td>SEE NOTES (2) & (6)</td>
<td>ONE COAT E-PAINT SN-1, 5 - 7 MILS WFT/COAT (3-4 MILS DFT/COAT) GRAY</td>
</tr>
<tr>
<td>UNDERWATER HULL (STRUTS, RUDDERS & OTHER CAVITATION PRONE AREAS)</td>
<td>29</td>
<td>SAME AS LINE 27</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327, 4 - 6 MILS, WITHIN 4 HOURS AFTER SURFACE PREPARATION</td>
<td>SEE NOTE (4)</td>
<td>ONE COAT 3M CO. NO. EC-2216, 4 - 5 MILS - & - 3 COATS, 5 - 6 MILS/COAT</td>
<td>ANTI-FOULING PAINT SAME AS SURROUNDING HULL</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>SAME AS LINE 27</td>
<td>ONE COAT AMERON AMERCOAT 235 RED, 4 - 6 MILS, WITHIN 4 HOURS AFTER SURFACE PREPARATION</td>
<td>SEE NOTE (3)</td>
<td>SAME AS LINE 29</td>
<td>SAME AS LINE 29</td>
<td></td>
</tr>
<tr>
<td>TABLE ONE</td>
<td>LINE</td>
<td>A</td>
<td>PRIMER</td>
<td>B</td>
<td>SURFACE PREPARATION</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GRP FIBERGLASS SURFACES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDERWATER HULL (KEEL TO TOP OF BOOTTOP)</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>HIGH PRESSURE WASH TO REMOVE MARINE GROWTH & LOOSE PAINT - OR - TOUGH-UP OR REMOVAL OF PAINT SYSTEM TO SOUND PRIMER BY LIGHT ABRASIVE BLASTING WITH BLACK WALNUT SHELLS</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327, 4 - 6 MILS</td>
<td>ONE COAT INTERNATIONAL BRA 640 RED, 4 - 6 MILS/COAT, 10 MILS MIN</td>
</tr>
<tr>
<td>UP TO 7 YEARS SERVICE LIFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>SAME AS LINE 31</td>
<td>ONE COAT AMERON AMERCOAT 235, 4 - 6 MILS</td>
<td>ONE COAT AMERON ABC3 BLACK, ONE COAT AMERON ABC3 RED, 4 - 6 MILS/COAT, 10 MILS MIN</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>SAME AS LINE 31</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50630 RED, 4 - 6 MILS</td>
<td>ONE COAT HEMPEL OLYMPIC 76600-19990 BLACK</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td>SAME AS LINE 31</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23RQ82/P23VQ80, 4 - 6 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30BQ12</td>
</tr>
<tr>
<td>LINE</td>
<td>SURFACE PREPARATION</td>
<td>PRIMER</td>
<td>KEEL TO BOTTOM OF BOOTTOP</td>
<td>BOOTTOP</td>
<td>DRAFT MARKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--------</td>
<td>---------------------------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>SAME AS LINE 31</td>
<td></td>
<td>ONE COAT INTERNATIONAL</td>
<td>3 COATS INTERNATIONAL</td>
<td>SAME AS LINE 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FPL 274/FPA 327, 4 - 6 MILS</td>
<td>BRA 660 RED, ONE COAT</td>
<td>BRA 640 BLACK, ONE COAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- OR - INTERTUF 262- KHA303/KHA606, 4 - 6 MILS</td>
<td>BRA 640 RED, 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>4 - 6 MILS/COAT, 15 MILS MIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (4)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>SAME AS LINE 31</td>
<td></td>
<td>ONE COAT AMERON AMERCOAT 235, 4 - 6 MILS</td>
<td>3 COATS AMERON ABC3 BLACK, 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SAME AS LINE 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- OR - ONE COAT AMERON ABC3 RED, 4 - 6 MILS</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (3)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>SAME AS LINE 31</td>
<td></td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50630 RED, 4 - 6 MILS</td>
<td>3 COATS HEMPEL OLYMPIC 76600-19990 BLACK, 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SAME AS LINE 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (5)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>SAME AS LINE 31</td>
<td></td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23RQ82/P23VQ80, 4 - 6 MILS</td>
<td>3 COATS SHERWIN WILLIAMS SEAGUARD MARINE P30BQ12 (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SAME AS LINE 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (1)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE ONE</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C</td>
<td>D</td>
<td>E KEEL TO BOTTOM OF BOOTTOP</td>
<td>F BOOTTOP</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>UNDERWATER HULL METAL APPENDAGES (STRUTS, Rudders & OTHER CAVITATION PRONE AREAS)</td>
<td>39</td>
<td>NEAR WHITE METAL BLAST USING GARNET OR ALUMINUM OXIDE - OR - WATER JETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L</td>
<td>ONE COAT INTERNATIONAL FPL 274/SPA 327, 4 - 6 MILS</td>
<td>ONE COAT 3M CO. NO. EC-2216, 4 - 5 MILS ---- & ---- 3 COATS, 5 - 6 MILS/COAT</td>
<td>SAME AS LINE 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>SAME AS LINE 39</td>
<td>ONE COAT AMERON AMEROCOAT 235, 4 - 6 MILS</td>
<td>SAME AS LINE 39</td>
<td>SAME AS LINE 36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>SAME AS LINE 39</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50630 RED, 4 - 6 MILS</td>
<td>SAME AS LINE 39</td>
<td>SAME AS LINE 37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>SAME AS LINE 39</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23RD2P23VQ80, 4 - 6 MILS</td>
<td>SAME AS LINE 39</td>
<td>SAME AS LINE 38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNDERWATER HULL APPENDAGES ON MINESWEEPERS ONLY</td>
<td>43</td>
<td>SAME AS LINE 30</td>
<td>ONE FULL COAT MIL-DTL-24441, TYPE III, 2 - 4 MILS ---- & ---- ONE STRIPE COAT MIL-DTL-24441, TYPE III, 2 - 4 MILS ---- & ---- ONE FULL COAT MIL-DTL-24441, TYPE III, 2 - 4 MILS ---- & ---- ONE STRIPE COAT MIL-DTL-24441, TYPE III, 2 - 4 MILS ---- & ---- ONE FULL COAT MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE FULL COAT AMERON 3258 GREEN, 3 - 5 MILS ---- & ---- ONE STRIPE COAT AMERON 3258 BLACK, 3 - 5 MILS ---- & ---- ONE FULL COAT AMERON 3258 HAZE GRAY, 3 - 5 MILS ---- & ---- ONE STRIPE COAT AMERON 3258 GREEN, 3 - 5 MILS ---- & ---- ONE FULL COAT AMERON 3258 BLACK, 3 - 5 MILS</td>
<td>ANTI-FOULING PAINT SAME AS SURROUNDING HULL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEE NOTES (1) & (2) & (6)
<table>
<thead>
<tr>
<th>TABLE ONE WOOD SURFACES</th>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D KEEL TO BOTTOM OF BOOTTOP</th>
<th>E BOOTTOP</th>
<th>F DRAFT MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDERWATER HULL</td>
<td>44</td>
<td>44 BRUSH-OFF BLAST TO REMOVE LOOSE & DETERIORATED COATINGS - OR - HIGH-PRESSURE WASH TO REMOVE MARINE GROWTH & LOOSE PAINT</td>
<td>KEEL TO 6 INCHES ABOVE UPPER BOOTTOP LIMIT ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td></td>
<td>2 COATS F-121A, MIL-P-15931, 2 - 3 MILS EACH COAT, TO UNDERWATER HULL, APPENDAGES, SEA CHESTS & STRAINER PLATES UP TO BOTTOM OF BOOTTOPPING AREA MIN DRYING TIME OF 6 HRS BETWEEN COATS OF F-121A PUTTY SCREW HEADS, WHERE COMPOUND IS MISSING, WITH CAULKING COMPOUND CONFORMING TO TT-C-1796 AFTER FIRST COAT OF F-121A SEE NOTES (2), (6), & (27)</td>
<td>3 COATS F-129A, MIL-P-15931, 2 - 3 MILS/COAT MIN DRYING TIME OF 6 HRS BETWEEN COATS OF F-129A</td>
<td>SEE NOTES (2), (6), & (27)</td>
</tr>
<tr>
<td></td>
<td>SEE NOTE (20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 2 STEEL SURFACES</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>EXTERIOR SURFACES ABOVE BOOTTOP WITH EXCEPTION OF AREAS RECEIVING NON-SKID & WELL DECK OVERHEAD AREAS</td>
<td>NEAR WHITE METAL BLAST NACE 2/SSPC-SP-10</td>
<td>ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE STRIPE COAT -- & -- ONE FULL COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE COAT DECK GRAY NO.26008 (FED STD 595), MIL-PRF-24659 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>ONE COAT HAZERAY GRAY NO. 26270 (FED STD 595), MIL-PRF-24665 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>HANGAR DECKS, FLIGHT DECKS & VERTICAL REPLENISHMENT DECK AREAS (CV’S & CVN’S ONLY)</td>
<td>ONE COAT HAZERAY GRAY NO. 26270 (FED STD 595), MIL-PRF-24665 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
</tr>
<tr>
<td></td>
<td>OR - WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L</td>
<td>ONE COAT MIL-PRF-24647 APPROVED PRODUCT FROM TABLE ONE, LINES 14-19</td>
<td>ONE FULL COAT MIL-PRF-24647 APPROVED PRODUCT FROM TABLE ONE, LINES 14-19</td>
<td></td>
<td>OR - MIL-PRF-24763 TYPE II, CLASS 2, 2 - 4 MILS</td>
<td></td>
<td>ONE COAT HAZERAY GRAY NO. 26270 (FED STD 595), MIL-PRF-24665 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OR - INTERNATIONAL INTERLAC 1, PRODUCT #4597A HAZE GRAY (LOW SOLAR ABSORPTION ANTI-STAIN), 2 - 3 MILS</td>
<td>SEE NOTES (7) & (47)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANGAR DECKS, FLIGHT DECKS & VERTICAL REPLENISHMENT DECK AREAS</td>
<td>PROPRIETARY NON-SKID PRIMER LISTED ON THE QPL FOR MIL-PRF-24667</td>
<td>STRIPE COAT OF PROPRIETARY NON-SKID PRIMER LISTED ON THE QPL FOR MIL-PRF-24667</td>
<td>SAME AS LINE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR - WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANDING AREAS (CV’S & CVN’S ONLY)</td>
<td>SAME AS LINE 2</td>
<td>SAME AS LINE 2</td>
<td>SAME AS LINE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WALK AREAS (ALL DECK AREAS OTHER THAN HANGAR, FLIGHT, & VERTREP)</td>
<td>SAME AS LINE 2</td>
<td>SAME AS LINE 3</td>
<td>SAME AS LINE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C</td>
<td>D HORIZONTAL SURFACES</td>
<td>E MASTS & STACKS</td>
<td>F VERTICAL SURFACES</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>---</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, DECK GRAY, 6 - 8 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10 SEE NOTE (31)</td>
<td>ONE COAT CREAM SIGMA COATINGS EDGEGUARD PRIMER (PDS NO.5427), 4 - 8 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT WD GRAY SIGMA COATINGS EDGEGUARD TOPCOAT (PDS NO.5428), 6 - 10 MILS SEE NOTE (33)</td>
<td>ONE COAT OFF-WHITE SIGMA COATINGS EDGEGUARD TOPCOAT (PDS NO. 5428), 10 - 12 MILS SEE NOTE (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SAME AS LINE 8</td>
<td>ONE COAT BUFF SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER (B62H220/B62V220), 4 - 8 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT GRAY SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62A220/B62V220), 6 - 10 MILS SEE NOTE (33)</td>
<td>ONE COAT WHITE SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62W220/B62V220), 10 - 12 MILS SEE NOTE (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>SAME AS LINE 8</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624 GRAY (THA625/627), 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 WHITE (THA623/627), 10 - 12 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SAME AS LINE 8</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 19, 4 - 8 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 19, 6 - 10 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 19, 10 - 12 MILS SEE NOTE (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11 SEE NOTE (40)</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2L</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SAME AS LINE 8</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2 STEEL SURFACES

RAST TRACK TROUGHS WHERE PAINTED (WHERE NON-SKID NOT APPLIED)

WELL DECK OVERHEADS, BOTH EXPOSED & NON-EXPOSED TO LCAC EXHAUST

SEE NOTES (30) & (34)
<table>
<thead>
<tr>
<th>TABLE 2 ALUMINUM SURFACES</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTERIOR SURFACES, ABOVE BOOTTOP, WITH EXCEPTION OF AREAS RECEIVING NON-SKID SEE NOTE (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ABRASIVE BLASTING, USING GARNET, ALUMINUM OXIDE, OR BLACK WALNUT SHELLS</td>
<td>ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE FULL COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE COAT DECK GRAY NO. 26008 (FED STD 595), MIL-PRF-24655 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>ONE COAT HAZE GRAY NO. 26270 (FED STD 595), MIL-PRF-24655 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>ONE COAT HAZE GRAY NO. 26270 (FED STD 595), MIL-PRF-24655 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
</tr>
<tr>
<td>SEE NOTE (21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SAME AS LINE 15</td>
<td>2 COATS F-84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/COAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WALK AREAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEE NOTE (21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HANGAR DECKS, FLIGHT DECKS & VERTICAL REPLENISHMENT DECK AREAS CV & CVN ONLY</td>
<td>SAME AS LINE 17</td>
<td>SAME AS LINE 17</td>
<td>SAME AS LINE 17</td>
<td>ONE COAT DARK GRAY, MIL-PRF-24667 TYPE I, COMP G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEE NOTES (19) & (22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

31 of 56 ITEM NO: 009-32 FY-06
<table>
<thead>
<tr>
<th>TABLE 2 ALUMINUM SURFACES</th>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D HORIZONTAL SURFACES DECKS & FITTINGS</th>
<th>E MASTS & STACKS EXPOSED TO GASES</th>
<th>F VERTICAL SURFACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANGAR DECKS, FLIGHT DECKS, & VERTICAL REPLENISHMENT DECK AREAS</td>
<td>19</td>
<td>SAME AS LINE 17</td>
<td></td>
</tr>
<tr>
<td>RAST TRACK TROUGHS WHERE PAINTED (WHERE NON-SKID NOT APPLIED)</td>
<td>20</td>
<td>NEAR WHITE BLAST, NACE 2/SSPC-SP-10, USING GARNET, ALUMINUM OXIDE OR BLACK WALNUT SHELLS - OR - WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, DECK GRAY, 6 - 8 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>SAME AS LINE 20</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTERIOR ALUMINUM SURFACES</td>
<td>22</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>SAME AS LINE 15</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C</td>
<td>D</td>
<td>E HORIZONTAL SURFACES DECKS & FITTINGS</td>
<td>F MASTS & STACKS EXPOSED TO GASES</td>
<td>G VERTICAL SURFACES</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>----------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>24</td>
<td>HIGH PRESSURE WASH TO REMOVE MARINE GROWTH & LOOSE PAINT - OR - TOUCH-UP OR REMOVAL OF PAINT SYSTEM TO SOUND PRIMER BY LIGHT ABRASIVE BLASTING WITH BLACK WALNUT SHELLS - & - SPOT CLEAN, CHAP 631, PARA 631-5.2.6</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>ONE STRIPE COAT F-152, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>ONE COAT DECK GRAY NO. 26008 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>ONE COAT HAZE GRAY NO. 26270 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>ONE COAT HAZE GRAY NO. 26270 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td></td>
</tr>
<tr>
<td>SEE NOTE (2)</td>
<td>SEE NOTE (21)</td>
<td>SEE NOTE (29)</td>
<td>SEE NOTE (27)</td>
<td>SEE NOTE (29)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>POWER TOOL CLEAN TO CLEAN FIBERGLASS (DISC SANDER, ETC.) - OR - POWER TOOL CLEAN TO POLYURETHANE OVERLAY SUBSTRATE (DISC SANDER, ETC.) - OR - HYDROBLAST TO CLEAN FIBERGLASS</td>
<td>PROPRIETARY NON-SKID PRIMER LISTED ON THE QPL FOR MIL-PRF-24667</td>
<td>PROPRIETARY NON-SKID PRIMER LISTED ON THE QPL FOR MIL-PRF-24667</td>
<td>ONE COAT MIL-PRF-24667 TYPE I, II, OR III, COMP G - OR - MIL-PRF-24667 TYPE IV</td>
<td>ONE COAT HAZE GRAY NO. 26292 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEE NOTE (25)</td>
<td>SEE NOTE (7)</td>
<td>SEE NOTE (25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXTERIOR SURFACES ABOVE BOOTTOP

EXTERIOR WALK AREAS

ALL EXTERIOR DECK AREAS
<table>
<thead>
<tr>
<th>LINE</th>
<th>SURFACE PREPARATION</th>
<th>PRIMER</th>
<th>HORIZONTAL SURFACES DECKS & FITTINGS</th>
<th>MASTS & STACKS EXPOSED TO GASES</th>
<th>VERTICAL SURFACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>HAND TOOL CLEAN:</td>
<td></td>
<td>DECKS, MASTS & SPARS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR - POWER TOOL CLEAN TO REMOVE DETERIORATED COATINGS</td>
<td></td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ALL OTHER SURFACES:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DECKS, MASTS & SPARS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ONE COAT NO. 26008 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- OR - ONE COAT NO. 37038 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IDENTIFICATION MARKINGS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PAINT DESIGNATIONS & MARKINGS MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- OR - INTERNATIONAL INTERLAC 1, PRODUCT #45507A HAZE GRAY (LOW SOLAR ABSORPTION ANTI-STAIN), 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- OR - NILES CHEMICAL PAINT CO. PRODUCT N-7229C HAZE GRAY (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- OR - AMERON AMEROCOAT 7229C HAZE GRAY (LOW SOLAR ABSORPTION ANTI-STAIN), 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- OR - HEMPEL 537US, HAZE GRAY (LOW SOLAR ABSORPTION ANTI-STAIN), 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (43)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>HAND TOOL CLEANING, SSPC-SP-2</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/COAT</td>
<td>ONE COAT NO. 37038 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td>BHDS, OIVHD5, ONE COAT NO. 27038 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td>DECKS ONE COAT NO. 26008 (FED STD 595) MIL-PRF-24635, 2 - 3 MILS</td>
</tr>
<tr>
<td>2</td>
<td>SAME AS LINE ONE</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/COAT</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>3</td>
<td>HAND TOOL CLEANING, SSPC-SP-2</td>
<td>SAME AS LINE ONE FOR BARE METAL AREAS</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>4</td>
<td>POWER TOOL CLEANING TO BARE METAL, SSPC-SP-11</td>
<td>ONE COAT SIGMAGLaze 5492, WHITE ONLY, 8-10 MILS</td>
<td>ONE STRIPE COAT SIGMAGLaze 5492, 8-10 MILS, WHITE ONLY</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>5</td>
<td>SAME AS LINE 4</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 6 - 10 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>6</td>
<td>SAME AS LINE 4</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>SAME AS LINE 5</td>
<td>SAME AS LINE 5</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>7</td>
<td>SAME AS LINE 4</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>SAME AS LINE 5</td>
<td>SAME AS LINE 5</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>TABLE 3 STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLORS TO BE SPECIFIED BY TYCOM OR SHIP'S COMMANDING OFFICER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PER CHAP 631, PARA 631-8,23.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/C0AT - OR - ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>BHDS, OVHDs, ONE COAT NO.37038 (FED STD 595), MIL-PRF- 24635, 2 - 3 MILS</td>
<td>DECKS ONE COAT NO. 27038 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE NOTES (17), (28) & (40)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>SAME AS LINE 8</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/C0AT - OR - ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>POWER TOOL CLEANING, SSPC-SP-3</td>
<td>SAME AS LINE ONE FOR BARE METAL AREAS</td>
<td>SAME AS LINE ONE EXCEPT ONE COAT</td>
<td>SAME AS LINE ONE EXCEPT ONE COAT</td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS (OVERCOAT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11 - OR - WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2L - OR - NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ABOVE BILGE AREA: 2 COATS F-124, DOD-E-24607, 1.5 - 3 MILS/C0AT</td>
<td>BILGE AREA: ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS -- & -- ONE FINAL COAT ALOCIT 28.15, 6 - 8 MILS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE NOTES (28) & (40)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>SAME AS LINE 11</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>SAME AS LINE 11</td>
<td>BILGE AREA: ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS -- & -- ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>SAME AS LINE 11</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 17, 6 - 8 MILS</td>
<td>SAME AS LINE 11</td>
<td>BILGE AREA: ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 17, 6 - 8 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 17, 6 - 8 MILS</td>
</tr>
</tbody>
</table>

SEE NOTE (44)
<table>
<thead>
<tr>
<th>Line</th>
<th>Surface Preparation</th>
<th>Primer 1</th>
<th>Welding Bays & Light Traps</th>
<th>Bulkheads & Overheads</th>
<th>Decks</th>
<th>Thermal Insulation</th>
<th>Markings</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Near white metal blast, NACE 2/SSPC-SP-10</td>
<td>1 Coat</td>
<td>One strip, 4 - 8 mils</td>
<td>1 Coat, 6 - 10 mils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Same as Line 14</td>
<td>1 Coat</td>
<td>One strip, 6 - 10 mils</td>
<td>1 Coat, 6 - 10 mils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Waterjetting to NACE 5/SSPC-SP-12 Condition WJ-2/L or near white metal blast, NACE 2/SSPC-SP-10</td>
<td>1 Coat</td>
<td>One strip, 6 - 8 mils</td>
<td>1 Coat, 6 - 8 mils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Same as Line 14</td>
<td>1 Coat</td>
<td>One strip, 6 - 8 mils</td>
<td>1 Coat, 6 - 10 mils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>SURFACE PREPARATION</td>
<td>PRIMER</td>
<td>WELDING BAYS & LIGHT TRAPS</td>
<td>BULKHEADS & OVERHEADS</td>
<td>DECKS</td>
<td>THERMAL INSULATION</td>
<td>MARKINGS</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------</td>
</tr>
<tr>
<td>18</td>
<td>SAME AS LINE 14</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA620/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624, 6 - 10 MILS -- & -- ONE COAT INTERNATIONAL INTERLINE 624, 10 - 12 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624, 6 - 10 MILS -- & -- ONE COAT INTERNATIONAL INTERLINE 624, 10 - 12 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS PRIMER, 4 - 8 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS -- & -- ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS -- & -- ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS SEE NOTE (33)</td>
</tr>
<tr>
<td>19</td>
<td>SAME AS LINE 14</td>
<td>ONE COAT SHERWIN WILLIAMS DURAPLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS -- & -- ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS -- & -- ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS SEE NOTE (33)</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 8 MILS SEE NOTE (33)</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS SEE NOTE (33)</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS SEE NOTE (33)</td>
</tr>
<tr>
<td>20</td>
<td>SAME AS LINE 14</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS SEE NOTE (33)</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS SEE NOTE (33)</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS SEE NOTE (33)</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS SEE NOTE (33)</td>
</tr>
<tr>
<td>21</td>
<td>SAME AS LINE 16</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS SEE NOTE (33)</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS SEE NOTE (33)</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS SEE NOTE (33)</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS SEE NOTE (33)</td>
</tr>
<tr>
<td>LINE</td>
<td>SURFACE PREPARATION</td>
<td>A PRIMER</td>
<td>BULKHEADS & OVERHEADS</td>
<td>DECKS</td>
<td>THERMAL INSULATION</td>
<td>MARKINGS</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>----------</td>
<td>-----------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS — & — ONE FULL COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 10 - 12 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS — & — ONE FULL COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 10 - 12 MILS SEE NOTE (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>SAME AS LINE 22</td>
<td>ONE COAT SHERWIN WILLIAMS DURAPLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS — & — ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS — & — ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS SEE NOTE (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L - OR - NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS — & — ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS — & — ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>SAME AS LINE 24</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS — & — ONE FINAL COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS — & — ONE FINAL COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>SAME AS LINE 24</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS — & — ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS SEE NOTE (33)</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS — & — ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS SEE NOTE (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 3 STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>--------------------</td>
</tr>
<tr>
<td>CLEAN AND DIRTY SIDE OF COMBUSTION AIR INTAKES (CONT')</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS -- & -- ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>SAME AS LINE 27</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS -- & -- ONE FINAL COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>SAME AS LINE 27</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS -- & -- ONE FINAL COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN ROOMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE 27, 28, OR 29</td>
<td>SAME AS LINE 27, 28, OR 29</td>
<td>SAME AS LINE 27, 28, OR 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIXING ROOM/UPTAKE SPACES WITH VENTS OR LOUVERS TO THE OUTSIDE ATMOSPHERE (BULKHEADS & DECKS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>NEAR WHITE METAL BLAST NACE 2/SSPC-SP-10</td>
<td>ONE COAT SIGMA COATINGS EDGEGUARD PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA COATINGS EDGEGUARD TOPCOAT, 6 - 10 MILS -- & -- ONE FULL COAT SIGMA COATINGS EDGEGUARD TOPCOAT, 10 - 12 MILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>SAME AS LINE 31</td>
<td>ONE COAT SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT, 6 - 10 MILS -- & -- ONE FULL COAT SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT, 10 - 12 MILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>SAME AS LINE 31</td>
<td>ONE COAT INTERNATIONAL INTERLUNE 624 PRIMER (THA626/827), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLUNE 624, 6 - 10 MILS -- & -- ONE FULL COAT INTERNATIONAL INTERLUNE 624, 10 - 12 MILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>SAME AS LINE 31</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 3</td>
<td>STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DECKS, INSIDE THE COAMING, UNDER AFF PROPORTIONING UNITS, & BILGE DRAIN WELLS</td>
<td></td>
<td>35</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>ONE COAT BELZONA CERAMIC METAL 4311, 12 - 18 MILS</td>
<td></td>
<td></td>
<td>ONE COAT BELZONA CERAMIC METAL 4311, 12 - 18 MILS</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>SAME AS LINE 35</td>
<td>ONE COAT CHESTERTON ARC 855N, 12 - 18 MILS</td>
<td></td>
<td></td>
<td></td>
<td>ONE COAT CHESTERTON ARC 855N, 12 - 18 MILS</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>SAME AS LINE 35</td>
<td>ONE COAT ENECON CORPORATION CERAMALLOY CL+ [AC], 12 - 18 MILS</td>
<td></td>
<td></td>
<td></td>
<td>ONE COAT ENECON CORPORATION CERAMALLOY CL+ [AC], 12 - 18 MILS</td>
</tr>
<tr>
<td>INTERIOR STEEL SURFACES</td>
<td></td>
<td>38</td>
<td>SAME AS LINE 14</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>SAME AS LINE 16</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>SAME AS LINE 27</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>TABLE 3 ALUMINUM SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS</td>
<td>41</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11, USING STAINLESS STEEL WIRE BRUSHES, STAINLESS STEEL PADS, OR ABRASIVE SANDING DISCS (ANSI/BHMA B74.18)</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILES/COAT OR ONE COAT MIL-PRF-23236, 3 - 5 MILES</td>
<td>BHDS, OVHDs, ONE COAT NO. 37038 (FED STD 595), MIL-PRF-24635, 2 - 3 MILES</td>
<td>DECKS ONE COAT NO. 27038 (FED STD 595), MIL-PRF-24635, 2 - 3 MILES</td>
<td>SEE NOTE (9)</td>
<td>ONE COAT NO. 26008 (FED STD 595), MIL-PRF-24635, 2 - 3 MILES (TO DECKS NOT RECEIVING DECK COVERING)</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>HAND TOOL CLEANING, SSPC-SP-2</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILES/COAT OR ONE COAT MIL-PRF-23236, 3 - 5 MILES</td>
<td>SAME AS LINE 41</td>
<td>SAME AS LINE 41</td>
<td>SAME AS LINE 41 FOR BARE METAL AREAS</td>
<td>SAME AS LINE 41 FOR BARE METAL AREAS</td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS (OVERCOAT)</td>
<td>43</td>
<td>SAME AS LINE 41 FOR BARE METAL AREAS</td>
<td>SAME AS LINE 41</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>POWER TOOL CLEANING, SSPC-SP-3</td>
<td>SAME AS LINE 41 FOR BARE METAL AREAS</td>
<td>SAME AS LINE 41</td>
<td>SAME AS LINE 41</td>
<td>SAME AS LINE 41</td>
<td>SAME AS LINE 41</td>
</tr>
</tbody>
</table>

SEE NOTE (9)
<table>
<thead>
<tr>
<th>TABLE 3 ALUMINUM SURFACES</th>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C WELDING BAYS & LIGHT TRAPS</th>
<th>D BULKHEADS & OVERHEADS</th>
<th>E DECKS</th>
<th>F THERMAL INSULATION</th>
<th>G MARKINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WET SPACES (WASH ROOMS, WATER CLOSETS, SHOWER STALLS, GALLEY, SCULLERIES & STOREROOMS WHERE HEAVY CONDENSATION IS COMMON)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Power Tool Clean to Bare Metal, SSPC-SP-11</td>
<td>One Coat Sigma Glaze 5492, 8-10 Mil, White Only</td>
<td>One Stripe Coat Sigma 5492, 8-10 Mil & --</td>
<td>One Full Coat, 8-10 Mil, White Only</td>
<td>Same as Line 41</td>
<td>Same as Line 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[See Notes (28) & (40)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Same as Line 45</td>
<td>One Coat Alocit 28.15, 6 - 8 Mil</td>
<td>One Stripe Coat Sherwin Williams Dura-Plate UHS, 6 - 10 Mil & --</td>
<td>One Final Coat, 10 - 12 Mil</td>
<td>Same as Line 41</td>
<td>Same as Line 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Same as Line 45</td>
<td>One Coat International Interbond 998, 6 - 8 Mil</td>
<td>Same as Line 46</td>
<td>One Stripe Coat International Interbond 998, 6 - 8 Mil & --</td>
<td>One Final Coat, 6 - 8 Mil</td>
<td>Same as Line 41</td>
<td>Same as Line 41</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Same as Line 45</td>
<td>One Coat MIL-PRF-23236, Type VII, Class 17, 6 - 8 Mil</td>
<td>Same as Line 46</td>
<td>One Stripe Coat MIL-PRF-23236, Type VII, Class 17, 6 - 8 Mil & --</td>
<td>One Final Coat, 6 - 8 Mil</td>
<td>Same as Line 41</td>
<td>Same as Line 41</td>
<td></td>
</tr>
<tr>
<td>MACHINERY SPACES & BILGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Power Tool Clean to Bare Metal, SSPC-SP-11 - OR - Waterjetting to NACE 5/SSPC-SP-12 Condition WJ-2/L - OR - Near White Metal Blast, NACE 2/SSPC-SP-10</td>
<td>One Coat Alocit 28.15, 6 - 8 Mil</td>
<td>Above Bilge Area: 2 Coats F-124, DOD-E-24607, 1.5 - 3 Mil/Coat</td>
<td>Bilge Area: One Stripe Coat Alocit 28.15, 6 - 8 Mil & --</td>
<td>One Final Coat Alocit 28.15, 6 - 8 Mil</td>
<td>Same as Line 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Same as Line 49</td>
<td>One Coat International Interbond 998, 6 - 8 Mil</td>
<td>Same as Line 49</td>
<td>Bilge Area: One Stripe Coat International Interbond 998, 6 - 8 Mil & --</td>
<td>One Final Coat International Interbond 998, 6 - 8 Mil</td>
<td>Same as Line 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Same as Line 49</td>
<td>One Coat MIL-PRF-23236, Type VII, Class 5 or 17, 6 - 8 Mil</td>
<td>Same as Line 49</td>
<td>Bilge Area: One Stripe Coat MIL-PRF-23236, Type VII, Class 5 or 17, 6 - 8 Mil & --</td>
<td>One Final Coat MIL-PRF-23236, Type VII, Class 5 or 17, 6 - 8 Mil</td>
<td>Same as Line 41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 3 ALUMINUM SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
<td>G MARKINGS</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>INTAKE VENT PLENUMS, BETWEEN SKIN OF SHIP & MOISTURE SEPARATORS</td>
<td>52</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT CREAM SIGMA COATINGS EDGEGUARD PRIMER (PDS NO. 5427), 4 - 8 MILS</td>
<td>ONE STRIPE COAT WD GRAY SIGMA EDGEGUARD TOP COAT (PDS NO. 5428), 6 - 10 MILS & --</td>
<td>ONE COAT OFF-WHITE SIGMA COATINGS EDGEGUARD TOPCOAT (PDS NO. 5428), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td>53</td>
<td>SAME AS LINE 52</td>
<td>ONE COAT BUFF SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER (B62H220/B62VZ20), 4 - 8 MILS</td>
<td>ONE STRIPE COAT GRAY SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62A220/B62VZ20), 6 - 10 MILS & -- & ONE COAT WHITE SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62W220/B62VZ20), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td>SAME AS LINE 52</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624 (THA624/627) WHITE, 6 - 10 MILS & --</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 (THA625/627) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>SAME AS LINE 52</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, AMBER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5411-5000, GRAY, 6 - 10 MILS & --</td>
<td>ONE FULL COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>SAME AS LINE 52</td>
<td>ONE COAT SHERWIN WILLIAMS DURAPLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS & -- & ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>SAME AS LINE 52</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS & -- & ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td>TABLE 3</td>
<td>ALUMINUM SURFACES</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>INTAKE VENT PLENUMS, BETWEEN SKIN OF SHIP & MOISTURE SEPARATORS (CONT)</td>
<td>58</td>
<td>WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L - OR - NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
</tr>
<tr>
<td>59</td>
<td>SAME AS LINE 58</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
</tr>
<tr>
<td>CLEAN AND DIRTY SIDE OF COMBUSTION AIR INTAKES</td>
<td>60</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS</td>
</tr>
<tr>
<td>61</td>
<td>SAME AS LINE 60</td>
<td>ONE COAT SHERWIN WILLIAMS DURAPLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
</tr>
<tr>
<td>62</td>
<td>WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L - OR - NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
</tr>
<tr>
<td>63</td>
<td>SAME AS LINE 62</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
</tr>
<tr>
<td>64</td>
<td>SAME AS LINE 62</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
</tr>
<tr>
<td>TABLE 3</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
<td>G MARKINGS</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CLEAN AND DIRTY SIDE OF COMBUSTION AIR INTAKES (CONT)</td>
<td>65</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11, USING STAINLESS STEEL WIRE BRUSHES, STAINLESS STEEL PADS, OR ABRASIVE SANDING DISCS (ANSI/BHMA B74.18)</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>SAME AS LINE 65</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE FINAL COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE FINAL COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
</tr>
<tr>
<td></td>
<td>67</td>
<td>SAME AS LINE 65</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
</tr>
<tr>
<td>MIXING ROOM/UPTAKE SPACES WITH VENTS OR LOUVERS TO THE OUTSIDE ATMOSPHERE (BULKHEADS & DECKS)</td>
<td>68</td>
<td>NEAR WHITE METAL BURNT NACE 2/SSPC-SP-10</td>
<td>ONE COAT SIGMA COATINGS EDGEGUARD PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA COATINGS EDGEGUARD TOPCOAT, 10 - 12 MILS</td>
<td>ONE STRIPE COAT SIGMA COATINGS EDGEGUARD TOPCOAT, 10 - 12 MILS</td>
<td>ONE COAT SIGMA COATINGS EDGEGUARD TOPCOAT, 10 - 12 MILS</td>
<td>ONE COAT SIGMA COATINGS EDGEGUARD TOPCOAT, 10 - 12 MILS</td>
<td>ONE STRIPE COAT SIGMA COATINGS EDGEGUARD TOPCOAT, 10 - 12 MILS</td>
</tr>
<tr>
<td>INTERIOR ALUMINUM SURFACES</td>
<td>72</td>
<td>SAME AS LINE 41</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>SAME AS LINE 41</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>SAME AS LINE 58</td>
<td>SAME AS LINE 41</td>
</tr>
<tr>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
<td>G MARKINGS</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>-----------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>SOAP & WATER CLEAN & HAND SAND AS NECESSARY</td>
<td>ONE COAT FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS</td>
<td>2 COATS WATER-BASED INTERIOR LATEX, MIL-PRF-24596, 2 - 4 MILS/COAT</td>
<td>- OR -</td>
<td>2 COATS NAVY F-25A FIRE RETARDANT INTERIOR LATEX, 2 - 4 MILS/COAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>SAME AS LINE 75</td>
<td>ONE COAT FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS</td>
<td>2 COATS OF FINISH COAT DOD-E-24607, 1.5 - 3 MILS/COAT, F-124, 125, OR 126 (COLOR TO BE DESIGNATED)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 3 WOOD SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
<td>G MARKINGS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>------------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS</td>
<td>77</td>
<td>HAND TOOL CLEAN & -- & -- POWER TOOL CLEAN TO BARE WOOD OR TIGHTLY ADHERING INTACT PAINT</td>
<td>2 COATS FORMULA 84, ALKYD ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS/COAT</td>
<td>2 COATS MIL-PRF-24596, WATER-BASED INTERIOR LATEX, 2 - 4 MILS/COAT OR 2 COATS NAVY F-25A, WATER-BASED FIRE RETARDANT COATING, 2 - 4 MILS/COAT</td>
<td>SEE NOTES (9) & (17) FOR COMPARTMENT PIPING & VENTILATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>SAME AS LINE 77</td>
<td>2 COATS FORMULA 84, ALKYD ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS/COAT</td>
<td>2 COATS DOD-E-24607, 1.5 - 3 MILS/COAT</td>
<td>SEE NOTE (17)</td>
<td>SAME AS LINE 77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 4 STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G TOTAL</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>POTABLE WATER TANKS</td>
<td>1</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT INTERNATIONAL 5747/5748, GREEN, 3 - 5 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL 5753/5754, WHITE, 3 - 5 MILS</td>
<td>ONE COAT INTERNATIONAL 5753/5754, WHITE, 3 - 5 MILS</td>
<td>AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td></td>
<td>TOTAL SYSTEM 8 MILS MIN, 10 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS TANKGUARD N11G100/N11V100, GREEN, 3 - 5 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS TANKGUARD N11L100/N11V101, BLUE, 3 - 5 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS TANKGUARD N11L100/N11V101, BLUE, 3 - 5 MILS</td>
<td>AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td></td>
<td>TOTAL SYSTEM 8 MILS MIN, 10 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE V OR VI, CLASS 9, 3 - 5 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE V OR VI, CLASS 9, 3 - 5 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE V OR VI, CLASS 9, 3 - 5 MILS</td>
<td>AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td></td>
<td>TOTAL SYSTEM 8 MILS MIN, 10 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE STRIPE COAT F-152, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE COAT F-156, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE STRIPE COAT F-150, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE COAT F-152, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 6 - 10 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 10 - 12 MILS</td>
<td>AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td></td>
<td>TOTAL SYSTEM 8 MILS MIN, 10 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SIGMAGUARD CSF 85, 8 - 12 MILS</td>
<td>ONE STRIPE COAT SIGMAGUARD CSF 85, 8 - 12 MILS</td>
<td>ONE COAT SIGMAGUARD CSF 85, 8 - 12 MILS</td>
<td>AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td></td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 9, 8 - 12 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 9, 8 - 12 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 9, 8 - 12 MILS</td>
<td>AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td></td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td>FEEDWATER TANKS ONLY</td>
<td>8</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE STRIPE COAT F-152, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE COAT F-151, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE STRIPE COAT F-150, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE COAT F-152, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERGARD FPJ-034/FPA GRAY, 4 - 6 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERGARD, 4 - 6 MILS</td>
<td>ONE COAT INTERNATIONAL INTERGARD FPD 052/FPA WHITE, 4 - 6 MILS</td>
<td>AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td></td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 11, 4 - 6 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 11, 4 - 6 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 11, 4 - 6 MILS</td>
<td>AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td></td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td>LINE</td>
<td>A - SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G - TOTAL</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT CREAM SIGMA EDGEGUARD PRIMER (PDS NO. 5427), 4 - 8 MILS</td>
<td>ONE STRIPE COAT OFF-WHITE SIGMA EDGEGUARD TOPCOAT (PDS NO. 5428), 6 - 10 MILS</td>
<td>ONE COAT WD GRAY SIGMA EDGEGUARD TOPCOAT (PDS NO. 5428), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT BUFF SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER (B62H220/B62V220), 4 - 8 MILS</td>
<td>ONE STRIPE COAT GRAY SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62A220/B62V220), 6 - 10 MILS</td>
<td>ONE COAT WHITE SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62V220/B62V220), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624 (THA624/627) WHITE, 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 (THA625/627) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE 11</td>
<td>SEE NOTE (38)</td>
<td>SEE NOTE (38)</td>
<td>SEE NOTE (38)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 12</td>
<td>SAME AS LINE 12</td>
<td>SAME AS LINE 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 13</td>
<td>SAME AS LINE 13</td>
<td>SAME AS LINE 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 14</td>
<td>SAME AS LINE 14</td>
<td>SAME AS LINE 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G TOTAL</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 6 - 10 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 19</td>
<td>SAME AS LINE 19</td>
<td>SAME AS LINE 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT CREAM SIGMA EDGEGUARD PRIMER (PDS NO. 5427), 4 - 8 MILS</td>
<td>ONE STRIPE COAT WD GRAY SIGMA EDGEGUARD TOPCOAT (PDS NO. 5428), 6 - 10 MILS</td>
<td>ONE COAT WHITE SIGMA EDGEGUARD TOPCOAT (PDS NO. 5428), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT BUFF SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER (B62H220/B62V220), 4 - 8 MILS</td>
<td>ONE STRIPE COAT GRAY SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62A220/B62V220), 6 - 10 MILS</td>
<td>ONE COAT WHITE SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62V220/B62V220), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624 (THA624/627) WHITE, 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 (THA625/627) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 13, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 13, 6 - 10 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 13, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 4</td>
<td>STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BALLAST TANKS, FLOODABLE VOIDS (SUBSTRATE TEMPERATURE 50 DEGREES FAHRENHEIT & ABOVE)</td>
<td>25</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, AMBER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5411-5000, GRAY, 6 - 10 MILS</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5411-5674, AQUA, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td>EDGE RETENTIVE - EXTENDED SERVICE LIFE 15-20 YEARS</td>
<td>26</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 6 - 10 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>SAME AS LINE ONE</td>
<td>ONE PRIMER COAT AMERON AMERCOAT 133, 4 - 8 MILS</td>
<td>ONE STRIPE COAT AMERON AMERCOAT 333, 6 - 10 MILS</td>
<td>ONE COAT AMERON AMERCOAT 333, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERGARD 143 (THA 141/THA 148) PINK, 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERGARD 143 (THA 143/THA 148) BUFF, 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERGARD 143 (THA 144/THA 148) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624 (THA624/627) WHITE, 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 (THA625/627) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 6 - 10 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td>TABLE 4 STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G TOTAL</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>BALLAST TANKS, FLOODABLE VOIDS (SUBSTRATE TEMPERATURE 50 DEGREES FAHRENHEIT & ABOVE) EDGE RETENTIVE SERVICE LIFE 10 - 12 YEARS (LESS STRINGENT HUMIDITY REQUIREMENTS) SEE NOTE (8)</td>
<td>31</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 25</td>
<td>SAME AS LINE 25</td>
<td>SAME AS LINE 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 26</td>
<td>SAME AS LINE 26</td>
<td>SAME AS LINE 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 27</td>
<td>SAME AS LINE 27</td>
<td>SAME AS LINE 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 28</td>
<td>SAME AS LINE 28</td>
<td>SAME AS LINE 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 29</td>
<td>SAME AS LINE 29</td>
<td>SAME AS LINE 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 30</td>
<td>SAME AS LINE 30</td>
<td>SAME AS LINE 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BALLAST TANKS, FLOODABLE VOIDS (USE ONLY WHEN SUBSTRATE TEMPERATURE CANNOT BE MAINTAINED ABOVE 50 DEGREES FAHRENHEIT) NORMAL 6 - 7 YEARS SERVICE LIFE</td>
<td>37</td>
<td>SAME AS LINE 15</td>
<td>ONE COAT MIL-PRF-23236C, GRADE A OR B</td>
<td>ONE STRIPE COAT MIL-PRF-23236C, GRADE A OR B</td>
<td>ONE COAT MIL-PRF-23236C, GRADE A OR B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAIN LOCKERS</td>
<td>38</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-FLOODABLE VOIDS</td>
<td>39</td>
<td>SAME AS LINE 38</td>
<td>ONE COAT INTERNATIONAL INTERGARD 143 (THA 141/THA 148) PINK, 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERGARD 143 (THA 141/THA 148) BUFF, 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERGARD 143 (THA 144/THA 148) GRAY, 10 - 12 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>SAME AS LINE 38</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, AMBER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5411-5000, GRAY, 6 - 10 MILS</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5411-5074, AQUA, 10 - 12 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>SAME AS LINE 38</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 6 - 10 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 10 - 12 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>SAME AS LINE 38</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 6 - 10 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 10 - 12 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11 SEE NOTE (40)</td>
<td>2 COATS F-84, ALKYD ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS/COAT</td>
<td>ONE COAT NO. 27875 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td></td>
<td></td>
<td>TOTAL SYSTEM 4.5-6 MILS</td>
<td></td>
</tr>
<tr>
<td>TABLE 4 ALUMINUM SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G TOTAL</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>TANKS AND Voids</td>
<td>44</td>
<td>NEAR WHITE BLAST, NACE 2/SSPC-SP-10, TO ACHIEVE 1-1/2 TO 2 MILS ANCHOR PATTERN, USING GARNET OR ALUMINUM OXIDE</td>
<td>SAME AS FOR STEEL</td>
</tr>
<tr>
<td>TABLE 5</td>
<td>VARIOUS LOCATIONS</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>TOTAL SYSTEM</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>UNHEATED PIPING, FITTINGS, VALVES</td>
<td>1</td>
<td>HAND TOOL CLEAN, SSPC-SP-2</td>
<td></td>
<td>ONE COAT F-84, ALKyd ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS</td>
<td>ONE COAT F-84, ALKyd ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS</td>
<td>2 COATS OF BILGE FINISH COAT TO MATCH SURROUNDING SURFACES, INCLUDING LAGGED SURFACES</td>
<td></td>
<td>ONE COAT MIL-PRF-24635, 2 - 3 MILS FOR COLOR CODED SYSTEMS</td>
</tr>
<tr>
<td>UNHEATED FERROUS MACHINERY EXTERNAL SURFACES</td>
<td>2</td>
<td>POWER TOOL CLEAN, SSPC-SP-3</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT F-111, MIL-DTL-15090, 1.5 - 3 MILS - OR - ONE COAT NO. 26307 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td>IF REQUIRED FOR HIDING, ONE ADDITIONAL COAT: F-111, MIL-DTL-15090, 1.5 - 3 MILS - OR - NO. 26307 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACHINERY, GAGEBOARDS</td>
<td>3</td>
<td>SAME AS LINE 2</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT F-111, MIL-DTL-15090, 1.5 - 3 MILS - OR - ONE COAT NO. 26307 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td>IF REQUIRED FOR HIDING, ONE ADDITIONAL COAT: F-111, MIL-DTL-15090, 1.5 - 3 MILS - OR - NO. 26307 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNINSULATED SIDE OF BULKHEAD OR SHELL ADJACENT TO SEA OR AC BOUNDARY (FOR INTERIOR COMPARTMENTS ONLY)</td>
<td>4</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50630, 4 - 6 MILS</td>
<td>ONE COAT HEMPEL ANTI-CONDENS 617US-10000, 50 - 60 MILS</td>
<td></td>
<td></td>
<td>ONE COAT TEMP-COAT 101, 20 - 22 MILS</td>
<td>ONE COAT TEMP-COAT 101, 20 - 22 MILS</td>
</tr>
<tr>
<td>BOILERS & ECONOMIZERS (EXCEPT PARTS USED FOR HEAT TRANSFER), MACHINERY CASINGS, FERROUS SHEET METAL & PIPING SURFACES</td>
<td>5</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 4</td>
<td>ONE COAT F-84, ALKyd ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS - OR - ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE COAT TEMP-COAT 101, 20 - 22 MILS</td>
<td>ONE COAT TEMP-COAT 101, 20 - 22 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL EQUIPMENT, ELECTRONIC EQUIPMENT & CABLES</td>
<td>6</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 4</td>
<td>ONE COAT AMERON AMEROCOAT 892HS, 2 - 3 MILS</td>
<td>2 COATS OF TT-P-28 SUFFICIENT TO COVER THE PROFILE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABLE, INTERIOR (OTHER THAN PVC, LOW SMOKE)</td>
<td>7</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 4</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKyd ZINC MOLYBDATE, 1.5 - 3 MILS/COAT</td>
<td>2 COATS OF TT-P-28 SUFFICIENT TO COVER THE PROFILE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABLE, EXTERIOR (OTHER THAN PVC, LOW SMOKE)</td>
<td>8</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 4</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKyd ZINC MOLYBDATE, 1.5 - 3 MILS/COAT</td>
<td>2 COATS OF TT-P-28 SUFFICIENT TO COVER THE PROFILE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL/ELECTRONIC CABLES (PVC, LOW SMOKE)</td>
<td>9</td>
<td>SAME AS LINE 8</td>
<td>SAME AS LINE 8</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKyd ZINC MOLYBDATE, 1.5 - 3 MILS/COAT</td>
<td>2 COATS NAVY F-25A OR 2 COATS WATER-BASED LATEX PER MIL-PRF-24596, 2 - 4 MILS/COAT</td>
<td>2 COATS DOD-E-24607 CHLORINATED ALKyd 1.5 - 3 MILS/COAT (FOR COLOR MATCH IF REQUIRED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABLE, EXTERIOR (OTHER THAN PVC, LOW SMOKE)</td>
<td>10</td>
<td>SAME AS LINE 6</td>
<td>SAME AS LINE 6</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKyd ZINC MOLYBDATE, 1.5 - 3 MILS/COAT</td>
<td>2 COATS NAVY F-25A OR 2 COATS WATER-BASED LATEX PER MIL-PRF-24596, 2 - 4 MILS/COAT</td>
<td>2 COATS DOD-E-24607 CHLORINATED ALKyd 1.5 - 3 MILS/COAT (FOR COLOR MATCH IF REQUIRED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL/ELECTRONIC CABLES (PVC, LOW SMOKE)</td>
<td>11</td>
<td>SAME AS LINE 1</td>
<td>SAME AS LINE 1</td>
<td>2 COATS MIL-PRF-24596, WATER-BASED LATEX, 2 - 4 MILS/COAT - OR - 2 COATS OF NAVY F-25A, 2 - 4 MILS/COAT</td>
<td>2 COATS OF DOD-E-24607, 1.5 - 3 MILS/COAT (FOR COLOR MATCH IF REQUIRED)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 5</td>
<td>VARIOUS LOCATIONS</td>
<td>LINE</td>
<td>A</td>
<td>SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ANCHOR (SURFACE SHIP BOW ANCHORS)</td>
<td>12</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>SEE NOTES (14) & (21)</td>
</tr>
<tr>
<td>ANCHOR CHAIN</td>
<td>13</td>
<td>COMMERCIAL BLAST CLEAN, SSPC-SP-6</td>
<td>ONE COAT AMERON PSX 700 TO HOLD BLAST, 1 - 2 MILS</td>
<td>ONE COAT AMERON PSX 700 TO HOLD BLAST, 1 - 2 MILS</td>
<td>ONE COAT HAZE GRAY, NO. 26270 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>ONE COAT AMERON PSX 700 TO HOLD BLAST, 1 - 2 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERIOR GALVANIZED SURFACES</td>
<td>14</td>
<td>BRUSH-OFF BLAST, SSPC-SP-7</td>
<td>ONE COAT WATER-BASED INTERIOR LATEX, MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>ONE COAT WATER-BASED INTERIOR LATEX, MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>TOPCOAT TO MATCH SURROUNDING AREA</td>
<td>TOPCOAT TO MATCH SURROUNDING AREA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTERIOR GALVANIZED SURFACES</td>
<td>15</td>
<td>SAME AS LINE 14</td>
<td>ONE COAT MIL-PRF-24763, 2 - 4 MILS</td>
<td>ONE COAT MIL-PRF-24763, 2 - 4 MILS</td>
<td>ONE COAT HAZE GRAY, MIL-PRF-24763 (LOW SOLAR ABSORPTION ONLY), 2 - 4 MILS (TOP COAT OF PCMS)</td>
<td>ONE COAT MIL-PRF-24763, 2 - 4 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXHAUST PIPE EXTERIOR</td>
<td>16</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT AMERCOAT 892HS, HAZE GRAY #26270, 2 - 3 MILS</td>
<td>ONE COAT AMERCOAT 892HS, HAZE GRAY #26270, 2 - 3 MILS</td>
<td>ONE COAT AMERCOAT 892HS, HAZE GRAY #26270, 2 - 3 MILS</td>
<td>ONE COAT AMERCOAT 892HS, HAZE GRAY #26270, 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCMS (REPAIRS)</td>
<td>17</td>
<td>STRIP PAINT, USING "PEEL-AWAY-7"</td>
<td>ONE COAT HAZE GRAY, MIL-PRF-24763 (LOW SOLAR ABSORPTION ONLY), 2 - 4 MILS (TOP COAT OF PCMS)</td>
<td>ONE COAT HAZE GRAY, MIL-PRF-24763 (LOW SOLAR ABSORPTION ONLY), 2 - 4 MILS (TOP COAT OF PCMS)</td>
<td>SEE NOTE (45)</td>
<td>SEE NOTE (45)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCMS (NEW INSTALLATION)</td>
<td>18</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERIOR DECK PASSAGEWAYS NOT RECEIVING DECK COVERINGS</td>
<td>19</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT AMERCOAT AMERCOAT 238, 10 - 12 MILS</td>
<td>ONE COAT AMERCOAT AMERCOAT 238, 10 - 12 MILS</td>
<td>ONE COAT AMERCOAT AMERCOAT 238, 10 - 12 MILS</td>
<td>SAME AS LINE 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCMS (NEW INSTALLATION)</td>
<td>20</td>
<td>SAME AS LINE 19</td>
<td>ONE COAT SIGMA GUARD CSF GLASS FLAKE 7954, 10 - 12 MILS</td>
<td>ONE COAT SIGMA GUARD CSF GLASS FLAKE 7954, 10 - 12 MILS</td>
<td>ONE COAT SIGMA GUARD CSF GLASS FLAKE 7954, 10 - 12 MILS</td>
<td>ONE COAT SIGMA GUARD CSF GLASS FLAKE 7954, 10 - 12 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCMS (NEW INSTALLATION)</td>
<td>21</td>
<td>SAME AS LINE 19</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 16, 10 - 12 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 16, 10 - 12 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 16, 10 - 12 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 16, 10 - 12 MILS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **SCOPE:**

 1.1 **Title:** Cleaning and Painting Requirements; accomplish.

2. **REFERENCES:**

 2.1 **Standard Items**

 2.2 S9086-VD-STM-010/020/030/CH-631, Preservation of Ships in Service

 2.3 S9086-VG-STM-010/CH-634, Deck Coverings

 2.4 ASTM F718, Shipbuilders and Marine Paints and Coatings
 Product/Procedure Data Sheet

 2.5 29 CFR 1915, Occupational Safety and Health Standards for Shipyard
 Employment, Subparts C and Z

 2.6 Systems and Specifications, Steel Structures Painting Manual, Volume 2

 2.7 NACE Book of Standards

 2.8 ASTM D4417, Standard Test Methods for Field Measurement of Surface
 Profile of Blast Cleaned Steel

 2.9 ISO 8502-3, Assessment of Dust on Steel Surfaces Prepared for
 Painting (Pressure Sensitive Tape Method)

 2.10 S9086-CN-STM-020/CH-79, Damage Control - Practical Damage Control

 2.11 S9086-RK-STM-010/CH-505, Piping Systems

3. **REQUIREMENTS:**

 3.1 **Provide a written notice to the SUPERVISOR and the Commanding Officer's designated representative of potential exposure of personnel to toxic or hazardous substances.**
3.1.1 Post the notice at the ship's Quarterdeck or other designated location for each job or separate area at least 4 hours, but not more than 24 hours, prior to the start of work. The notice shall contain the following information:

3.1.1.1 Ship's name and hull number
3.1.1.2 Work Item number
3.1.1.3 Compartment or frame number
3.1.1.4 Identification of hazard
3.1.1.5 Date and time of work process
3.1.1.6 Identification of engineering and work practice controls

3.1.2 Deliver notification of work planned over a weekend or Monday following that weekend to the Commanding Officer's designated representative not later than 0900 on the Friday immediately preceding that weekend.

3.1.3 Deliver notification of work planned on a federal holiday and on the day following the federal holiday to the Commanding Officer's designated representative not later than 0900 on the last working day preceding the federal holiday.

3.2 Submit material certification of abrasive blast media conforming to MIL-A-22262 or A-A-1722 prior to blasting. The abrasive blast medium must be listed on the Qualified Products List (QPL), or have written notification from NAVSEA indicating QPL approval.

3.2.1 Spongejet media and process may be used as an alternative to obtain SSPC-SP-10 or SSPC-SP-11 cleanliness.

3.2.2 Recyclable ferrous metallic abrasive materials conforming to AB-3 of 2.6 may be used as an abrasive blast media for steel substrates.

3.2.2.1 Cleanliness of recyclable ferrous metallic abrasive materials shall be measured and maintained in accordance with the requirements of AB-2 of 2.6.

3.2.2.2 Submit one legible copy, in hard copy or electronic media, of the results of the quality control requirements of Paragraph 6 of AB-2 and quality assurance test required by Paragraph 5 of AB-3.

3.3 Record and maintain in-process records as blasting, painting, inspections, and tests are being accomplished. Provide a hard copy to the SUPERVISOR at the conclusion of each evolution involving (G) points by the end of the work shift or prior to the start of the next evolution requiring documentation, whichever is sooner, for preservation of the following
critical coated areas. These records shall be in accordance with Section 11 of 2.2 and Paragraph 634-3.35 of 2.3, and shall include 3.3.1 through 3.3.9:

SURFACES

Freeboard	Steel and aluminum
Hangar, flight, catapult, and vertical replenishment decks	Steel and aluminum
AFF station decks and coaming	Steel and aluminum
Chain lockers	Steel and aluminum
RAST track trough	Steel and aluminum
Interior surfaces of intake vent plenums, defined as combustion air intakes (gas turbine, diesel, and steam) and other vent system intake plenums with openings greater than 7 square feet	Steel and aluminum
Uptake spaces	Steel and aluminum
Tanks (including sumps)	Steel and aluminum
Voids	Steel and aluminum
Cofferdams	Steel and aluminum
Well deck overheads	Steel and aluminum
Bilges	Steel and aluminum
Underwater hull surfaces (including capastic shields)	All

3.3.1 Surface preparation method, including name of abrasive and QPL 22262 revision number from which the product was purchased, or copy of NAVSEA product approval letter and surface profile readings.

3.3.2 Ambient and metal surface temperatures, relative humidity, and dew point at 4-hour intervals, unless otherwise specified in 2.2 or 2.3 during preservation process. Information for environment shall be recorded from conditions on-site, in close proximity to the structure.

3.3.3 Name of paint/non-skid, manufacturer, batch number, and date of manufacture and expiration, including original manufacturer's certificate of compliance and material conformance test data in accordance with Section 11 of 2.2.

3.3.4 Material safety data sheets and 2.4 for each proprietary coating used.

3.3.5 Surface conductivity.

3.3.6 Elapsed time between coats.

3.3.7 Dry film thickness (DFT) for the total system.

3.3.8 Name and type of spray equipment utilized.

3.3.9 Record temperature of paint and non-skid storage 24 hours in advance of use. Temperature shall be maintained within the limits specified.
in 2.2 and 2.3 and shall be recorded once per shift during the 24-hour period prior to use.

3.3.10 Submit one legible copy, in hard copy or electronic media, of recorded in-process information on QA Checklist Forms 631-12.5 of 2.2 (see 4.7) and Figure 634-3-25 of 2.3 to the SUPERVISOR within 24 hours of completion of preservation of each separate location identified in the invoking Work Item.

3.3.11 Submit one legible copy, in hard copy or electronic media, of the manufacturer's warranty documents to the SUPERVISOR when specified in the Job Order.

3.3.12 Submit one legible copy, in hard copy or electronic media, of 2.4 to the SUPERVISOR.

3.4 Consider marine coatings to contain heavy metals (e.g., lead, cadmium, or chromium), hexavalent chromium, crystalline silica and/or other toxic or hazardous substances.

3.4.1 Submit one legible copy, in hard copy or electronic media, of the written rationale when no personnel monitoring will be conducted, providing the basis for the decision not to engage in personnel monitoring to the SUPERVISOR, prior to the disturbance of coatings.

3.4.2 Submit one legible copy, in hard copy or electronic media, of the laboratory analysis, listing results of personnel monitoring to the SUPERVISOR within 10 working days of any such testing.

3.5 Accomplish preservation operations in accordance with the following:

(I) "ENVIRONMENTAL READINGS"

3.5.1 Ambient and metal surface temperatures, relative humidity, and dew point at a minimum of 8-hour intervals during the preservation process shall be recorded from conditions on-site, in close proximity to the structure being coated.

3.5.1.1 These environmental readings shall be taken from 48 hours prior to, to 48 hours after, the application of a coat of paint, using a data logger (Veriteq Instruments, Inc., Model No. KT-2000-NEI or equivalent), recording data at a minimum of every 5 minutes. For potable and feedwater tanks, environmental readings shall be taken from the start of surface preparation to 7 days after application of the final coat.

3.5.1.2 If a data logger described in 3.5.1.1 is not used, environmental readings shall be taken every 4 hours vise every 8 hours.

3.5.2 Coatings, with the exception of non-skid, applied on areas listed in 3.3 shall be applied only when the temperature of the prepared
substrate is greater than 50 degrees Fahrenheit and a minimum of 5 degrees Fahrenheit above the dew point.

3.5.2.1 International Interbond 998, Alocit 28.15, and all MIL-PRF-23236, Type VII, Class 17 products, are exempt from dew point and relative humidity requirements.

(I) or (I)(G) "CLEANLINESS" (See 4.4)

3.5.3 Accomplish degreasing/cleaning a maximum of 4 hours prior to surface preparation to ensure removal of surface contaminants, such as sea salts, loose rust, dust, mud, marine growth, grease, oil, and other petroleum products.

3.5.3.1 If evidence of contamination exists, accomplish degreasing/cleaning a maximum of 4 hours prior to application of each coat of paint to ensure removal of surface contaminants.

3.5.4 Accomplish the safety precautions as specified in 2.2, 2.5, and the Job Order during surface preparation and the application or removal of marine coatings.

3.5.5 Painters and coating inspectors shall be certified in accordance with Section 11 of 2.2.

3.5.5.1 Coating Applicators performing preservation of areas listed in 3.3 shall be certified in accordance with QP-1 of 2.6.

3.5.5.2 Plural Component Pump Tenders and Coating Applicators shall be certified in accordance with SSPC Marine Plural Component Applicator Certification (PCAC), or NAVSEA 05M approved equivalent.

3.5.6 For areas listed in 3.3, blasters shall be certified in accordance with SSPC-C-7 or NAVSEA 05M approved equivalent, and Section 11 of 2.2.

3.5.7 Select the specific requirements of 2.2, 2.3, 2.6, and 2.7 for determining the type of surface preparation required and coating system options that are available for use in accomplishing the work specified unless otherwise directed in the Work Item.

3.5.8 For non-skid coatings, requirements outlined in Paragraph 634-3.27 of 2.3 shall be followed.

3.5.9 Limit surfaces being prepared for preservation in size to an area that can be coated prior to the occurrence of flash rusting and/or oxidation. Remove any flash rust prior to painting, except as follows:

3.5.9.1 Surfaces cleaned by waterjetting shall meet the applicable Standard for flash rust.
3.5.9.2 Detergents and inhibitors shall not be used in the waterjetting water without written approval from the coating manufacturer and the SUPERVISOR.

3.5.10 For steel and aluminum plates, shapes, and ferrous piping, abrasive blast equal to NACE 2/SSPC-SP-10 of 2.6 and 2.7, with a surface profile that meets the requirements of 3.5.18, and prime, prior to shipboard installations except in the areas where weld joints remain to be accomplished, or unless specified otherwise in the invoking Work Item. Non-ferrous piping, which is to be preserved shipboard, shall be hand tool (non-impact tools only) cleaned in accordance with SSPC-SP-2 of 2.6. Preservation of non-ferrous piping one inch or less does not require preparation.

3.5.11 For touch up, disturbed, and/or inaccessible areas, the minimum surface preparation shall be that shown in the applicable Tables, except that an SSPC-SP-11 is acceptable for areas originally requiring an NACE 2/SSPC-SP-10 or NACE 5/SSPC-SP-12.

3.5.11.1 Touch-up is defined within this Standard Item as preservation operations on cumulative surface areas less than one percent of the total area being preserved, with no individual area greater than 10 square feet. Included under touch-up operations are new and disturbed areas of less than 10 square feet. The requirements of 3.3, 3.5.1, 3.5.3, 3.5.10, 3.5.19, 3.7.8, 3.13, and 3.14 are waived for these touch-up areas. Paragraph 3.5.20 (surface preparation) shall be verified by the accomplishing activity as (1) inspections prior to coating applications. This waiver does not apply to potable or feedwater tanks; no requirements shall be waived for the touch up of potable or feedwater tanks.

3.5.11.2 Disturbed areas are defined as any surface that requires cleaning and/or painting due to existing paint finish being damaged in the accomplishment of work specified by the Job Order.

3.5.11.3 Closure plates/hull accesses and their associated welds will not be considered a disturbed surface and shall be cleaned and painted by the applicable table. Deviations to the requirements may be authorized by the SUPERVISOR based on size, location, application, or severity of condition of coating system being applied.

3.5.11.4 Although spot repair, partial preservation, and full preservation are different in the proportions of area being preserved, each shall meet the requirements stated in this document as if full preservation were being done.

3.5.11.5 Spot repair is defined as a small, localized area being preserved that is greater in size than what is defined as touch-up.

3.5.11.6 Partial preservation is defined as preservation of a section of an entire space or location.
3.5.11.7 Full preservation is defined as preservation of an entire space or location.

3.5.12 Feather edges of well adhered paint remaining after cleaning for all surface preparation methods.

3.5.13 Clean, prior to painting, insulation and lagging free of foreign matter and contaminants that would prevent adherence of paint.

3.5.14 Clean and dry prepared and previously painted surfaces free of foreign matter that will affect adherence of paint coatings. Inclusions such as dust and debris in the paint film shall be removed prior to the application of the next coat.

3.5.15 Remove foreign matter and debris resulting from cleaning operations.

3.5.16 Record and restore existing painted labels, compartment designations, hull markings, and other painted information which will be removed or covered during cleaning and painting operations.

3.5.17 Install masking material for protection of equipment and items not to be painted during preservation. Shipboard items not to be painted are listed in Paragraphs 631-8.22 of 2.2.

(I) or (I)(G) "SURFACE PROFILE" (See 4.4)

3.5.18 Following blasting or waterjetting operations, surface peak-to-valley profile must be checked. Five profile readings shall be taken for the first 1,000 square feet (with a minimum of 5 profile readings taken); for each additional 1,000 square feet, 2 profile readings shall be taken. Each group of profile readings shall average 2 to 4 mils, with no reading less than one mil nor more than 5 mils. If such profile is not present, proper profile must be established. Profile readings shall be taken in accordance with Method C of 2.8, using profile tape suitable to read subject profile, i.e., fine to extra-coarse plus.

3.5.18.1 When surface profile requirements of the manufacturer's instructions are greater than that specified in this item, they shall supersede this item.

3.5.18.2 Waterjetting will not establish a profile. If this method is employed and a profile does not exist or is insufficient to meet the requirements, the contractor will still be required to establish sufficient profile.

3.5.18.3 Spongejet may not establish a sufficient profile. If this method is employed and the profile is insufficient to meet the requirements, the contractor will still be required to establish sufficient profile.
3.5.18.4 Following power tool cleaning to SSPC-SP-11, surface profile shall be checked. Five profile readings shall be taken for the first 1,000 square feet (with a minimum of 5 profile readings taken); for each additional 1,000 square feet, 2 profile readings shall be taken.

(I)(G) "CONDUCTIVITY MEASUREMENT"

3.5.19 Accomplish conductivity measurements for surfaces listed in 3.3.

3.5.19.1 Accomplish surface conductivity checks using available field or laboratory test equipment on the freshly prepared surface. Five determinations shall be conducted every 1,000 square feet. Areas less than 1,000 square feet shall have 5 determinations made. For immersed applications, such as tanks and bilges, conductivity measurements shall not exceed 30 microsiemens/cm. For non-immersed applications, conductivity measurements shall not exceed 70 microsiemens/cm. Samples shall be collected using the Soluble Salt Conductivity Measurement According to Bresle Method or approved equivalent. If conductivity measurements exceed the respective values, water wash the affected areas with fresh water. Dry the affected areas and remove all standing water. Accomplish surface conductivity checks on affected areas. Repeat step until satisfactory levels are obtained.

3.5.19.2 Accomplish the requirements of 3.5.19 and 3.5.19.1 within 4 hours prior to application of each coat of paint, if evidence of contamination of the surface exists.

(I) or (I)(G) "SURFACE PREPARATION" (See 4.4)

3.5.20 Verify surface preparation for the coating systems specified in Tables One through 5 in accordance with 2.2 through 2.4, 2.6, and 2.7.

3.5.20.1 Surface cleanliness for dust shall meet Rating 1, Class 2, of 2.9.

3.6 Store paint in a cool, dry place, do not expose to freezing temperatures or direct sunlight, and in accordance with manufacturer's instructions. Storage of non-skid coatings shall be in accordance with Table 634-3-6 of 2.3.

3.7 Coating systems shall be applied in accordance with the applicable tables and 2.2. Paints shall not be thinned.

3.7.1 A tack coat is defined as a layer of paint with a reduced film thickness (e.g., 1-2 mils, vice 5 mils); it does not imply to add thinner.

3.7.2 When using 2-part coating systems (epoxies and polyurethanes), use of "partial kits" is prohibited unless using verified proportioning equipment or other verified measuring equipment (gravimetric).
3.7.3 For commercial underwater hull coating systems including anti-corrosive paints and anti-fouling paints, the manufacturer's primer must be used with his anti-fouling coating. No substitution is allowed.

3.7.3.1 Successive coats of anti-corrosive paints shall be of a contrasting color.

3.7.4 Utilize water-based latex fire retardant paints in preference to chlorinated alkyd based fire retardant paints. Such paints are available under MIL-PRF-24596 or a Naval Sea Systems Command (NAVSEA) approved product (Formula 25A). Accomplish the surface preparation and coating application requirements of 2.2 when using water-based paints.

3.7.5 Apply the first coat of MIL-P-15931 (Formulas 121/129) or MIL-PRF-24647 anti-fouling paint when the last coat of epoxy paint is still slightly tacky (approximately 4 to 6 hours after paint application) and in accordance with 2.4. Tacky is defined as that curing (drying) stage when a fingertip pressed lightly against the film leaves only a slight impression and none of the film sticks to the finger. If the epoxy is hard (usually 8 hours after application), apply a tack coat of epoxy paint one to 2 mils wet film thickness (WFT) over previously painted surfaces. The tack coat shall be allowed to cure (dry) to when a fingertip pressed lightly against the film leaves only a slight impression and none of the film sticks to the finger, then apply the next full coat of the system.

3.7.6 Mix and apply the approved proprietary coatings in accordance with manufacturer's instructions, except for requirements when invoked for surface preparation and minimum DFT as specified in Tables One through 5. The requirements of 3.7.5 also apply to manufacturers' proprietary coatings.

3.7.7 Mix and apply the Navy Polyamide Epoxy MIL-DTL-24441 coatings in accordance with the following, except the DFT shall be as specified in Tables One through 5. The MIL-DTL-24441 coatings mixing ratio is one-to-one by volume. The components of the various formulas are not interchangeable. Blend each component thoroughly prior to mixing the components. After mixing equal volumes of the 2 components, the mixture must be thoroughly stirred. For Type III only, the stand-in times listed below must be observed. There is no induction time for Type IV.

3.7.7.1 Stand-in time (induction time) is defined as the time immediately following the mixing of the components A and B during which the critical reaction period of these components is initiated and is essential to the complete curing of the coating. During stand-in time the mixture must be thoroughly stirred at least once every 20 minutes to avoid hot spots caused by localized overheating from the chemical reaction.
Surface Temperature at Job Site
(Degrees Fahrenheit)

<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>Stand-In Time in Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 to 50</td>
<td>2 hours at 70 degrees Fahrenheit (paint temperature)</td>
</tr>
<tr>
<td>50 to 60</td>
<td>2 hours at job site temperature</td>
</tr>
<tr>
<td>60 to 70</td>
<td>One hour to 1-1/2 hours at job site temperature</td>
</tr>
<tr>
<td>70 and Above</td>
<td>1/2 to one hour at job site temperature</td>
</tr>
</tbody>
</table>

(I) or (I)(G) "STRIPE COAT INSPECTION" (See 4.4)

3.7.8 For all areas where stripe coating is required, as denoted in Tables One through 5, apply stripe coat to edges, weld seams, welds of attachments and appendages, cutouts, corners, butts, foot handholds (including inaccessible areas such as back side of piping, under side of I-beams), and other mounting hardware (non-flat surface) in accordance with 2.4. Stripe coat these areas after the prime coat has dried. Stripe coating applied shall be neat in appearance, minimizing extra thickness applied to edges as well as streaks and drops of paint. The stripe coat shall encompass all edges as well as at least a one-inch border outside each edge and weld.

3.7.8.1 Each stripe coat shall be of the specified paint system and shall be a different color from the paint over which it is being applied and the next coat in the system (if a product only comes in two colors, the stripe coat shall contrast with the color of the previous coat). First coat inspection shall be conducted prior to stripe coat application.

3.7.9 Drying time between coats of specified coating for potable and feedwater tanks shall be a minimum of 48 hours at a minimum temperature of 70 degrees Fahrenheit, using heated air if necessary to maintain temperature. Ventilation shall be sufficient to ensure continuous flow of air through the tanks with at least one complete air change every 4 hours. Mixing and stand-in times (induction times) shall be in accordance with manufacturer's instructions.

3.7.10 Following coating applications, potable and feedwater tanks shall be continuously ventilated for at least 7 consecutive days prior to filling with water. Maintain a minimum temperature of 70 degrees Fahrenheit within the tanks. Ventilation shall ensure continuous flow of air with a minimum of one complete air change every 4 hours. Verify and document daily that ventilation is properly installed and running.

3.7.10.1 Freshly painted potable water tanks shall be rinsed at least twice with fresh water to ensure cleanliness of tank.

3.8 Prior to application of any solvent-based alkyd coating, such as MIL-PRF-24635, over an epoxy coating, allow epoxy to dry until it is no
longer tacky (as defined in 3.7.5). It shall be dry to the touch but not fully cured before overcoating with any solvent-based alkyd coating.

3.9 Prior to application of any water-based coating, such as MIL-PRF-24596, over an epoxy coating, allow epoxy to dry at least 16 hours before overcoating with any water-based coating.

3.10 Overcoating of MIL-DTL-24441 with MIL-DTL-24441:

3.10.1 If less than 7 days has elapsed since the application of the prior coat, the next coat may be applied after visual inspection to confirm the absence of grease, dirt, salts, or other surface contaminants. If surface contamination is suspected as a result of visual inspection or for other reasons, the entire surface shall be cleaned using a fresh water and detergent wash, followed by a fresh water rinse sufficient to remove all detergent and contaminants. The next coat of MIL-DTL-24441 shall be applied after surfaces are completely dried.

3.10.2 If more than 7 days but less than 30 days has elapsed since the application of the prior coat, the entire surface shall be cleaned using a fresh water and detergent wash followed by a fresh water rinse sufficient to remove all detergent and contaminants. Ensure the surface has fully dried, then apply a tack coat (one to 2 mils WFT) of the last coat applied or Formula 150. The tack coat shall be allowed to cure (dry) to when a fingertip pressed lightly against the film leaves only a slight impression and none of the film sticks to the finger, then apply the next full coat of the system. This condition can only be met one time during the painting system application.

3.10.3 If greater than 30 days has elapsed since the application of the prior coat, the entire surface shall be cleaned using a fresh water and detergent wash, followed by a fresh water rinse sufficient to remove all detergent and contaminants. After allowing the surface to dry, the surface shall be lightly abraded to degloss the epoxy, using a brush-off abrasive blast (preferred), power sanding, or hand sanding using 80-120 grit, then apply the next full coat of the system.

3.11 Intentionally left blank.

3.12 Overcoating of non-MIL-DTL-24441 epoxy coatings:

3.12.1 Follow the manufacturer's direction for the allowable overcoat window, not to exceed 30 days. The 30-day maximum may be extended beyond 30 days if specifically approved in writing by NAVSEA. Where the base coat and topcoat are provided from different manufacturers, the term "manufacturer" refers to the manufacturer of the base coat. A tack coat shall not restart the 30-day window.

3.12.1.1 If either the manufacturer's recommendation or the 30-day window (or a specific extension approved by NAVSEA) has been exceeded, the coating shall be reactivated by either following the manufacturer's
Recommendation for re-activating the surface or cleaning the entire surface using a fresh water and detergent wash, followed by a fresh water rinse sufficient to remove all detergent and contaminants. After allowing the surface to dry, the surface shall be lightly abraded to degloss the epoxy, using a brush-off abrasive blast (preferred), power sanding, or hand sanding using 80-120 grit.

3.12.2 Comply with the time requirements of 2.3 for application of non-skid over primer coat.

(I) or (I)(G) "DRY FILM THICKNESS" (See 4.4)

3.13 Measure DFT of each coat applied for the coating systems listed in Tables One through 5. This includes any stripe coats.

3.13.1 When measuring full coats to determine total system thicknesses denoted in Tables One through 5, DFT readings shall not be taken in areas where stripe coatings have been applied.

3.13.2 DFT readings for each coat shall be taken in accordance with Method PA-2 of 2.6.

3.13.2.1 WFT readings are required in lieu of DFT readings for any coat that must be in a tacky state (as defined in 3.7.5) when the next coat is applied. Refer to film thickness conversion table in 2.6. WFT equals DFT divided by percent solids by volume (when percent solids by volume is expressed as a decimal, i.e., 60 percent equals 0.60).

3.13.3 A WFT gage shall be used to verify the application of proper paint thickness for the primer coat of all coating systems listed in Tables One through 5. Readings shall be taken to confirm this, but need not be recorded.

3.13.4 For underwater hull paint systems, record a minimum of 30 DFT readings per 1,000 square feet. Baseline DFT readings of underwater hull paint system shall be taken after final coat is applied and Quality Assurance spot readings in accordance with 2.6 are completed.

3.13.5 Apply an additional coat of any single coat of a multiple coat system when that coat measures less than its specified DFT. Multiple coats shall be of contrasting color. DFT of each coat, including an additional coat if applied, shall not exceed the specified maximum thickness for each coat.

(I)(G) "HOLIDAY INSPECTION"

3.14 Perform a visual holiday check on each coat of the system for areas listed in 3.3. Any holiday found shall be marked and touched up.

3.14.1 Remove masking material and paint overspray after cleaning and painting operations are completed.
4. **NOTES:**

4.1 Thicknesses specified in Tables One through 5 are DFT and are minimum requirements, unless otherwise specified.

4.2 Total DFT encountered during removal may exceed specified table thicknesses.

4.3 Total removal of ablative coating is not required in accordance with Paragraph 631-5.2.3.3 of 2.2. The Work Item will specify the degree of removal.

4.4 The paragraphs referencing this note are considered an (I)(G) if the inspection/test is on a critical surface as listed in 3.3. If the inspection/test is not on a critical surface as listed in 3.3, then the paragraph is considered an (I). These inspection point requirements also apply to build-up coats to obtain proper millage.

4.5 The word "new" in "new and disturbed surfaces" refers to all material installed on the ship by the contractor regardless of source.

4.6 Structural requirements of Notes (23) and (24) will be addressed by the invoking Work Item.

4.7 QA Checklist Forms referred to in 3.3.10 are invoked by Advance Change Notice 7A to 2.2 and are available at www.nstcenter.com.

4.8 Preservation Process Instructions (PPIs) provide detailed instructions and procedures for specific ship preservation evolutions to include safety precautions, surface preparation, selection of appropriate coating systems, and third-party quality assurance check points. See new Section 12 of 2.2 for details. Section 12 is provided in ACN 5A (Control Number N00024-00-FJ825).

4.9 SSPC training information can be found at http://www.sspc.org.

4.10 Table One is for underwater hull areas. Table 2 is for exterior areas. Table 3 is for interior spaces. Table 4 is for tanks and voids. Table 5 is for miscellaneous areas.
NOTES OF TABLES ONE THROUGH 5

(1) Use Sherwin Williams P23RQ62/P23VQ80 in lieu of P23RQ82/P23VQ80 and use P23AQ61/P23VQ80 in lieu of P23AQ81/P23VQ80 for cold weather applications below 50 degrees Fahrenheit. Do not apply coating below 35 degrees Fahrenheit without approval of the SUPERVISOR.

(2) Boottop - The boottopping is defined as the black area from minimum load waterline at which the ship is expected to operate to 12 inches above the maximum load waterline. The black paint is an anti-fouling paint conforming to MIL-PRF-24647 for a 5-year, 7-year, or 10 to 12-year service life, or MIL-P-15931 for 2-year service life. Haze gray shall be carried to the black anti-fouling paint that marks the upper boottop paint. Do not apply the black anti-fouling paint over haze gray MIL-PRF-24635.

(3) Ameron Amercoat 235 can be used for cold weather application below 40 degrees Fahrenheit. Apply at 5 mils DFT (minimum) per coat. Do not apply coating below 35 degrees Fahrenheit without approval of the SUPERVISOR.

(4) Use International FCA 321 in lieu of FPA 327, or KHA414 in lieu of KHA062, for cold weather application below 50 degrees Fahrenheit. Do not apply coating below 35 degrees Fahrenheit without approval of the SUPERVISOR.

(5) Use Hempel Hempadur 4514U in lieu of 4515 for cold weather applications below 50 degrees Fahrenheit. Do not apply coating below 35 degrees Fahrenheit without approval of the SUPERVISOR.

(6) A minimum of 24 hours drying time shall be allowed after last coat prior to undocking.

(7) To ensure a continuous primer base, areas adjacent to those being coated with proprietary primer and non-skid listed on QPL's for MIL-PRF-24667 shall be coated with the same primer and compatible topcoat.

(8) These systems shall also be invoked for catapult wing voids and catapult exhaust blowdown trunks.

(9) DOD-E-24607, chlorinated alkyd, may also be used. MIL-PRF-24596, Type 1, Grade C, Classes 1 and 2, or DOD-E-24607 must be used if surface and ambient temperature are less than 50 degrees Fahrenheit.

(10) The "inner shield" is defined as the portion of the capastatic shield that extends 3 ft. from the anode in all directions. The "outer shield" is defined as the portion of the capastatic shield from the inner shield to a distance of 6 ft. from the anode. Repair of the inner shield area is required when total deteriorated inner shield surface area is from 0 to 2 percent, and no single spot is greater than one square foot. Repair of the outer shield area is required when total deteriorated outer...
shield surface area is from 0 to 10 percent, and no single spot is
greater than one square foot. Replacement (new installation) of the
entire capastic shield is required when either of the above criteria is
exceeded (damage to the inner shield is greater than 2 percent, OR
damage to the outer shield is greater than 10 percent, OR any single
spot damage is greater than one square foot).

(11) The following steps shall be used for repair/replacement of capastic
shields. Ensure QA checkpoints are conducted in accordance with 3.3.

a. Protect surrounding area from damage. Mask anode surfaces with
heavy cardboard or plywood.

b. Abrasive blast.

c. For repair, areas of undamaged capastic shall be roughened and
feathered into the bare metal areas to provide a profile for
adhesion of the new capastic. Feather edges at least 1 inch using
power tools or hand sanding. To prevent fracturing of shield, do
not feather using abrasive blasting.

d. The capastic material shall be mixed, applied, and cured in
accordance with manufacturer's instructions.

e. The capastic should be faired in and made smooth from the anode for
a distance of at least 10 inches to minimize hull turbulence.

f. After the capastic has cured, sanding shall be accomplished to
smooth any rough areas and to degloss the surface for the
Anticorrosive to be applied over it.

g. During visual inspection, ensure anode surfaces are undamaged and
free of paint and capastic.

h. The anode should remain covered with heavy cardboard or plywood to
prevent damage or contamination by the ship's underwater hull
coating system until just before undocking.

(12) These systems may also be invoked for preservation of decks in spaces
that are prone to wear and do not receive deck covering.

(13) Anchors below lower boottopping limit shall be painted in accordance
with normal underwater hull anti-corrosion/anti-fouling system.

(14) For MCM, and MHC ships, use black walnut shells for abrasive blast
media.

(15) Anchor chain and detachable links shall be marked and color coated in
accordance with NSTM Chapter 581 unless otherwise directed by the Work
Item.

(16) Apply one mist coat (1-2 mils) of Ameron PSX 700 after blast and prior
to remaining coats where invoking Work Item requires anchor chain
inspections prior to preservation.
(17) Colors shown in Tables 631-8-13 and 631-8-14 of 2.2 shall be specified by TYCOM or ship's Commanding Officer in accordance with Chapter 631-8.23.4.

(18) Restore each compartment marking in accordance with 2.10 and 2.11.

(19) MIL-PRF-24667 non-skid systems shall be applied as complete systems (primer, intermediate coat when MIL-PRF-24667, Type III, coatings are invoked, non-skid, and color topping) from the same manufacturer except for the color topping. When a manufacturer does not have approved color topping, use another compatible manufacturer's color topping. MIL-PRF-24667, Type I, when required, shall be specified in the invoking Work Item. Boundaries of areas receiving non-skid not specified by specific ship's drawings shall be in accordance with 2.3.

(20) Prior to accomplishing painting of wooden underwater hulls, allow the hull to dry to a moisture content of 15 percent. Readings shall be taken with an electronic moisture meter, Sovereign Moisture Master or equal. Cover grounding plates and zins prior to painting.

(21) Blasted surface metal must be degreased following walnut shell blasting. Even traces of residual oil will degrade coating adhesion. Appropriate safety precautions for working with flammable solvents must be enforced. Alternate procedure is a vigorous soap and water wash followed by pressurized fresh water rinse. Do not use a detergent and fresh water washdown when using aluminum oxide as an abrasive blast medium.

(22) Peripheral deck edging and areas not receiving non-skid may substitute the manufacturer's color topping for MIL-PRF-24635.

(23) For non-edge retentive coatings, radiusing of edges is recommended to ensure maximum service life. If edges are not radiused, the service life could be substantially reduced.

(24) Deburring and grinding of weld spatter is recommended to ensure maximum service life. If weld spatter is not removed, the service life of the coating could be substantially reduced.

(25) Power impact tool cleaning using power-driven needle guns, chipping or scaling hammers, rotary scalers, single or multiple-piston scalers, or other similar impact cleaning tools shall not be utilized in the cleaning methods.

(26) Maintain the relative humidity in the tank or void space at a maximum of 50 percent from the start of abrasive blasting to cure of the topcoat.

(27) Finish coats for boats and craft shall be as specified in Paragraph 631-9.3.4 through 631-9.3.5 of 2.2 unless otherwise specified in the invoking Work Item.

(28) Thermal insulation shall be soap and water cleaned and hand sanded.
(29) Three coats of MIL-DTL-24441, Type III, at 3-4 mils per coat can be substituted for 2 coats of MIL-DTL-24441, Type IV, at 4-6 mils per coat, for total system DFT of 8-12 mils. Three full coats and 2 stripe coats of MIL-DTL-24441, Type III, at 3-4 mils per coat can be substituted for 2 full coats and 1 stripe coat of MIL-DTL-24441, Type IV, at 4-6 mils per coat, for total system DFT of 8-12 mils.

(30) Grit blasting to near white metal is the preferred method of surface preparation. Only where grit blasting is not possible should power tool cleaning be used. Power tool cleaning should not be used for well deck areas frequently exposed to LCAC exhaust.

(31) A low-pressure (3,000 to 5,000 psi) fresh water washdown of the well deck area shall be performed before either grit blasting or power tool cleaning to remove dirt, oil, grease, salts, and loosely adherent coatings.

(32) Upon completion of surface preparation, pH measurements must be taken. The pH must be in the range of 6.5 to 7.5. If it is not, the surface must be washed with fresh water until the required pH is obtained.

(33) Runs, sags, and drips may appear in the coating due to its solvent-free nature and application properties. In the normal application of this product, the appearance of runs, sags, and drips is only superficial and is not detrimental to the coating system. In these cases, no action shall be taken. In cases where the conditions are determined to be detrimental (coating in excess of 50 mils DFT) to the effectiveness of the coating system, immediate action shall be taken. If the wet run, sag, or drip occurs on a dry surface, brush out the run, sag, or drip and reapply the prime coat directly over the brushed out area. If the run, sag, or drip has dried, then the affected area shall be scraped or mechanically removed and the prime coat shall be reapplied.

(34) These systems may also be invoked for preservation of well deck bulkheads and decks.

(35) These systems shall also be invoked for barricade stanchions and wells, catapult jet blast deflector pits, and associated void spaces.

(36) SSPC-SP-11 shall be the surface preparation method used, even if 2.4 has a more stringent requirement.

(37) Total DFT specified in Table 4 for potable water tanks shall not be exceeded except in isolated areas adjacent to shapes and stiffeners. In no case shall the maximum DFT be exceeded by 2 mils. The isolated areas shall be less than 2 percent of the total area.

a. For touch-up or overcoating intact aged paint in good condition, the same requirements for each coat apply, and the total film thickness maximum requirement may be corrected to allow for thickness of underlying aged paint. Requirement is to avoid excess thickness in individual coats. High DFT resulting from the application of extra coats of paint is not considered to be a problem below 35 mils total DFT.
(38) Maintain the relative humidity in the tank at a maximum of 85 percent from the start of abrasive blasting to cure of the topcoat. By allowing 85 percent vice 50 percent relative humidity, this will reduce the service life of the tank from 15-20 years to 10-12 years.

(39) Ameron Amercoat 892HS shall not be used for surfaces that exceed 700 degrees Fahrenheit.

(40) Avoid excessive power wire brushing that results in a polished surface.

(41) Apply 3 coats of a vapor barrier-coating compound, MIL-PRF-19565, in contrasting colors (white-orange-white), to insulation within laundries, sculleries, galleys, drying rooms, and to insulation on the warm side of refrigerated stores spaces.

(42) High temperature areas of exhaust pipe exteriors include BLISS caps, aireductors, and exhaust stacks.

(43) In lieu of white, use Light Gray, Color No. 26373 (Low Solar Absorption only). In lieu of black, use Ocean Gray, Color No. 26173 (Low Solar Absorption only).

(44) These systems shall also be invoked for Aircraft Electrical Servicing Stations (AESS) trunks.

(45) PCMS tile on the bow flares shall be painted with the same topcoat as the freeboard.

(46) Intentionally left blank.

(47) The topcoats for ordnance/non-ordnance pyrotechnic locker sun shields shall be painted white (FED STD 595, Color No. 17875) or as directed by NAVSEA.
<table>
<thead>
<tr>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D KEEL TO BOTTOM OF BOOTTOP</th>
<th>E BOOTTOP</th>
<th>F BOOTTOP</th>
<th>G DRAFT MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10 - OR - WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L</td>
<td>TWO COATS AMERON AMERCOAT 385, 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>2 COATS F-121A, 2 - 3 MILS/COAT, MIL-P-15931</td>
<td>2 COATS F-129A, 2 - 3 MILS/COAT, MIL-P-15931</td>
<td>ONE COAT MIL-PRF-24635 LT GRAY, COLOR NO. 26373 (LOW SOLAR ABSORPTION ONLY) TO BOOTPING & BELOW, 2 - 3 MILS</td>
<td>ONE COAT COLOR NO. 28173 (FED STD 595) MIL-PRF-24635 OCEAN GRAY (LOW SOLAR ABSORPTION ONLY) ABOVE BOOTPING, 2 - 3 MILS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERGARD 284-FPJ 034/FPA 327 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA03/KHA062 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERTUF 262-KHA03/KHA062 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 235 RED, 4 - 6 MILS -- & -- ONE COAT AMERON AMERCOAT 235 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 230 RED, 4 - 6 MILS -- & -- ONE COAT AMERON AMERCOAT 230 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23Q82/P23VQ80, 4 - 6 MILS -- & -- ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23Q81/ P23VQ80, 4 - 6 MILS, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA327 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERGARD 284-FPJ 034/FPA 327 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>ONE COAT INTERSLEEK 425 HAZE GRAY, BXA816/ BXA821/ BXA822 OR BLACK, BXA819/ BXA821/ BXA822, 5 - 7 MILS</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTE (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. SEE NOTE (3)
2. SEE NOTES (2), (6), & (27)
3. SEE NOTES (2), (6), & (27)
4. SEE NOTE (4)
5. ONE COAT MIL-PRF-24635 LT GRAY, COLOR NO. 26373 (LOW SOLAR ABSORPTION ONLY) TO BOOTPING & BELOW, 2 - 3 MILS
6. ONE COAT COLOR NO. 28173 (FED STD 595) MIL-PRF-24635 OCEAN GRAY (LOW SOLAR ABSORPTION ONLY) ABOVE BOOTPING, 2 - 3 MILS
7. ONE COAT INTERSLEEK 381 LIGHT PINK, BXA380/BXA381, 3 - 5 MILS
<table>
<thead>
<tr>
<th>LINE</th>
<th>SURFACE PREPARATION</th>
<th>PRIMER</th>
<th>KEEL TO BOTTOM OF BOOTTOP</th>
<th>BOOTTOP</th>
<th>DRAFT MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERGARD 264-FPJ 034/FPA 327 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (4)</td>
<td>ONE COAT INTERNATIONAL BRA 642 BLACK, ONE COAT BRA 640 RED, (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>9</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA033/KHA062 RED, 4 - 6 MILS -- & -- ONE COAT INTERNATIONAL INTERTUF 262-KHA302/KHA062 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (4)</td>
<td>ONE COAT INTERNATIONAL BRA 642 BLACK, ONE COAT BRA 640 RED, (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>10</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 235 RED, 4 - 6 MILS -- & -- ONE COAT AMERON AMERCOAT 235 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (3)</td>
<td>ONE COAT AMERON ABC 3 BLACK, ONE COAT AMERON ABC 3 RED (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>11</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 230 RED, 4 - 6 MILS -- & -- ONE COAT AMERON AMERCOAT 230 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (3)</td>
<td>ONE COAT AMERON ABC 3 BLACK, ONE COAT AMERON ABC 3 RED (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>12</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT HEMPEL HEMPADUR 4150-50630 RED, 4 - 6 MILS -- & -- ONE COAT HEMPEL HEMPADUR 45150-11480 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (5)</td>
<td>ONE COAT HEMPEL OLympic 76600-19990 BLACK, (MIL-PRF-24647), ONE COAT HEMPEL OLympic 76600-51110 RED, (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>13</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23RQ82/P23VQ80, 4 - 6 MILS -- & -- ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23AQ81/P23VQ80, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (1)</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30BQ12 -- & -- ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30RQ10 (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>TABLE ONE</td>
<td>STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C D E KEEL TO BOTTOM OF BOOTTOP</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UNDERWATER HULL (KEEL TO BOOTTOP, INCLUDING PROPULSION SHAFT OUTBOARD BEARING VOIDS)</td>
<td>UP TO 12 YEARS SERVICE LIFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327 RED, 4 - 6 MILS -- --</td>
<td>ONE COAT INTERNATIONAL INTERGARD 264-FP-7034/FPA 327 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (4)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td>15</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA035/KHA062 RED, 4 - 6 MILS -- & --</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA035/KHA062 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (4)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td>16</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 235 RED, 4 - 6 MILS -- & --</td>
<td>ONE COAT AMERON AMERCOAT 235 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (3)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td>17</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 230 RED, 4 - 6 MILS -- & --</td>
<td>ONE COAT AMERON AMERCOAT 230 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (3)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td>18</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50050 RED, 4 - 6 MILS -- & --</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-11110 GRAY, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (5)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td>19</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23RQ082/P23VQ080, 4 - 6 MILS -- & --</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23AQ081/P23VQ080, 4 - 6 MILS, 10 MILS MIN</td>
<td>SEE NOTE (1)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td>TABLE ONE</td>
<td>STEEL SURFACES</td>
<td>LINE</td>
<td>SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>------</td>
<td>---------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>UNDERWATER HULL (STRUTS, RUDDERS, & OTHER EROSION PRONE AREAS)</td>
<td></td>
<td>20</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 235 RED, 4 - 6 MILS</td>
<td>ONE COAT AMERON AMERCOAT 235 GRAY, 4 - 6 MILS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT AMERON AMERCOAT 230 RED, 4 - 6 MILS</td>
<td>ONE COAT AMERON AMERCOAT 230 GRAY, 4 - 6 MILS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327, 4 - 6 MILS</td>
<td>ONE COAT INTERNATIONAL INTERGARD 264-FPJ 034/FPA 327, 4 - 6 MILS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA303/KHA062 RED, 4 - 6 MILS</td>
<td>ONE COAT INTERNATIONAL INTERTUF 262-KHA302/KHA062 GRAY, 4 - 6 MILS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50630 RED, 4 - 6 MILS</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-11480 GRAY, 4 - 6 MILS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23AQ81/P23VQ80, 4 - 6 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23AQ81/P23VQ80, 4 - 6 MILS</td>
</tr>
<tr>
<td>UNDERWATER HULL (CAPASTIC SHIELDS)</td>
<td></td>
<td>26</td>
<td>WHITE METAL BLAST, NACE 1/SSPC-SP-5</td>
<td>INNER SHIELD: ONE COAT US FILTER, ELECTROCATALYTIC, CAPASTIC™, PART NO. 35524, 100 MILS MIN</td>
<td>OUTER SHIELD: ONE COAT US FILTER, ELECTROCATALYTIC, CAPASTIC™, PART NO. 35524, 22 MILS MIN</td>
</tr>
</tbody>
</table>

SEE NOTES (10) & (11)
<table>
<thead>
<tr>
<th>TABLE ONE ALUMINUM SURFACES</th>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D</th>
<th>E KEEL TO BOTTOM OF BOOTTOP</th>
<th>F BOOTTOP</th>
<th>G DRAFT MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDERWATER HULL (KEEL TO BOOTTOP, INCLUDING PROPELLION SHAFT OUTBOARD BEARING Voids)</td>
<td>27</td>
<td>NEAR WHITE METAL BLAST USING GARNET OR ALUMINUM OXIDE OR BLACK WALNUT SHELLS OR WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2</td>
<td>ONE COAT INTERNATIONAL INTERGARD 264 FPL 274/FPA 327 RED, 4 - 6 MILS, WITHIN 4 HOURS AFTER SURFACE PREPARATION SEE NOTE (4)</td>
<td>ONE COAT INTERNATIONAL INTERGARD 264-FPJ 034/FPA 327 GRAY, 4 - 6 MILS SEE NOTE (4)</td>
<td>ONE COAT INTERNATIONAL INTERGARD 264-FPJ 034/FPA 327 LIGHT PINK, 3 - 5 MILS</td>
<td>ONE COAT INTERNATIONAL INTERSLEEK 425 BX16/BX162/BX22 HAZE GRAY, 5 - 7 MILS SEE NOTES (2) & (6)</td>
<td>ONE COAT INTERNATIONAL INTERSLEEK 425 BX16/BX162/BX22 HAZE GRAY, 5 - 7 MILS BLACK, 5 - 7 MILS</td>
<td>ONE COAT INTERNATIONAL INTERSLEEK 425 BX16/BX162/BX22 HAZE GRAY, 5 - 7 MILS SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td>UNDERWATER HULL APPLIES TO EMBARKED BOATS AND CRAFT ONLY</td>
<td>28</td>
<td>SAME AS LINE 27</td>
<td>ONE COAT E-PAINT EP PRIMER 1000, 4 - 6 MILS</td>
<td>ONE COAT E-PAINT EP PRIMER 1000, 4 - 6 MILS</td>
<td>ONE COAT E-PAINT SN-1, 5 - 7 MILS WFT/COAT (3-4 MILS DFT/COAT) GRAY SEE NOTES (2) & (6)</td>
<td>ONE COAT E-PAINT SN-1, 5 - 7 MILS WFT/COAT (3-4 MILS DFT/COAT) GRAY</td>
<td>ONE COAT E-PAINT SN-1, 5 - 7 MILS WFT/COAT (3-4 MILS DFT/COAT) BLACK SEE NOTES (2) & (6)</td>
<td>ONE COAT E-PAINT SN-1, 5 - 7 MILS WFT/COAT (3-4 MILS DFT/COAT) BLACK</td>
</tr>
<tr>
<td>UNDERWATER HULL (STRUTS, RUDDERS & OTHER EROSION PRONE AREAS)</td>
<td>29</td>
<td>SAME AS LINE 27</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327, 4 - 6 MILS, WITHIN 4 HOURS AFTER SURFACE PREPARATION SEE NOTE (4)</td>
<td>ONE COAT 3M CO. NO. EC-2216, 4 - 5 MILS SEE NOTES (2) & (6)</td>
<td>ONE COAT 3M CO. NO. EC-2216, 4 - 5 MILS SEE NOTES (2) & (6)</td>
<td>ONE COAT 3M CO. NO. EC-2216, 4 - 5 MILS SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>SAME AS LINE 27</td>
<td>ONE COAT AMERON AMERCOAT 235 RED, 4 - 6 MILS, WITHIN 4 HOURS AFTER SURFACE PREPARATION SEE NOTE (3)</td>
<td>SAME AS LINE 29</td>
<td>SAME AS LINE 29</td>
<td>钢</td>
<td>ONE COAT E-PAINT SN-1, 5 - 7 MILS WFT/COAT (3-4 MILS DFT/COAT) BLACK SEE NOTES (2) & (6)</td>
<td>ONE COAT E-PAINT SN-1, 5 - 7 MILS WFT/COAT (3-4 MILS DFT/COAT) BLACK</td>
</tr>
</tbody>
</table>

23 of 56 ITEM NO: 009-32 FY-06 (CH-2)
<table>
<thead>
<tr>
<th>TABLE ONE GRP FIBERGLASS SURFACES</th>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D KEEL TO BOTTOM OF BOOTTOP</th>
<th>E BOOTTOP</th>
<th>G DRAFT MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDERWATER HULL (KEEL TO TOP OF BOOTTOP) UP TO 7 YEARS SERVICE LIFE</td>
<td>31</td>
<td>HIGH PRESSURE WASH TO REMOVE MARINE GROWTH & LOOSE PAINT - OR - TOUCH-UP OR REMOVAL OF PAINT SYSTEM TO SOUND PRIMER BY LIGHT ABRASIVE BLASTING WITH BLACK WALNUT SHELLS - & - SPOT CLEAN, CHAP 631, PARA 631-5.2.6</td>
<td>ONE COAT INTERNATIONAL FPL 274/FP A 327, 4 - 6 MILS</td>
<td>ONE COAT INTERNATIONAL BRA 640 RED, 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>2 COATS INTERNATIONAL BRA 642 BLACK, 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>24 of 56</td>
<td>ITEM NO: 009-32 FY-06 (CH-2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE NOTE (21)</td>
<td>SEE NOTE (4)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>SAME AS LINE 31</td>
<td>ONE COAT AMERON AMERCOAT 235, 4 - 6 MILS</td>
<td>ONE COAT AMERON ABC3 BLACK, ONE COAT AMERON ABC3 RED, 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>2 COATS AMERON ABC3 BLACK, 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE NOTE (3)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>SAME AS LINE 31</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50630 RED, 4 - 6 MILS</td>
<td>ONE COAT HEMPEL OLYMPIC 76600-19990 BLACK</td>
<td>2 COATS HEMPEL OLYMPIC 76600-19990 BLACK, 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE NOTE (5)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>SAME AS LINE 31</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23RQ82/P23VQ80, 4 - 6 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30BO12</td>
<td>2 COATS SHERWIN WILLIAMS SEAGUARD MARINE P30BO12 (MIL-PRF-24647), 4 - 6 MILS/COAT, 10 MILS MIN</td>
<td>SAME AS LINE 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE NOTE (1)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE ONE</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C</td>
<td>D KEEL TO BOTTOM OF BOOTTOP</td>
<td>E BOOTTOP</td>
<td>G DRAFT MARKS</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>------------------------</td>
<td>----------</td>
<td>---</td>
<td>-----------------------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>UNDERWATER HULL (KEEL TO TOP OF BOOTTOP)</td>
<td>35</td>
<td>SAME AS LINE 31</td>
<td></td>
<td></td>
<td>ONE COAT INTERNATIONAL</td>
<td></td>
<td>SAME AS LINE 31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRA 640 RED, ONE COAT BRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRA 642 BLACK, ONE COAT BRA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BRA 640 RED, 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>SAME AS LINE 31</td>
<td></td>
<td></td>
<td>ONE COAT AMERON AMEROCOAT 230 RED, ONE COAT AMERON ABC3 BLACK, ONE COAT AMERON ABC3 RED, 4 - 6 MILS</td>
<td>SEE NOTE (3)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ONE COAT AMERON ABC3 RED, ONE COAT AMERON ABC3 BLACK, ONE COAT AMERON ABC3 RED, 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ONE COAT AMERON ABC3 RED, ONE COAT AMERON ABC3 BLACK, ONE COAT AMERON ABC3 RED, 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>SAME AS LINE 31</td>
<td></td>
<td></td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50630 RED, 4 - 6 MILS</td>
<td>SEE NOTE (5)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ONE COAT HEMPEL OLYMPIC 76600-51110 RED & -- & ONE COAT HEMPEL OLYMPIC 76600-19990 BLACK & -- & ONE COAT HEMPEL OLYMPIC 76600-51110 RED, 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>SAME AS LINE 31</td>
<td></td>
<td></td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30RQ10, ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30BQ12 & -- & ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30RQ10 (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SEE NOTE (1)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30RQ10, ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30BQ12 & -- & ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30RQ10 (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P30RQ10 (MIL-PRF-24647), 4 - 6 MILS/COAT, 15 MILS MIN</td>
<td>SEE NOTES (2) & (6)</td>
<td>SEE NOTES (2) & (6)</td>
</tr>
</tbody>
</table>

SAME AS LINE 31
<table>
<thead>
<tr>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G DRAFT MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>NEAR WHITE METAL BLAST USING GARNET OR ALUMINUM OXIDE - OR - WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2</td>
<td>ONE COAT INTERNATIONAL FPL 274/FPA 327, 4 - 6 MILS</td>
<td>ONE COAT 3M CO. NO. EC-2216, 4 - 5 MILS</td>
<td>SEE NOTE (4)</td>
<td>SAME AS LINE 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>SAME AS LINE 39</td>
<td>ONE COAT AMERON AMERICOAT 235, 4 - 6 MILS</td>
<td>SAME AS LINE 39</td>
<td></td>
<td>SAME AS LINE 36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>SAME AS LINE 39</td>
<td>ONE COAT HEMPEL HEMPADUR 45150-50630 RED, 4 - 6 MILS</td>
<td>SAME AS LINE 39</td>
<td></td>
<td>SAME AS LINE 37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>SAME AS LINE 39</td>
<td>ONE COAT SHERWIN WILLIAMS SEAGUARD MARINE P23RD2/P23VQ80, 4 - 6 MILS</td>
<td>SAME AS LINE 39</td>
<td></td>
<td>SAME AS LINE 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>SAME AS LINE 39</td>
<td>ONE FULL COAT MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE FULL COAT AMERON 3258 BLACK, 3 - 5 MILS</td>
<td></td>
<td>ANTI-FOULING PAINT SAME AS SURROUNDING HULL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ONE STRIPE COAT MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>SEE NOTE (1)</td>
<td>ONE STRIPE COAT AMERON 3258 BLACK, 3 - 5 MILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ONE FULL COAT MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td></td>
<td>ONE FULL COAT AMERON 3258 BLACK, 3 - 5 MILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEE NOTES (2) & (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE ONE WOOD SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C</td>
<td>D KEEL TO BOTTOM OF BOOTTOP</td>
<td>E BOOTTOP</td>
<td>F DRAFT MARKS</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>UNDERWATER HULL</td>
<td>44</td>
<td>BRUSH-OFF BLAST TO REMOVE LOOSE & DETERIORATED COATINGS - OR - HIGH-PRESSURE WASH TO REMOVE MARINE GROWTH & LOOSE PAINT</td>
<td>KEEL TO 6 INCHES ABOVE UPPER BOOTTOP LIMIT ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>2 COATS F-121A, MIL-P-15931, 2 - 3 MILS EACH COAT, TO UNDERWATER HULL, APPENDAGES, SEA CHESTS & STRAINER PLATES UP TO BOTTOM OF BOOTTOPPING AREA MIN DRYING TIME OF 6 HRS BETWEEN COATS OF F-121A</td>
<td>3 COATS F-129A, MIL-P-15931, 2 - 3 MILS/COAT MIN DRYING TIME OF 6 HRS BETWEEN COATS OF F-129A</td>
<td>ONE COAT NO. 26373 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY) LT GRAY, TO BOOTTOPPING & BELOW, 2 - 3 MILS</td>
<td>ONE COAT NO. 26173 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY) OCEAN GRAY, ABOVE BOOTTOPPING, 2 - 3 MILS</td>
</tr>
</tbody>
</table>

SEE NOTE (20)
<table>
<thead>
<tr>
<th>TABLE 2 STEEL SURFACES</th>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D HORIZONTAL SURFACES DECKS & FITTINGS</th>
<th>E MASTS & STACKS EXPOSED TO GASES</th>
<th>F VERTICAL SURFACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANGAR DECKS, FLIGHT DECKS & VERTICAL REPLENISHMENT DECK AREAS (CV'S & CVN'S ONLY)</td>
<td>2</td>
<td>SAME AS LINE ONE</td>
<td>PROPRIETARY NON-SKID PRIMER LISTED ON THE QPL FOR MIL-PRF-24667</td>
<td>STRIPE COAT OF PROPRIETARY NON-SKID PRIMER LISTED ON THE QPL FOR MIL-PRF-24667</td>
<td>STRIPE COAT OF PROPRIETARY NON-SKID PRIMER LISTED ON THE QPL FOR MIL-PRF-24667</td>
<td>SAME AS LINE 2</td>
<td>ONE COAT DARK GRAY, MIL-PRF-24666 TYPE I, COMP L</td>
</tr>
<tr>
<td>LANDING AREAS (CV'S & CVN'S ONLY)</td>
<td>4</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE 2</td>
<td>SAME AS LINE 2</td>
<td>SAME AS LINE 2</td>
<td>SAME AS LINE 3</td>
<td>ONE COAT DARK GRAY, MIL-PRF-24666 TYPE I, II, OR III, COMP G - OR - ONE COAT MIL-PRF-24667, TYPE IV</td>
</tr>
<tr>
<td>WALK AREAS (ALL DECK AREAS OTHER THAN HANGAR, FLIGHT, & VERTREP)</td>
<td>5</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE 3</td>
<td>SAME AS LINE 3</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 4</td>
<td>ONE COAT DARK GRAY, MIL-PRF-24666 TYPE I, II, OR III, COMP G - OR - ONE COAT MIL-PRF-24667, TYPE IV</td>
</tr>
</tbody>
</table>

SEE NOTE (2)
<table>
<thead>
<tr>
<th>TABLE 2 STEEL SURFACES</th>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C</th>
<th>D HORIZONTAL SURFACES DECKS & FITTINGS</th>
<th>E MASTS & STACKS EXPOSED TO GASES</th>
<th>F VERTICAL SURFACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAST TRACK TROUGHS WHERE PAINTED (WHERE NON-SKID NOT APPLIED)</td>
<td>6</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, DECK GRAY, 6 - 8 MILS</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>WELL DECK OVERHEADS, BOTH EXPOSED & NON-EXPOSED TO LCAC EXHAUST SEE NOTES (30) & (34)</td>
<td>8</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT CREAM SIGMA COATINGS EDGEGUARD PRIMER (PDS NO.5427), 4 - 8 MILS</td>
<td>ONE STRIPE COAT WD GRAY SIGMA COATINGS EDGEGUARD TOPCOAT (PDS NO.5428), 6 - 10 MILS</td>
<td>ONE COAT OFF-WHITE SIGMA COATINGS EDGEGUARD TOPCOAT (PDS NO. 5428), 10 - 12 MILS</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>SAME AS LINE 8</td>
<td>ONE COAT BUFF SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER (B62H220/B62V220), 4 - 8 MILS</td>
<td>ONE STRIPE COAT GRAY SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62A220/B62V220), 6 - 10 MILS</td>
<td>ONE COAT WHITE SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62W220/B62V220), 10 - 12 MILS</td>
<td>SAME AS LINE 8</td>
<td>SAME AS LINE 8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>SAME AS LINE 8</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624 GRAY (THA625/627), 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 WHITE (THA623/627), 10 - 12 MILS</td>
<td>SAME AS LINE 8</td>
<td>SAME AS LINE 8</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>SAME AS LINE 8</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 19, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 19, 6 - 10 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 19, 10 - 12 MILS</td>
<td>SAME AS LINE 8</td>
<td>SAME AS LINE 8</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11 SEE NOTE (40)</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>SAME AS LINE 8</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>LINE</td>
<td>SURFACE PREPARATION</td>
<td>PRIMER</td>
<td>HORIZONTAL SURFACES DECKS & FITTINGS</td>
<td>MASTS & STACKS EXPOSED TO GASES</td>
<td>VERTICAL SURFACES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--------</td>
<td>-------------------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ABRASIVE BLASTING, USING GARNET, ALUMINUM OXIDE, OR BLACK WALNUT SHELLS -- & -- SPOT CLEANING, CHAP 631, PARA 631-5.2.4.3 -- OR -- WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2</td>
<td>ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE FULL COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE COAT HAZE GRAY NO. 26200 (FED STD 595), MIL-PRF-24655 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>ONE COAT HAZE GRAY NO. 26270 (FED STD 595), MIL-PRF-24655 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEE NOTE (2)</td>
<td></td>
<td>SEE NOTE (21)</td>
<td>SEE NOTE (47)</td>
<td>SEE NOTES (43) & (47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SAME AS LINE 15</td>
<td></td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SAME AS LINE 15</td>
<td></td>
<td>PROPRIETARY NON-SKID PRIMER LISTED ON THE QPL FOR MIL-PRF-24667</td>
<td>PROPRIETARY NON-SKID PRIMER LISTED ON THE QPL FOR MIL-PRF-24667</td>
<td>ONE COAT HAZE GRAY NO. 26270 (FED STD 595), MIL-PRF-24655 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEE NOTE (7)</td>
<td></td>
<td>SEE NOTE (7)</td>
<td>SEE NOTE (7)</td>
<td>SEE NOTE (19) & (22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SAME AS LINE 15</td>
<td></td>
<td>SAME AS LINE 17</td>
<td>SAME AS LINE 17</td>
<td>ONE COAT DARK GRAY, MIL-PRF-24667 TYPE I, COMP G</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEE NOTE (7)</td>
<td></td>
<td>SEE NOTE (7)</td>
<td>SEE NOTE (7)</td>
<td>SEE NOTES (19) & (22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>SAME AS LINE 15</td>
<td></td>
<td>SAME AS LINE 17</td>
<td>SAME AS LINE 17</td>
<td>SAME AS LINE 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 2</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C PRIMER</td>
<td>D HORIZONTAL SURFACES DECKS & FITTINGS</td>
<td>E MASTS & STACKS EXPOSED TO GASES</td>
<td>F VERTICAL SURFACES</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>20 RAST TRACK TROUGHS WHERE PAINTED</td>
<td>SAME AS LINE 15</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, DECK GRAY, 6 - 8 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHERE NON-SKID NOT APPLIED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 EXTERIOR ALUMINUM SURFACES</td>
<td>SAME AS LINE 15</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>SAME AS LINE 15</td>
<td></td>
</tr>
<tr>
<td>SEE NOTE (40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 SAME AS LINE 15</td>
<td>SAME AS LINE 15</td>
<td></td>
</tr>
<tr>
<td>TABLE 2</td>
<td>GRP FIBERGLASS SURFACES</td>
<td>LINE</td>
<td>SURFACE PREPARATION</td>
<td>PRIMER</td>
<td>HORIZONTAL SURFACES DECKS & FITTINGS</td>
<td>MASTS & STACKS EXPOSED TO GASES</td>
<td>VERTICAL SURFACES</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>------</td>
<td>---------------------</td>
<td>--------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>EXTERIOR SURFACES ABOVE BOOTTOP</td>
<td>24</td>
<td>HIGH PRESSURE WASH TO REMOVE MARINE GROWTH & LOOSE PAINT - OR - TOUCH-UP OR REMOVAL OF PAINT SYSTEM TO SOUND PRIMER BY LIGHT ABRASIVE BLASTING WITH BLACK WALNUT SHELLS - & - SPOT CLEAN, CHAP 631, PARA 631-5.2.6</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>ONE STRIPE COAT F-152, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>ONE COAT DECK GRAY NO. 26008 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>ONE COAT HAZE GRAY NO. 26270 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td>ONE COAT HAZE GRAY NO. 26270 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE NOTE (2)</td>
<td>SEE NOTE (21)</td>
<td>SEE NOTE (29)</td>
<td>SEE NOTE (29)</td>
<td>SEE NOTE (42)</td>
<td>SEE NOTE (43)</td>
</tr>
<tr>
<td>EXTERIOR WALK AREAS ALL EXTERIOR DECK AREAS</td>
<td>25</td>
<td>POWER TOOL CLEAN TO CLEAN FIBERGLASS (DISC SANDER, ETC.) - OR - POWER TOOL CLEAN TO POLYURETHANE OVERLAY SUBSTRATE (DISC SANDER, ETC.) - OR - HYDROBLAST TO CLEAN FIBERGLASS</td>
<td>PROPRIETARY NON-SKID PRIMER LISTED ON THE QPL FOR MIL-PRF-24667</td>
<td>SEE NOTE (7)</td>
<td>SEE NOTE (19) & (22)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEE NOTE (2) SEE NOTE (21) SEE NOTE (29) SEE NOTE (29) SEE NOTE (42) SEE NOTE (43)
<table>
<thead>
<tr>
<th>LINE</th>
<th>SURFACE PREPARATION</th>
<th>PRIMER</th>
<th>HORIZONTAL SURFACES</th>
<th>MASTS & STACKS EXPOSED TO GASES</th>
<th>VERTICAL SURFACES</th>
</tr>
</thead>
</table>

TABLE 2 WOOD SURFACES

OUTLINE

A SURFACE PREPARATION

B PRIMER

C SURFACE COATINGS

D HORIZONTAL SURFACES

E MASTS & STACKS EXPOSED TO GASES

F VERTICAL SURFACES

G GENERAL DIRECTIVES

ITEM NO: 009-32

FY-06 (CH-2)
<table>
<thead>
<tr>
<th>TABLE 3</th>
<th>STEEL SURFACES</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERIOR COMPARTMENTS</td>
<td>COLORS TO BE SPECIFIED BY TYCOM OR SHIP'S COMMANDING OFFICER PER CHAP 631, PARA 631.8-23.4</td>
<td>HAND TOOL CLEANING, SSPC-SP-2</td>
<td>FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/COAT - OR - ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>BHDS, OVDHS, ONE COAT NO. 37038 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td>TWO COATS MIL-PRF-24596, WATER-BASED INTERIOR LATEX, 2 - 4 MILS/COAT - OR - TWO COATS NAVY F-25A, WATER-BASED FIRE RETARDANT COATING, 2 - 4 MILS/COAT</td>
<td>ONE COAT NO. 26008 (FED STD 595) MIL-PRF-24635, 2 - 3 MILS</td>
<td>ONE COAT NO. 26008 (FED STD 595) MIL-PRF-24635, 2 - 3 MILS</td>
<td>SEE NOTES (17), (28), & (40)</td>
</tr>
<tr>
<td>WET SPACES (WASH ROOMS, WATER CLOSETS, SHOWERSTALLS, GALSERIES, SCULLERIES & STOREROOMS WHERE HEAVY CONDENSATION IS COMMON)</td>
<td>HAND TOOL CLEANING, SSPC-SP-2</td>
<td>POWER TOOL CLEANING TO BARE METAL, SSPC-SP-11</td>
<td>FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/COAT - OR - ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SIGMAGLAZE 5492, WHITE ONLY, 8-10 MILS</td>
<td>ONE STRIPE COAT SIGMAGLAZE 5492, 8-10 MILS, WHITE ONLY</td>
<td>ONE FULL COAT, 8-10 MILS, WHITE ONLY</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS (OVERCOAT)</td>
<td>HAND TOOL CLEANING, SSPC-SP-2</td>
<td>POWER TOOL CLEANING TO BARE METAL, SSPC-SP-11</td>
<td>SAME AS LINE ONE FOR BARE METAL AREAS</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS (OVERCOAT)</td>
<td>HAND TOOL CLEANING, SSPC-SP-2</td>
<td>POWER TOOL CLEANING TO BARE METAL, SSPC-SP-11</td>
<td>SAME AS LINE ONE FOR BARE METAL AREAS</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td>WET SPACES (WASH ROOMS, WATER CLOSETS, SHOWERSTALLS, GALSERIES, SCULLERIES & STOREROOMS WHERE HEAVY CONDENSATION IS COMMON)</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 5</td>
</tr>
<tr>
<td>WET SPACES (WASH ROOMS, WATER CLOSETS, SHOWERSTALLS, GALSERIES, SCULLERIES & STOREROOMS WHERE HEAVY CONDENSATION IS COMMON)</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 5</td>
</tr>
<tr>
<td>TABLE 3</td>
<td>STEEL SURFACES</td>
<td>LINE</td>
<td>A</td>
<td>SURFACE PREPARATION</td>
<td>B</td>
<td>PRIMER</td>
<td>C</td>
<td>WELDING BAYS & LIGHT TRAPS</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>------</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS</td>
<td></td>
<td>8</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/COAT - OR - ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>BHDS, OVHO, ONE COAT NO 37038 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td>DECKS ONE COAT NO. 27038 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>SAME AS LINE 8</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/COAT - OR - ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACHINERY SPACES & BILGES</td>
<td></td>
<td>10</td>
<td>POWER TOOL CLEANING, SSPC-SP-3</td>
<td>SAME AS LINE ONE FOR BARE METAL AREAS</td>
<td>SAME AS LINE ONE FOR BARE METAL AREAS</td>
<td>SAME AS LINE ONE FOR BARE METAL AREAS</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11 - OR - WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L - OR - NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>ABOVE BILGE AREA:</td>
<td>SAME AS LINE ONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 3 STEEL SURFACES</td>
<td>LINE</td>
<td>SURFACE PREPARATION</td>
<td>A PRIMER</td>
<td>B WELDING BAYS & LIGHT TRAPS</td>
<td>C BULKHEADS & OVERHEADS</td>
<td>D DECKS</td>
<td>E THERMAL INSULATION</td>
<td>F MARKINGS</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>---------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>INTAKE VENT PLENUMS BETWEEN SKIN OF SHIP & MOISTURE SEPARATORS</td>
<td>15</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT SIGMA COATINGS EDGEGUARD PRIMER (PDS NO. 5427), 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA EDGEGUARD (PDS NO. 5428), 6 - 10 MILS</td>
<td>& ONE FULL COAT SIGMA COATINGS EDGEGUARD TOPCOAT (PDS NO. 5428), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>SAME AS LINE 15</td>
<td>ONE COAT BUFF SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER (B62H220/B62V220), 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT, 6 - 10 MILS</td>
<td>& ONE COAT SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/2L -OR- NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT INTERNATIONAL INTERBOND 996, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 996, 6 - 8 MILS</td>
<td>& ONE FINAL COAT INTERNATIONAL INTERBOND 996, 6 - 8 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>SAME AS LINE 15</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS</td>
<td>& ONE FULL COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>SAME AS LINE 15</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624, 6 - 10 MILS</td>
<td>& ONE COAT INTERNATIONAL INTERLINE 624, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>SAME AS LINE 15</td>
<td>ONE COAT SHERWIN WILLIAMS DURAPLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
<td>& ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 3 STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
<td>G MARKINGS</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>INTAKE VENT PLENUMS BETWEEN SKIN OF SHIP & MOISTURE SEPARATORS (CONT)</td>
<td>21</td>
<td>SAME AS LINE 15</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 8, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 8, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>SAME AS LINE 17</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>SEE NOTE (33)</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td>CLEAN AND DIRTY SIDE OF COMBUSTION AIR INTAKES</td>
<td>23</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS -- & -- ONE FULL COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS -- & -- ONE FULL COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>SAME AS LINE 23</td>
<td>ONE COAT SHERWIN WILLIAMS DURAPLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS -- & -- ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS -- & -- ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2/L OR NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS -- & -- ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>SEE NOTE (33)</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS -- & -- ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>SAME AS LINE 25</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS -- & -- ONE FINAL COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>SEE NOTE (33)</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS -- & -- ONE FINAL COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>SAME AS LINE 25</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>SEE NOTE (33)</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS -- & -- ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td>TABLE 3 STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
<td>G MARKINGS</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>----------------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CLEAN AND DIRTY SIDE OF COMBUSTION AIR INTAKES (CONT)</td>
<td>28</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS & --</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS & --</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>SAME AS LINE 28</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS & --</td>
<td>ONE FINAL COAT ALOCIT 28.15, 6 - 8 MILS & --</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>SAME AS LINE 28</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS & --</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN ROOMS</td>
<td>31</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE 28, 29, or 30</td>
<td>SAME AS LINE 28, 29, or 30</td>
<td>SAME AS LINE 28, 29, or 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIXING ROOM/UPTAKE SPACES WITH VENTS OR LOUVERS TO THE OUTSIDE ATMOSPHERE (BULKHEADS & DECKS)</td>
<td>32</td>
<td>NEAR WHITE METAL BLAST NACE 2/SSPC-SP-10</td>
<td>ONE COAT SIGMA COATINGS EDGEGUARD PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA COATINGS EDGEGUARD TOPCOAT, 10 - 12 MILS</td>
<td>ONE STRIPE COAT SIGMA COATINGS EDGEGUARD TOPCOAT, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>SAME AS LINE 32</td>
<td>ONE COAT SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT, 10 - 12 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>SAME AS LINE 32</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624, 6 - 10 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624, 6 - 10 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>SAME AS LINE 32</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
<td>G MARKINGS</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11 SEE NOTE (32) & (36)</td>
<td>ONE COAT BELZONA CERAMIC METAL 4311, 12 - 18 MILS</td>
<td></td>
<td></td>
<td>ONE COAT BELZONA CERAMIC METAL 4311, 12 - 18 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>SAME AS LINE 36</td>
<td>ONE COAT CHESTERTON ARC 855N, 12 - 18 MILS</td>
<td></td>
<td></td>
<td>ONE COAT CHESTERTON ARC 855N, 12 - 18 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>SAME AS LINE 36</td>
<td>ONE COAT ENECON CORPORATION CERAMALLOY CL+ [AC], 12 - 18 MILS</td>
<td></td>
<td></td>
<td>ONE COAT ENECON CORPORATION CERAMALLOY CL+ [AC], 12 - 18 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>SAME AS LINE 17</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>SAME AS LINE 28</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td>SAME AS LINE ONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 3 ALUMINUM SURFACES</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS</td>
<td>LINE</td>
<td>SURFACE PREPARATION</td>
<td>PRIMER</td>
<td>WELDING BAYS & LIGHT TRAPS</td>
<td>BULKHEADS & OVERHEADS</td>
<td>DECKS</td>
<td>THERMAL INSULATION</td>
<td>MARKINGS</td>
</tr>
<tr>
<td>42</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11, USING STAINLESS STEEL WIRE BRUSHES, STAINLESS STEEL PADS, OR ABRASIVE SANDING DISCS (ANSI/BHMA B74.18)</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/COAT OR ONE COAT MIL-PRF-243236, 3 - 5 MILS</td>
<td>BHDS, OVHDS, ONE COAT NO. 37038 (FED STD 595), MIL-PRF-24335, 2 - 3 MILS</td>
<td>DECKS ONE COAT NO. 27038 (FED STD 595), MIL-PRF-24335, 2 - 3 MILS</td>
<td>ONE COAT NO. 26008 (FED STD 595), MIL-PRF-24335, 2 - 3 MILS (TO DECKS NOT RECEIVING DECK COVERING)</td>
<td>HULL, VENTILATION & PIPING INSULATION</td>
<td>SEE NOTES (17), (28), & (40)</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>HAND TOOL CLEANING, SSPC-SP-2</td>
<td>2 COATS FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/COAT OR ONE COAT MIL-PRF-243236, 3 - 5 MILS</td>
<td>SAME AS LINE 42</td>
<td>SAME AS LINE 42</td>
<td>ONE COAT NO. 26008 (FED STD 595), MIL-PRF-24335, 2 - 3 MILS (TO DECKS NOT RECEIVING DECK COVERING)</td>
<td>SAME AS LINE 42</td>
<td>SEE NOTES (17), (28), & (40)</td>
<td></td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS (OVERCOAT)</td>
<td>44</td>
<td>HAND TOOL CLEANING, SSPC-SP-2</td>
<td>SAME AS LINE 42 FOR BARE METAL AREAS</td>
<td>SAME AS LINE 42</td>
<td>SAME AS LINE 42</td>
<td>SAME AS LINE 42</td>
<td>SAME AS LINE 42</td>
<td>SEE NOTES (28) & (40)</td>
</tr>
<tr>
<td>45</td>
<td>POWER TOOL CLEANING, SSPC-SP-3</td>
<td>SAME AS LINE 42 FOR BARE METAL AREAS</td>
<td>SAME AS LINE 42</td>
<td>SEE NOTES (28) & (40)</td>
</tr>
<tr>
<td>TABLE 3</td>
<td>ALUMINUM SURFACES</td>
<td>A</td>
<td>SURFACE PREPARATION</td>
<td>B</td>
<td>PRIMER</td>
<td>C</td>
<td>WELDING BAYS & LIGHT TRAPS</td>
<td>D</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>WET SPACES (WASH ROOMS, WATER CLOSETS, SHOWER STALLS, GALLEYS, SCULLERIES & STOREROOMS WHERE HEAVY CONDENSATION IS COMMON)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>ONE COAT SIGMA GLAZE 5492, 8-10 MILS, WHITE ONLY</td>
<td>ONE STRIPE COAT SIGMA 5492, 8-10 MILS -- & -- ONE FULL COAT, 8-10 MILS, WHITE ONLY</td>
<td>SAME AS LINE 42</td>
<td>SAME AS LINE 42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEE NOTE (28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>SAME AS LINE 46</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 6 - 10 MILS -- & -- ONE FULL COAT, 10 - 12 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS -- & -- ONE FINAL COAT, 6 - 8 MILS</td>
<td>SAME AS LINE 42</td>
<td>SAME AS LINE 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>SAME AS LINE 46</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>SAME AS LINE 47</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS -- & -- ONE FINAL COAT, 6 - 8 MILS</td>
<td>SAME AS LINE 42</td>
<td>SAME AS LINE 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>SAME AS LINE 46</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>SAME AS LINE 47</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS -- & -- ONE FINAL COAT, MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>SAME AS LINE 42</td>
<td>SAME AS LINE 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line</td>
<td>Surface Preparation</td>
<td>Primer</td>
<td>Welding Bays & Light Traps</td>
<td>Bulkheads & Overheads</td>
<td>Decks</td>
<td>Thermal Insulation</td>
<td>Markings</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------</td>
<td>--------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Power tool clean to bare metal, SSPC-SP-11 - or - waterjetting to NACE 5/SSPC-SP-12 condition WJ-2 - or - near white metal blast, NACE 2/SSPC-SP-10</td>
<td>One coat Alocit 28.15, 6 - 8 mils</td>
<td>Above bilge area: 2 coats F-124, DOD-E-24607, 1.5 - 3 mils/coat</td>
<td>Bilge area: One stripe coat Alocit 28.15, 6 - 8 mils -- & -- One final coat Alocit 28.15, 6 - 8 mils</td>
<td>Same as line 42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Same as line 50</td>
<td>One coat International Interbond 998, 6 - 8 mils</td>
<td>Same as line 50</td>
<td>Bilge area: One stripe coat International Interbond 998, 6 - 8 mils -- & -- One final coat International Interbond 998, 6 - 8 mils</td>
<td>Same as line 42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Same as line 50</td>
<td>One coat MIL-PRF-23236, Type VII, Class 17, 6 - 8 mils</td>
<td>Same as line 50</td>
<td>Bilge area: One stripe coat MIL-PRF-23236, Type VII, Class 17, 6 - 8 mils -- & -- One coat MIL-PRF-23236, Type VII, Class 5 or 17, 6 - 8 mils</td>
<td>Same as line 42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Near white metal blast, NACE 2/SSPC-SP-10</td>
<td>One coat MIL-PRF-23236, Type VII, Class 5, 4 - 8 mils</td>
<td>Same as line 50</td>
<td>Bilge area: One stripe coat MIL-PRF-23236, Type VII, Class 5, 6 - 10 mils -- & -- One coat MIL-PRF-23236, Type VII, Class 5, 10 - 12 mils</td>
<td>Same as line 42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 3 ALUMINUM SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
<td>G MARKINGS</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>INTAKE VENT PLENUMS, BETWEEN SKIN OF SHIP & MOISTURE SEPARATORS</td>
<td>54</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT CREAM SIGMA COATINGS EDGEGUARD PRIMER (PDS NO. 5427), 4 - 8 MILS</td>
<td>ONE STRIPE COAT WD GRAY SIGMA EDGEGUARD TOP COAT (PDS NO. 5428), 6 - 10 MILS</td>
<td>& --</td>
<td>ONE COAT OFF-WHITE SIGMA COATINGS EDGEGUARD TOPCOAT (PDS NO. 5428), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>SAME AS LINE 54</td>
<td>ONE COAT BUFF SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER (B62W220/B62V220), 4 - 8 MILS</td>
<td>ONE STRIPE COAT GRAY SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62A220/B62V220), 6 - 10 MILS</td>
<td>& --</td>
<td>ONE COAT WHITE SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62W220/B62V220), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>SAME AS LINE 54</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624 (THA624/627) WHITE, 6 - 10 MILS</td>
<td>& --</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 (THA625/627) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>SAME AS LINE 54</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, AMBER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5411-5000, GRAY, 6 - 10 MILS</td>
<td>& --</td>
<td>ONE FULL COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>SAME AS LINE 54</td>
<td>ONE COAT SHERWIN WILLIAMS DURAPLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
<td>& --</td>
<td>ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>SAME AS LINE 54</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS</td>
<td>& --</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 3 ALUMINUM SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
<td>G MARKINGS</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2 - OR - NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>SAME AS LINE 60</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS</td>
<td>ONE FULL COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 10 - 12 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 6 - 10 MILS</td>
<td>ONE FULL COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 10 - 12 MILS</td>
<td>ONE FULL COAT SIGMA MARINE COATINGS SIGMAGUARD BT, 10 - 12 MILS</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>SAME AS LINE 62</td>
<td>ONE COAT SHERWIN WILLIAMS DURAPLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
<td>ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
<td>ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS</td>
<td>ONE FULL COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>WATERJETTING TO NACE 5/SSPC-SP-12 CONDITION WJ-2 - OR - NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE FULL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE FULL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE FULL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>SAME AS LINE 64</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE FULL COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE FULL COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE FULL COAT ALOCIT 28.15, 6 - 8 MILS</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>SAME AS LINE 64</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE FULL COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE FULL COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE FULL COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
</tr>
</tbody>
</table>

SEE NOTE (33)
<table>
<thead>
<tr>
<th>TABLE 3 ALUMINUM SURFACES</th>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C WELDING BAYS & LIGHT TRAPS</th>
<th>D BULKHEADS & OVERHEADS</th>
<th>E DECKS</th>
<th>F THERMAL INSULATION</th>
<th>G MARKINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAN AND DIRTY SIDE OF COMBUSTION AIR INTAKES (CONT)</td>
<td>67</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11, USING STAINLESS STEEL WIRE BRUSHES, STAINLESS STEEL PADS, OR ABRASIVE SANDING DISCS (ANSI/BHMA B74.18)</td>
<td>ONE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS -- & --</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS -- & --</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>SAME AS LINE 67</td>
<td>ONE COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT ALOCIT 28.15, 6 - 8 MILS -- & --</td>
<td>ONE FINAL COAT ALOCIT 28.15, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS -- & --</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>SAME AS LINE 67</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS -- & --</td>
<td>ONE FINAL COAT MIL-PRF-23236, TYPE VII, CLASS 17, 6 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS -- & --</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIXING ROOM/UPTAKE SPACES WITH VENTS OR LOUVERS TO THE OUTSIDE ATMOSPHERE (BULKHEADS & DECKS)</td>
<td>70</td>
<td>NEAR WHITE METAL BLAST NACE 2/SSPC-SP-10</td>
<td>ONE COAT SIGMA COATINGS EDGEGUARD PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA COATINGS EDGEGUARD EDGEGUARD TOPCOAT, 10 - 12 MILS</td>
<td>ONE STRIPE COAT SIGMA COATINGS EDGEGUARD EDGEGUARD TOPCOAT, 10 - 12 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS -- & --</td>
<td>ONE FINAL COAT INTERNATIONAL INTERBOND 998, 6 - 8 MILS</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>SAME AS LINE 70</td>
<td>ONE COAT SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT, 6 - 10 MILS -- & --</td>
<td>ONE COAT SHERWIN WILLIAMS NOVA-PLATE TOPCOAT, 10 - 12 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT, 6 - 10 MILS -- & --</td>
<td>ONE COAT SHERWIN WILLIAMS NOVA-PLATE TOPCOAT, 10 - 12 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>SAME AS LINE 70</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624, 6 - 10 MILS -- & --</td>
<td>ONE FINAL COAT INTERNATIONAL INTERLINE 624, 10 - 12 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624, 6 - 10 MILS -- & --</td>
<td>ONE FINAL COAT INTERNATIONAL INTERLINE 624, 10 - 12 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>SAME AS LINE 70</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS -- & --</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS -- & --</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- See Note (33)

Item No: 009-32

FY: 06 (CH-2)
<table>
<thead>
<tr>
<th>LINE</th>
<th>A SURFACE PREPARATION</th>
<th>B PRIMER</th>
<th>C WELDING BAYS & LIGHT TRAPS</th>
<th>D BULKHEADS & OVERHEADS</th>
<th>E DECKS</th>
<th>F THERMAL INSULATION</th>
<th>G MARKINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>SAME AS LINE 42</td>
</tr>
<tr>
<td>75</td>
<td>SAME AS LINE 54</td>
<td>SAME AS LINE 42</td>
</tr>
<tr>
<td>76</td>
<td>SAME AS LINE 60</td>
<td>SAME AS LINE 42</td>
</tr>
<tr>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
<td>G MARKINGS</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>77</td>
<td>SOAP & WATER CLEAN & HAND SAND AS NECESSARY</td>
<td>ONE COAT FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS</td>
<td>2 COATS WATER-BASED INTERIOR LATEX, MIL-PRF-24596, 2 - 4 MILS/COAT - OR - 2 COATS NAVY F-25A FIRE RETARDANT INTERIOR LATEX, 2 - 4 MILS/COAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>SAME AS LINE 77</td>
<td>ONE COAT FORMULA 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS</td>
<td>2 COATS OF FINISH COAT DOD-E-24607, 1.5 - 3 MILS/COAT, F-124, 125, OR 126 (COLOR TO BE DESIGNATED)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 3 WOOD SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B PRIMER</td>
<td>C WELDING BAYS & LIGHT TRAPS</td>
<td>D BULKHEADS & OVERHEADS</td>
<td>E DECKS</td>
<td>F THERMAL INSULATION</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>INTERIOR COMPARTMENTS</td>
<td>79</td>
<td>HAND TOOL CLEAN -- & -- POWER TOOL CLEAN TO BARE WOOD OR TIGHTLY ADHERING INTACT PAINT</td>
<td>2 COATS FORMULA 84, ALKYD ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS/COAT</td>
<td>2 COATS MIL-PRF-24596, WATER-BASED INTERIOR LATEX, 2 - 4 MILS/COAT OR 2 COATS NAVY F-25A, WATER-BASED FIRE RETARDANT COATING, 2 - 4 MILS/COAT</td>
<td>SEE NOTES (9) & (17)</td>
<td>FOR COMPARTMENT PIPING & VENTILATION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>SAME AS LINE 79</td>
<td>2 COATS FORMULA 84, ALKYD ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS/COAT</td>
<td>2 COATS DOD-E-24607, 1.5 - 3 MILS/COAT</td>
<td>SEE NOTE (17)</td>
<td>SAME AS LINE 79</td>
<td></td>
</tr>
<tr>
<td>TABLE 4 STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B COAT</td>
<td>C ONE STRIPE COAT</td>
<td>D COAT</td>
<td>E ONE STRIPE COAT</td>
<td>F COAT</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>--------</td>
<td>------------------</td>
<td>--------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>POTABLE WATER TANKS</td>
<td>1</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT INTERNATIONAL 5747/5748, GREEN, 3 - 5 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL 5753/5754, WHITE, 3 - 5 MILS</td>
<td>ONE COAT INTERNATIONAL 5753/5754, WHITE, 3 - 5 MILS AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td>TOTAL SYSTEM 8 MILS MIN, 10 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
<td>SEE NOTE (26)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS TANKGUARD N11G100/N11V100, GREEN, 3 - 5 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS TANKGUARD N11L100/N11V101, BLUE, 3 - 5 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS TANKGUARD N11L100/N11V101, BLUE, 3 - 5 MILS AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td>TOTAL SYSTEM 8 MILS MIN, 10 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
<td>SEE NOTE (37)</td>
</tr>
<tr>
<td>FEEDWATER TANKS ONLY</td>
<td>3</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE V OR VI, CLASS 9, 3 - 5 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE V OR VI, CLASS 9, 3 - 5 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE V OR VI, CLASS 9, 3 - 5 MILS AT ADEQUATE THICKNESS TO MEET COATING RANGE</td>
<td>TOTAL SYSTEM 8 MILS MIN, 10 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
<td>SEE NOTE (37)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE STRIPE COAT F-152, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE COAT F-156, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE STRIPE COAT F-150, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURAPLATE UHS, 6 - 10 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS DURAPLATE UHS, 10 - 12 MILS</td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
<td>SEE NOTE (37)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SIGMAGUARD CSF 85, 8 - 12 MILS</td>
<td>ONE STRIPE COAT SIGMAGUARD CSF 85, 2 - 4 MILS</td>
<td>ONE COAT SIGMAGUARD CSF 85, 8 - 12 MILS</td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
<td>SEE NOTE (37)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 9, 8 - 12 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 9, 2 - 4 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 9, 8 - 12 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 9, 2 - 4 MILS</td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE STRIPE COAT F-152, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE COAT F-151, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>ONE STRIPE COAT F-150, MIL-DTL-24441, TYPE III, 2 - 4 MILS</td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERGARD FPD 052/FPA WHITE, 4 - 6 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERGARD FPD 052/FPA WHITE, 4 - 6 MILS</td>
<td>ONE COAT INTERNATIONAL INTERGARD FPD 052/FPA WHITE, 4 - 6 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERGARD FPD 052/FPA WHITE, 4 - 6 MILS</td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 11, 4 - 6 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 11, 4 - 6 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 11, 4 - 6 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 11, 4 - 6 MILS</td>
<td>TOTAL SYSTEM 8 MILS MIN, 12 MILS MAX (AREAS WITHOUT STRIPE COAT)</td>
</tr>
<tr>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G TOTAL</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>11</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT CREAM SIGMA EDGEGUARD PRIMER (PDS NO. 5427), 4 - 8 MILS</td>
<td>ONE STRIPE COAT OFF-WHITE SIGMA EDGEGUARD TOPCOAT (PDS NO. 5428), 6 - 10 MILS</td>
<td>ONE COAT WD GRAY SIGMA EDGEGUARD TOPCOAT (PDS NO. 5428), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EDGE RETENTIVE-EXTENDED SERVICE LIFE 15-20 YEARS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEE NOTE (35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT BUFF SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER (B62H220/B62V220), 4 - 8 MILS</td>
<td>ONE STRIPE COAT GRAY SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62A220/B62V220), 6 - 10 MILS</td>
<td>ONE COAT WHITE SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62W220/B62V220), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAME AS LINE 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624 (THA624/627) WHITE, 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 (THA624/627) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAME AS LINE 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 6 - 10 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAME AS LINE 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAME AS LINE 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE 11</td>
<td>SAME AS LINE 11</td>
<td>SEE NOTE (38)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAME AS LINE 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 12</td>
<td>SAME AS LINE 12</td>
<td>SAME AS LINE 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 13</td>
<td>SAME AS LINE 13</td>
<td>SAME AS LINE 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 14</td>
<td>SAME AS LINE 14</td>
<td>SAME AS LINE 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 4 STEEL SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP-5 TANKS, MOGAS</td>
<td>19</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 6 - 10 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 10 - 12 MILS</td>
<td>SEE NOTE (35)</td>
<td></td>
</tr>
<tr>
<td>SERVICE TANKS, DIESEL</td>
<td></td>
<td></td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE TANKS, CONTAMINATED FUEL TANKS, FUEL COMP TANKS, FUEL STORAGE TANKS, SUMPS</td>
<td></td>
<td></td>
<td>Edge Retentive-Extended Service Life 10-12 Years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEE NOTE (35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP-5 TANKS, MOGAS</td>
<td>20</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 19</td>
<td>SAME AS LINE 19</td>
<td>SAME AS LINE 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TANKS, FUEL OIL</td>
<td></td>
<td></td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE TANKS, DIESEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERVICE TANKS, CONTAMINATED FUEL TANKS, FUEL COMP TANKS, FUEL STORAGE TANKS, SUMPS</td>
<td></td>
<td></td>
<td>Normal Service Life 5-7 Years (Less Stringent Humidity Requirements)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEE NOTE (35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHT/MSD TANKS</td>
<td>21</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT CREAM SIGMA EDGEGUARD PRIMER (PDS NO. 5427), 4 - 8 MILS</td>
<td>ONE STRIPE COAT W/D GRAY SIGMA EDGEGUARD TOPCOAT (PDS NO. 5428), 6 - 10 MILS</td>
<td>ONE COAT WHITE SIGMA EDGEGUARD TOPCOAT (PDS NO. 5428), 10 - 12 MILS</td>
<td>SEE NOTE (35)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT BUFF SHERWIN WILLIAMS NOVA-PLATE UHS PRIMER (B62H220/B62V220), 4 - 8 MILS</td>
<td>ONE STRIPE COAT GRAY SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62A220/B62V220), 6 - 10 MILS</td>
<td>ONE COAT WHITE SHERWIN WILLIAMS NOVA-PLATE UHS TOPCOAT (B62W220/B62V220), 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624 (THA624/627) WHITE, 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 (THA625/627) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 13, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 13, 6 - 10 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 13, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G TOTAL</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>25</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, AMBER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5411-5000, GRAY, 6 - 10 MILS</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5411-S674, AQUA, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td>26</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 6 - 10 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td>27</td>
<td>SAME AS LINE ONE</td>
<td>ONE PRIMER COAT AMEROX AMERCOAT 133, 4 - 8 MILS</td>
<td>ONE STRIPE COAT AMEROX AMERCOAT 333, 6 - 10 MILS</td>
<td>ONE COAT AMEROX AMERCOAT 333, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td>28</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERGARD 143 (THA 141/THA 148) PINK, 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERGARD 143 (THA 143/THA 148) BUFF, 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERGARD 143 (THA 144/THA 148) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td>29</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 PRIMER (THA626/627), 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERLINE 624 (THA624/627) WHITE, 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERLINE 624 (THA625/627) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td>30</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 6 - 10 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
<td>SEE NOTE (33)</td>
</tr>
<tr>
<td>LINE</td>
<td>SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G TOTAL</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>32</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 26</td>
<td>SAME AS LINE 26</td>
<td>SAME AS LINE 26</td>
<td>SAME AS LINE 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 27</td>
<td>SAME AS LINE 27</td>
<td>SAME AS LINE 27</td>
<td>SAME AS LINE 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 28</td>
<td>SAME AS LINE 28</td>
<td>SAME AS LINE 28</td>
<td>SAME AS LINE 28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 29</td>
<td>SAME AS LINE 29</td>
<td>SAME AS LINE 29</td>
<td>SAME AS LINE 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>SAME AS LINE 15</td>
<td>SAME AS LINE 30</td>
<td>SAME AS LINE 30</td>
<td>SAME AS LINE 30</td>
<td>SAME AS LINE 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>SAME AS LINE 15</td>
<td>ONE COAT MIL-PRF-23236C, GRADE A OR B</td>
<td>ONE STRIPE COAT MIL-PRF-23236C, GRADE A OR B</td>
<td>ONE COAT MIL-PRF-23236C, GRADE A OR B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>SAME AS LINE 38</td>
<td>ONE COAT INTERNATIONAL INTERGARD 143 (THA 141/THA 148) PINK, 4 - 8 MILS</td>
<td>ONE STRIPE COAT INTERNATIONAL INTERGARD 143 (THA 141/THA 148) BUFF, 6 - 10 MILS</td>
<td>ONE COAT INTERNATIONAL INTERGARD 143 (THA 144/THA 148) GRAY, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>SAME AS LINE 38</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5404, AMBER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5411-5000, GRAY, 6 - 10 MILS</td>
<td>ONE COAT SIGMA MARINE COATINGS SIGMAGUARD BT 5411-5074, AQUA, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>SAME AS LINE 38</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS PRIMER, 4 - 8 MILS</td>
<td>ONE STRIPE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 6 - 10 MILS</td>
<td>ONE COAT SHERWIN WILLIAMS DURA-PLATE UHS, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>SAME AS LINE 38</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 4 - 8 MILS</td>
<td>ONE STRIPE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 6 - 10 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VII, CLASS 5 OR 7, 10 - 12 MILS</td>
<td>SEE NOTE (33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>2 COATS F-84, ALKYD ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS/COAT</td>
<td>ONE COAT NO. 27875 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td></td>
<td>TOTAL SYSTEM 4.5-6 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 4 ALUMINUM SURFACES</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TANKS AND VOIDS</td>
<td>44</td>
<td>NEAR WHITE BLAST, NACE 2/SSPC-SP-10, TO ACHIEVE 1-1/2 TO 3 MILS ANCHOR PATTERN, USING GARNET OR ALUMINUM OXIDE</td>
<td>SAME AS FOR STEEL</td>
</tr>
<tr>
<td>TABLE 5</td>
<td>VARIOUS LOCATIONS</td>
<td>LINE</td>
<td>A SURFACE PREPARATION</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>------</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UNHEATED PIPING, FITTINGS, VALVES</td>
<td>1</td>
<td>HAND TOOL CLEAN, SSPC-SP-2</td>
<td></td>
<td>ONE COAT F-84, ALKYD ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS</td>
<td>ONE COAT F-84, ALKYD ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS</td>
<td>2 COATS OF BILGE FINISH COAT TO MATCH SURROUNDING SURFACES, INCLUDING LAGGED SURFACES</td>
<td>ONE COAT MIL-PRF-24635, 2 - 3 MILS, FOR COLOR CODED SYSTEMS</td>
</tr>
<tr>
<td>UNHEATED FERROUS MACHINERY EXTERNAL SURFACES</td>
<td>2</td>
<td>POWER TOOL CLEAN, SSPC-SP-3</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT F-111, MIL-DTL-15090, 1.5 - 3 MILS - OR - ONE COAT NO. 26307 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td>IF REQUIRED FOR HIDING, ONE ADDITIONAL COAT: F-111, MIL-DTL-15090, 1.5 - 3 MILS - OR - NO. 26307 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MACHINERY, GAGEBOARDS</td>
<td>3</td>
<td>SAME AS LINE 2</td>
<td>SAME AS LINE ONE</td>
<td>ONE COAT F-111, MIL-DTL-15090, 1.5 - 3 MILS - OR - ONE COAT NO. 26307 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td>IF REQUIRED FOR HIDING, ONE ADDITIONAL COAT: F-111, MIL-DTL-15090, 1.5 - 3 MILS - OR - NO. 26307 (FED STD 595), MIL-PRF-24635, 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNINSULATED SIDE OF BULKHEAD OR SHELL ADJACENT TO SEA OR AC BOUNDARY (FOR INTERIOR COMPARTMENTS ONLY)</td>
<td>4</td>
<td>POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>ONE COAT HEMPEL HEMPAFIR 45150-50630, 4 - 6 MILS</td>
<td>ONE COAT HEMPEL ANTI-CONDENS 617US-10000, 50 - 60 MILS</td>
<td>ONE COAT TEMP-COAT 101, 20 - 22 MILS</td>
<td>ONE COAT TEMP-COAT 101, 20 - 22 MILS</td>
<td></td>
</tr>
<tr>
<td>BOILERS & ECONOMIZERS (EXCEPT PARTS USED FOR HEAT TRANSFER), MACHINERY CASINGS, FERROUS SHEET METAL & PIPING SURFACES</td>
<td>5</td>
<td>SAME AS LINE 4</td>
<td>ONE COAT F-84, ALKYD ZINC MOLYBDATE, TT-P-645, 1.5 - 3 MILS - OR - ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE COAT TEMP-COAT 101, 20 - 22 MILS</td>
<td>ONE COAT TEMP-COAT 101, 20 - 22 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL EQUIPMENT, ELECTRONIC EQUIPMENT & CABLES</td>
<td>6</td>
<td>SAME AS LINE 4</td>
<td>ONE COAT AMERON AMEROCOAT 8502HS, 2 - 3 MILS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL EQUIPMENT, ELECTRONIC EQUIPMENT & CABLES</td>
<td>7</td>
<td>SAME AS LINE 4</td>
<td>2 COATS OF TT-P-28 SUFFICIENT TO COVER THE PROFILE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABLE, INTERIOR (OTHER THAN PVC, LOW SMOKE)</td>
<td>8</td>
<td>SAME AS LINE 4</td>
<td>ONE COAT F-84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS</td>
<td>2 COATS F-111, MIL-DTL-15090, 1.5 - 3 MILS/COAT - OR - ONE COAT NO. 26307 FED STD 595, MIL-PRF-24635, 2 - 3 MILS</td>
<td>2 COATS F-111, MIL-DTL-15090, 1.5 - 3 MILS/COAT - OR - ONE COAT NO. 26307 FED STD 595, MIL-PRF-24635, 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABLE, EXTERIOR (OTHER THAN PVC, LOW SMOKE)</td>
<td>9</td>
<td>SAME AS LINE 4</td>
<td>2 COATS FORMULA A 84, TT-P-645, ALKYD ZINC MOLYBDATE, 1.5 - 3 MILS/COAT</td>
<td>2 COATS NAVY F-25A OR 2 COATS WATER-BASED LATEX PER MIL-PRF-24596, 2 - 4 MILS/COAT</td>
<td>2 COATS DOD-E-24607 CHLORINATED ALKYD 1.5 - 3 MILS/COAT (FOR COLOR MATCH IF REQUIRED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL/ELECTRONIC CABLES (PVC, LOW SMOKE)</td>
<td>10</td>
<td>SAME AS LINE 4</td>
<td>SAME AS LINE 8</td>
<td>ONE COAT MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY) TO MATCH SURROUNDING AREA, 2 - 3 MILS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL/ELECTRONIC CABLES (PVC, LOW SMOKE)</td>
<td>11</td>
<td>SAME AS LINE 4</td>
<td>2 COATS MIL-PRF-24596, WATER-BASED LATEX, 2 - 4 MILS/COAT - OR - 2 COATS OF NAVY F-25A, 2 - 4 MILS/COAT</td>
<td></td>
<td>2 COATS OF DOD-E-24607, 1.5 - 3 MILS/COAT (FOR COLOR MATCH IF REQUIRED)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TABLE 5</td>
<td>VARIOUS LOCATIONS</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ANCHOR (SURFACE SHIP BOW ANCHORS) FOR ANCHORS BELOW LOWER BOOTTOPPING LIMIT, SEE NOTE (13)</td>
<td>12</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE COAT MIL-PRF-23236, 3 - 5 MILS</td>
<td>ONE COAT HAZE GRAY, NO. 26270 (FED STD 595), MIL-PRF-24635 (LOW SOLAR ABSORPTION ONLY), 2 - 3 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANCHOR CHAIN</td>
<td>13</td>
<td>COMMERCIAL BLAST CLEAN, SSPC-SP-6</td>
<td>ONE COAT AMERON PSX 700 TO HOLD BLAST, 1 - 2 MILS</td>
<td>ONE COAT AMERON PSX 700, 4 - 5 MILS</td>
<td>ONE COAT AMERON PSX 700, 4 - 5 MILS</td>
<td>10 MILS MIN, 12 MILS MAX</td>
<td>AMERON PSX 700</td>
</tr>
<tr>
<td>INTERIOR GALVANIZED SURFACES</td>
<td>14</td>
<td>BRUSH-OFF BLAST, SSPC-SP-7 - OR - POWER TOOL CLEAN, SSPC-SP-3</td>
<td>ONE COAT WATER-BASED INTERIOR LATEX, MIL-PRF-24596, 2 - 4 MILS - OR - ONE COAT NAVY F-25A FIRE RETARDANT INTERIOR LATEX, 2 - 4 MILS</td>
<td>TOPOCOAT TO MATCH SURROUNDING AREA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTERIOR GALVANIZED SURFACES</td>
<td>15</td>
<td>SAME AS LINE 14</td>
<td>ONE COAT MIL-PRF-24763, 2 - 4 MILS</td>
<td>TOPOCOAT TO MATCH SURROUNDING AREA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXHAUST PIPE EXTERIOR</td>
<td>16</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10</td>
<td>ONE COAT AMERCOAT 892HS, HAZE GRAY #26270, 2 - 3 MILS</td>
<td>ONE COAT AMERCOAT 892HS, HAZE GRAY #26270, 2 - 3 MILS - OR - 2 COATS OF TT-P-28 SUFFICIENT TO COVER THE PROFILE</td>
<td>SE Cqus NOTE (29) & (42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCMS (REPAIRS)</td>
<td>17</td>
<td>STRIP PAINT, USING "PEEL-AWAY-7" - OR - PLASTIC MEDIA BLASTER - OR - SODIUM BICARBONATE MEDIA BLASTER SEE REPAIR & INSTALLATION METHODS, RIM 05T1-99</td>
<td>ONE COAT HAZE GRAY, MIL-PRF-24763 (LOW SOLAR ABSORPTION ONLY), 2 - 4 MILS (TOP COAT OF PCMS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCMS (NEW INSTALLATION)</td>
<td>18</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10 - OR - POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>ONE COAT F-150, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>ONE COAT F-151, MIL-DTL-24441, TYPE IV, 4 - 6 MILS</td>
<td>SAME AS LINE 17</td>
<td></td>
</tr>
<tr>
<td>INTERIOR DECK PASSAGEWAYS NOT RECEIVING DECK COVERINGS SEE NOTE (12)</td>
<td>19</td>
<td>NEAR WHITE METAL BLAST, NACE 2/SSPC-SP-10 - OR - POWER TOOL CLEAN TO BARE METAL, SSPC-SP-11</td>
<td>ONE COAT AMERON AMERCOAT 238, 10 - 12 MILS</td>
<td>ONE COAT AMERON AMERCOAT 238, 10 - 12 MILS</td>
<td>ONE COAT AMERON AMERCOAT 238, 10 - 12 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>SAME AS LINE 19</td>
<td>ONE COAT SIGMAGUARD CSF GLASS FLAKE 7954, 10 - 12 MILS</td>
<td>ONE COAT SIGMAGUARD CSF GLASS FLAKE 7954, 10 - 12 MILS</td>
<td>ONE COAT SIGMAGUARD CSF GLASS FLAKE 7954, 10 - 12 MILS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>SAME AS LINE 19</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 16, 10 - 12 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 16, 10 - 12 MILS</td>
<td>ONE COAT MIL-PRF-23236, TYPE VI OR VII, CLASS 16, 10 - 12 MILS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. SCOPE:

1.1 Title: Rotating Electrical Equipment; rewind

2. REFERENCES:

2.1 Standard Items

2.2 Equipment Technical Manual

2.3 S9086-KC-STM-010/CH-300, Electric Plant - General

2.4 S9086-KE-STM-000/CH-302, Electrical Motors and Controllers

2.5 S9086-KN-STM-010/CH-310, Electrical Power Generators and Conversion Equipment

2.6 S9086-HN-STM-010/CH-244, Propulsion Bearings and Seals

2.7 0900-LP-060-2010, Electrical Machinery Repair, Electrical Motor Repair, Shop Procedures Manual

2.8 S9310-AC-HBK-010, Commutator/Slip Ring Maintenance Handbook

2.9 MIL-STD-1310, Shipboard Bonding, Grounding, and Other Techniques for Electromagnetic Compatibility and Safety

3. REQUIREMENTS:

3.1 Accomplish preliminary repair preparations as follows:

3.1.1 Prior to disconnecting equipment:

3.1.1.1 Record and retain electrical hook-up data. Record and retain air gap readings. Record and retain bearing clearances for sleeve bearing equipment only.

3.1.1.2 Inspect couplings for cracks, broken segments, wear, and misalignment in excess of tolerances specified in 2.2.
3.1.2 Disconnect the equipment electrically and mechanically, using 2.2 for guidance.

3.1.2.1 Matchmark, identify, and retain chocks, shims, shock mounts, sound damping pads, and other accessories associated with equipment.

3.1.2.2 Record shaft thrust and run out readings.

3.2 Remove equipment including rotating components connected directly to the shaft.

3.3 Inspect foundations for cracks, areas of distortion, and deterioration in excess of 25 percent of the thickness of each member of the structure.

3.4 Submit one legible copy, in hard copy or electronic media, of a report listing inspection results, missing parts, defective parts, and measurements taken in 3.1 and 3.3 to the SUPERVISOR.

3.5 Matchmark, disassemble and inspect the equipment removed in 3.2, using 2.2 through 2.7 for guidance.

3.5.1 Accomplish a core loss test prior to winding removal in accordance with Paragraphs 300-4.5.6 and 300-4.5.6.1 of 2.3. Record data.

3.5.1.1 Inspect for hot spots in accordance with the Core Loss Tester Instruction Manual.

3.5.1.2 Conduct a loop test in accordance with Paragraph 300-4.5.6.1.2 of 2.3 when core indicates a marginal satisfactory reading or when test equipment does not directly support equipment being subjected to testing.

3.5.2 Remove each winding, using Paragraph 300-4.5.7.2 of 2.3 for guidance for winding removal and 2.7 for core inspection.

3.5.2.1 Verify the temperature limitations of the core material prior to exercising the burnout oven option.

3.5.2.2 Record winding data. Verify conformance of recorded data to the manufacturer's winding data.

3.5.2.3 Accomplish a core loss test after winding removal in accordance with Paragraph 300-4.5.6 and 300-4.5.6.1 of 2.3. Record data.

3.5.2.4 Inspect for hot spots in accordance with the Core Loss Tester Instruction Manual.

3.5.2.5 Dip core iron in a 20 percent solution of varnish MIL-I-24092 and dry. In localities where MIL-I-24092 does not meet state and...
local Air Pollution Control District (APCD) standards, spray the iron core with a clear air drying varnish.

3.5.3 Protect machined surfaces and clean the equipment housing exterior, fan(s), core iron, and interior and exterior of end bells to bare metal.

3.5.3.1 Prime equipment housing, fan(s), and end bells with one coat F-84 Alkyd Zinc Molybdate TT-P-645 (1.5 mils dry film thickness).

3.6 Inspect non-wound rotors for loose or cracked bars, localized overheating, and rubbing. Inspect wound rotors, slip ring leads, and armatures for insulation damage and burns/hot spots. Inspect for loose coils and slot wedges. Inspect slip rings and commutators for damage and for wear limits, using 2.2 for criteria. Record data.

3.7 Inspect and dimensionally measure end bells, frame, rabbet fits, shaft, sleeve and pedestal bearings, keyways, fan and running surfaces for wear, eccentricity, and other defects, using 2.2 for accept or reject criteria, and 2.6 for location and type of measurements to be taken. Record data.

3.8 Inspect brush rigging for cracks, chips, worn areas, distortion, spring condition, and insulating material for cracks and arc paths. Record data.

3.9 Accomplish commutator pre-installation and post-installation test, using Table 300-3-9 of 2.3 for guidance. Record data.

3.10 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.5 through 3.9 to the SUPERVISOR.

3.11 Rewind the equipment in accordance with Original Equipment Manufacturer's (OEM) "for Navy use" winding data.

3.11.1 Do not permanently connect winding until after successful completion of testing of 3.11.3 through 3.11.6.

3.11.2 Material shall conform to:

3.11.2.1 Magnet wire, National Electrical Manufacturers Association (NEMA) MW-1000, Table MW 16 (round wire), or NEMA MW-1000, Table MW 20 (rectangular wire), or equivalent to OEM original.

3.11.2.2 Slot and phase insulation, MIL-I-24204.

3.11.2.3 Slot wedge-spacers and fillers, MIL-I-24768/17.

3.11.2.4 Lead wire, stranded, MIL-DTL-16878.
3.11.2.5 Glass banding, MIL-I-24178.

3.11.2.6 New temperature detectors in accordance with 2.2.

(V) "INSULATION RESISTANCE TEST"

3.11.3 Accomplish 500 volt megger insulation resistance test, using Paragraphs 300-3.2.2 through 300-3.2.3, 300-3.4.8, 300-3.4.11, and 300-5.3.7.1 of 2.3 for guidance.

(V) "DC RESISTANCE TEST"

3.11.4 Accomplish a DC resistance test of windings, using a Wheatstone or Kelvin bridge, or with an ohmmeter capable of resolving one milliohm (0.001 ohm). Record phase balance for multi-phase equipment, using Paragraph 5.22 of 2.7 for guidance.

(V) "VOLTAGE SURGE TEST"

3.11.5 Accomplish a voltage surge test in accordance with Paragraphs 300-3.5.4 through 300-3.5.5 of 2.3.

(V) "DC HI POT TEST"

3.11.6 Accomplish a DC HI POT test in accordance with Paragraph 300-3.5.2 through 300-3.5.2.3.4 of 2.3.

3.12 Permanently connect the windings.

3.12.1 Repeat tests described in 3.11.3 through 3.11.6

(V) "BAR-TO-BAR TEST"

3.12.2 Accomplish DC bar-to-bar test on commutators after making coil connections to the risers in accordance with Paragraph 300-4.7.11.2 of 2.3.

(V) "VARNISH TEMPERATURE, VISCOSITY, AND GEL TIME TESTS"

3.13 Select the proper insulation process based on winding insulation classifications and to meet state or local air pollution standards.

3.13.1 Select varnish methods and material, using Paragraphs 300-4.5.8 through 300-4.5.8.2 of 2.3 for guidance.

3.13.1.1 Maintain the varnish in accordance with Paragraphs 300-4.5.8.3 through 300-4.5.8.3.3 of 2.3 and the varnish manufacturer's instructions.
3.13.1.2 Maintain a current revision of the varnish manufacturer's instructions on storage, maintenance, and use of the type of varnish to be applied.

3.13.1.3 Maintain a record of varnish temperature, viscosity, and, for solventless varnish, gel time tests. Tests must show varnish is within varnish manufacturer's recommendations and have been accomplished in the intervals specified by the varnish manufacturer. The record must also show the varnish is being stored as recommended by the varnish manufacturer.

3.14 Varnish windings in accordance with Paragraphs 300-4.5.8.2 of 2.3 and the varnish manufacturer's instructions.

3.14.1 Do not immerse the leads.

3.14.2 Wipe surfaces that affect assembly such as rabbet fits and mounting flanges with a cloth moistened with a solvent after draining and before baking.

3.15 Remove excess varnish runoff from the component locations described in 3.14.2 after final baking. Apply a thin coat of air dry varnish to metal surfaces exposed by the removal process in accordance with Paragraphs 300-4.5.8.5 and 300-4.5.8.6 of 2.3.

3.16 Repeat tests described in 3.11.3 through 3.11.6. Record data.

3.17 Accomplish an AC HI POT test in accordance with Paragraphs 300-3.5.3 through 300-3.5.3.2.9 of 2.3. Record data.

3.18 Accomplish a 500-volt megger insulation resistance test, using Paragraphs 300-3.2.2 through 300-3.2.3, 300-3.4.8, 300-3.4.11, and 300-5.3.7.1 of 2.3 for guidance. Record data.

3.19 Measure resistance value of each winding temperature detector, using a low voltage ohmmeter. Record data.

3.20 Submit one legible copy, in hard copy or electronic media, of a report listing the results of the requirements of 3.16 through 3.19 to the SUPERVISOR.

3.21 True the commutator or collector rings. Eccentricity shall not exceed the requirements of 2.8. Resurface or machine each individual collector ring to the same exact diameter to allow symmetrical brush holder to ring clearance spacing. Ensure metal shavings are not permitted to contaminate the rotor or stator assembly.

3.21.1 Each cut shall not exceed 0.010 inch. Finish thickness shall not be less than design wear tolerance as shown in 2.2.
3.21.2 Undercut the mica between the commutator bars with the edge of the mica not exceeding a depth of 5/64-inch below the bars.

3.21.3 Chamfer the bar edges and remove rough surfaces in accordance with Paragraph 5-2-4 of 2.8.

3.21.4 Burnish the commutator with a very fine commercial burnishing stone conforming to A-A-58052. Polish collector rings to a mirror finish.

3.22 Accomplish the requirements of 009-15 of 2.1 for each rotating assembly.

3.23 Accomplish the following for the brush rigging:

3.23.1 Disassemble the brush rigging.

3.23.2 Remove foreign matter.

3.23.3 Replate existing cadmium-plated parts with zinc in accordance with ASTM A153 after removal of cadmium plating. Replate zinc-plated parts in accordance with ASTM A153.

3.23.4 Recondition threads of plated parts.

3.23.5 Assemble brush rigging.

3.24 Install identification markers on wiring in the external connection box.

3.24.1 Markers shall be aluminum wrap-around type with metal stamped or embossed markings.

3.25 Repair lightly scored areas of frame, end bells, and shaft by manual methods. Recondition threads and fit key to keyway. Step keys shall not be used.

3.25.1 Apply a thin coat of petrolatum to unpainted mating surfaces except for explosion-proof motors which shall have clean, dry mating surfaces.

3.26 Prepare and refinish equipment. Protect machine surfaces, windings, and nameplates from being painted or otherwise damaged.

3.26.1 Accomplish the requirements of 009-32 of 2.1 for each housing, fan, and interior and exterior of each end bell.

3.27 Accomplish the requirements of 009-32 of 2.1 for the foundations of the equipment removed in 3.2.
3.28 Accomplish the following on equipment having other than sleeve-type bearings unless otherwise specified in the invoking Work Item, using 2.7 for guidance.

3.28.1 Install new bearings, seals, fittings, lock washers, and locknuts conforming to 2.2, using 2.6 and Chapter 6 of 2.7 for guidance.

3.28.1.1 Install new Type III, Class 8 (sealed) bearings with a C3 radial internal clearance in vaneaxial and tubeaxial fan motors originally furnished with Type III bearings. Install Type 120 bearings in vaneaxial and tubeaxial fan motors originally furnished with Type 120 bearings.

3.28.1.2 Install new label plates with the inscription "DO NOT LUBRICATE" on equipment with sealed bearings (Type III, Class 8 or Type 120).

3.28.2 Lubricate bearings with grease conforming to DOD-G-24508 as required in Paragraphs 244-1.7.7.2 and 244-1.7.7.3 of 2.6.

3.29 Assemble the equipment disassembled in 3.5, using 2.2 through 2.7 for guidance.

3.29.1 Do not use materials containing silicone in the repair and reassembly of equipment with commutator or collector rings.

3.29.2 Install new fasteners conforming to MIL-DTL-1222, Type I or II, Grade 5, zinc coated.

3.29.3 Fasteners requiring a permeability factor of 2.0 or less shall conform to Grade 304 CRES.

3.29.4 Install new gaskets on covers, inspection plates, and between the external connection box and the frame. Gaskets shall conform to MIL-PRF-1149 unless otherwise specified in 2.2.

3.29.5 Set brush holders not less than 1/16-inch or more than 1/8-inch from commutator or collector rings unless otherwise specified in 2.2.

3.29.6 Set brush holders in electrical neutral plane and stagger brushes for maximum coverage of the commutator, in accordance with Paragraph 300-4.7.7.1.10 of 2.3.

3.29.7 Center the brush holder over the collector rings.

3.29.7.1 Ensure the brushes do not extend beyond the edge of the collector rings.

3.29.8 Install new brushes in accordance with 2.2. Sand new brushes to fit curvature of the commutator or collector rings, using Paragraphs 4-4-4.2 through 4-4-4.4 of 2.8 for guidance.
3.29.8.1 Brushes shall have a surface contact of 100 percent and shall not be chipped, cracked, or broken.

3.29.8.2 Remove sand, carbon, and other foreign matter resulting from fitting new brushes.

3.29.9 Adjust spring tension of brushes in accordance with 2.2.

3.29.10 Adjust air gap as specified in 2.2, plus or minus 10 percent.

3.29.11 Rotate shaft by hand a minimum of three revolutions. Rubbing or binding of rotating assembly not allowed.

3.29.12 Install label plates conforming to MIL-DTL-15024 for those found to be missing or damaged.

(V)(G) "NO-LOAD SHOP TEST"

3.30 Accomplish a no-load shop test of the motor for a minimum of one-half hour.

3.30.1 Verify proper direction of rotation.

3.30.2 After one-half hour, record current and voltage in each phase, speed and bearing temperature rise measured on the equipment's exterior near each bearing.

3.30.3 Submit one legible copy, in hard copy or electronic media, of the recorded data to the SUPERVISOR.

3.31 Install equipment removed in 3.2.

3.31.1 Remove existing and install new foundation fasteners conforming to MIL-DTL-1222, Type I or II, Grade 5, zinc coated, and self-locking hexagon nuts conforming to NASM-25027, excluding body-fitted bolts and studs.

3.31.2 Remove existing galled or distorted body-fitted bolts and studs and install new fitted bolts and studs conforming to MIL-DTL-1222, Type I, Grade 5.

3.31.3 Fasteners, body-fitted bolts, and studs requiring a permeability factor of 2.0 or less shall conform to Grade 304 CRES.

3.31.4 Align equipment in accordance with 2.2. Measure and record facial and peripheral coupling data.

3.31.4.1 Install chocks, shims, shock mounts, and sound damping pads.
3.31.4.2 Accomplish the requirements of 009-58 of 2.1 for driver and pump shafts.

3.31.5 Connect electrical cables to equipment, using data retained in 3.1.1.1.

3.31.6 Bond and ground equipment in accordance with 2.9, using new ground straps.

3.31.7 Rotate shaft by hand a minimum of three revolutions. Rubbing or binding of rotating assembly not allowed.

3.31.8 Measure and record the air gap and bearing clearance (sleeve bearing equipment only), insulation resistance (at 500 volts DC), and thrust.

(V) (G) "OPERATIONAL TEST"

3.32 Accomplish an operational test of the equipment at full nameplate load or maximum system capacity for a minimum of one hour after temperatures stabilize, unless otherwise specified in the invoking Work Item.

3.32.1 Verify proper direction of rotation.

3.32.2 Verify/establish oxide film coating of the commutator/collector rings, using 2.8 for guidance.

3.32.3 Record current, voltage, frame and bearing temperature rise, and speed at 15 minute intervals.

3.32.3.1 Bearing temperatures shall not exceed 180 degrees Fahrenheit unless otherwise specified in the invoking Work Item/equipment technical manual.

3.32.4 Measure and record hot insulation resistances of windings to ground immediately upon completion of test, using a 500 volt megger.

3.33 Submit one legible copy, in hard copy or electronic media, of a report listing data recorded in 3.31.4, 3.31.8, 3.32.3, and 3.32.4 to the SUPERVISOR.

4. NOTES:

4.1 Equipment technical manual and drawings will be listed in the invoking Work Item.

4.2 Shop test of generator will be addressed in the invoking Work Item.

4.3 The use of silicone is not allowed on any rotating electrical machinery with brushes.
1. **SCOPE:**

1.1 Title: Fire Protection of Unmanned Craft at Contractor's Facility; provide

2. **REFERENCES:**

2.1 NFPA Standard 312, Standard for Fire Protection of Vessels During Construction, Repair, and Lay-up

2.2 29 CFR Part 1915, Occupational Safety and Health Standards for Shipyard Employment

3. **REQUIREMENTS:**

3.1 Provide fire protection in accordance with the requirements of 2.1 and 2.2 and this item.

3.2 Maintain available for review a written description detailing the method for reporting fires, the shipyard fire fighting facilities, equipment, and organization (paid or volunteer), the procedures for maintenance of clear fire lanes in the shipyard and on the piers, and the nearest municipal fire fighting organization, including the anticipated time of response.

3.2.1 Provide the description no later than start of availability.

3.3 **Provide fire protection equipment consisting of:**

3.3.1 Fire fighting water, utilizing manifolds connected to a source capable of providing 150 GPM at 60 PSIG at the manifold shall be in place before start of work.

3.3.1.1 The number of manifolds shall be sufficient to permit reaching all points on the vessel (including underwater body when the vessel is in dry dock or on a marine railway) with 2, 1-1/2 inch hoses of not more than 100 feet in length.

3.3.1.2 Hoses shall be attached to the manifolds and fitted with an all-purpose combination fog and straight stream nozzle.
3.3.1.3 Verify by the Pitot tube method or an in-line flow meter that the water volume and pressure meets these requirements.

3.4 Provide fire fighting water utilizing manifolds connected to a source capable of providing 150 GPM at 60 PSIG at the manifold.

3.4.1 The number of manifolds shall be sufficient to permit reaching all points on the craft (including underwater body when the craft is in dry dock or on a marine railway) with 2, 1-1/2 inch hoses of not more than 100 feet in length.

3.4.2 Hoses shall be attached to the manifolds and fitted with an all-purpose combination fog and straight stream nozzle.

4. NOTES:

4.1 None.
1. **SCOPE:**

 1.1 Title: Confined Space Entry, Certification, Fire Prevention and Housekeeping; accomplish

2. **REFERENCES:**

 2.1 Standard Items

 2.2 29 CFR Part 1915, Occupational Safety and Health Standards for Shipyard Employment

 2.3 29 CFR Part 1910.134, Occupational Safety and Health Standards, Respiratory Protection

 2.4 NFPA Standard 51B, Standard for Fire Prevention During Welding, Cutting, and Other Hot Work

 2.5 NFPA Standard 312, Standard for Fire Protection of Vessels During Construction, Repair, and Lay-up

3. **REQUIREMENTS:**

 3.1 Comply with the requirements of 2.2 through 2.5 and this item to determine whether or not an explosive or other dangerous atmosphere exists in tanks, spaces, and associated piping, including adjacent tanks, spaces, and piping, aboard the ship and control hot work and entry to those spaces to preclude damage to the ship or injury to personnel during the performance of this Job Order.

 3.1.1 Submit one legible copy, in hard copy or electronic media, of a list of tanks or spaces to be opened or certified to the SUPERVISOR at least 24 hours prior to commencement of work.

 3.1.1.1 Comply with additional requirements of 009-88 of 2.1 when accomplishing work in Collection, Holding and Transfer (CHT) and Mogas tanks, spaces, or associated piping.

 3.1.2 Provide initial and annual update training for Competent Persons by utilizing a National Fire Protection Association (NFPA) Certified
Marine Chemist or NFPA training program meeting the requirements of Section 1915.7 of 2.2. The length of the initial training class shall be at least 24 hours. Annual update training shall be at least 8 hours.

3.1.3 Post a copy of the Marine Chemist's certificate, Certified Industrial Hygienist's test/inspection record, or Competent Person's test/inspection record at each access to the affected space while work in the space is in progress. A copy of the certificate or test/inspection record shall also be delivered to a location designated by the SUPERVISOR. In the event that the space is found to be NOT SAFE FOR WORKERS/NOT SAFE FOR HOT WORK, the space shall be posted accordingly and the SUPERVISOR and ship shall be notified immediately. The posted copy shall be clearly visible and legible.

3.1.3.1 Initial certification of spaces that require a Certified Marine Chemist's certificate or Certified Industrial Hygienist's record of test/inspection in support of work operations shall be effective until conditions change which would void the certificate/record of test/inspection.

3.1.3.2 For those certified spaces which employees will enter, a Competent Person shall visually inspect and test each space certified as ENTER WITH RESTRICTIONS or SAFE FOR WORKERS as often as necessary, and, as a minimum, prior to entry by employees on a daily basis.

3.1.3.3 For those certified spaces affected by hot work, a Competent Person shall visually inspect and test each space certified as SAFE FOR HOT WORK as often as necessary and, as a minimum, daily prior to commencement of hot work to ensure that conditions established by the certificate are maintained. When hot work is conducted continuously, the affected spaces shall be visually inspected, tested, and recorded on a daily basis to maintain the SAFE FOR HOT WORK certification.

3.1.3.4 If a Competent Person finds that the conditions within a certified space fail to meet the applicable requirements for which it was certified, work in the space shall be stopped and may not be resumed until the space has been recertified by a Marine Chemist.

3.1.3.5 For those spaces where only Competent Person tests and inspections are required in accordance with 2.2, a Competent Person shall visually inspect and test each space as often as necessary and, as a minimum, daily prior to entry or commencement of hot work to ensure that conditions are safe.

3.1.3.6 After the Competent Person has determined initially that a space is safe for entry and finds subsequently that the conditions within the tested space fail to meet the requirements of 2.2, work shall be stopped until the conditions in the tested space are corrected, the space is retested, and a new record of tests/inspections is recorded and posted.
3.1.4 Tank cleaning personnel shall be trained annually on safety practices to include a discussion of safety information found in Subparts A, B, and Section 1915.152 of Subpart I of 2.2.

3.1.5 Submit one legible copy, in hard copy or electronic media, of each of the following documents to the SUPERVISOR prior to the accomplishment of work requiring the services identified below.

3.1.5.1 A roster of designated Competent Persons, along with contractor certification that the training in 3.1.2 has been completed within the past year. Updates to the roster each time Competent Persons are added, deleted, or retrained.

3.1.5.2 A list of Competent Person(s) and tank cleaning personnel who will enter or work in confined spaces, including company name, badge number, and date training was provided in accordance with 3.1.2 and 3.1.4.

3.1.5.3 A list of the names of the Shipyard/Plant Rescue Team Members, along with contractor certification that training requirements of Subpart B of 2.2 have been accomplished and are current for each Rescue Team Member, or documentation of arrangements made for an outside rescue team to respond promptly to a request for rescue service.

3.1.5.4 Describe the manner by which the requirements for fire watches shall be implemented using Ship's Force personnel, including the manner in which the ship's Commanding Officer's designated representative will be notified in case of absence of the assigned fire watch. Ship's Force will provide visible means of identifying trained fire watches, i.e., badge, sticker, vest, etc.

3.1.6 Spaces which are determined to contain Immediately Dangerous to Life or Health (IDLH) atmospheres shall never be entered except for emergency rescue or for short duration for installation of ventilation equipment in accordance with 2.2 and 2.3. When entering IDLH spaces for the purpose of installing ventilation, notify the SUPERVISOR prior to entry. Notifications of rescue shall be made as soon as possible.

3.1.7 Confirm that all personnel have exited the space prior to closure of tanks, voids, and cofferdams. Designate one person to account for all personnel who may have entered the space.

3.2 Provide a written notice for each job or separate area of hot work aboard ship.

3.2.1 The notice shall state a description of the work to be done, the specific location of the hot work and compartments adjacent to decks, bulkheads, and similar structures upon which hot work is to be accomplished, the time hot work will commence, current gas-free status of the area (if required), the absence or existence of combustible material in the vicinity of
the operation, and if combustible material exists, what action shall be taken to protect the material from fire, the provision and assignment of a fire watch, and the affirmation that conditions at the work site (ventilation, temporary lighting, accesses) permit the fire watch to observe all areas where the hot work constitutes a fire hazard.

3.2.2 The notice shall affirm that a suitable, fully-charged fire extinguisher shall be available at the job site and provide for an inspection of the area 30 minutes after completion of the hot work or the cessation of hot work at the job site as the final action to complete the notice.

3.2.3 The notice shall be signed by a supervisor specifically designated as responsible for coordination of the hot work and the fire watch requirement.

3.2.4 One copy of each notice shall be given to the SUPERVISOR and one copy to the Commanding Officer's designated representative.

3.2.4.1 The notice to the Commanding Officer's designated representative shall precede the initiation of the actual hot work in order to permit the Commanding Officer to designate a member of the crew to observe the operation, if desired.

3.2.4.2 Notification of hot work planned Tuesday through Friday shall be delivered to the Commanding Officer's designated representative at least 30 minutes and not more than 24 hours preceding start of work.

3.2.4.3 Notification of hot work planned over a weekend or Monday following that weekend shall be delivered to the Commanding Officer's designated representative no later than 0900 on the Friday immediately preceding that weekend.

3.2.4.4 Notification of hot work planned on a federal holiday and on the day following the federal holiday shall be delivered to the Commanding Officer's designated representative no later than 0900 of the last working day preceding the federal holiday.

3.2.4.5 The notice shall be effective for 24 hours unless a shorter period is specified in the contract or the gas-free status of the work area or system requires stopping the work. A new notice is required if work is interrupted due to loss of gas-free status.

3.3 Request sufficient fire watches from Ship's Force to provide fire watches at all affected areas where hot work is being accomplished. Provide each Ship's Force fire watch with fire extinguishing equipment as described in 2.2, 2.4, and 2.5. Fire watches and equipment shall meet the following requirements, as a minimum:
3.3.1 A fire watch(es), other than the hot work operator, is required when:

3.3.1.1 Any flame cutting, welding, plasma cutting, arcing and gouging, electric arc welding, thermal spraying, or any other hot work which produces sparks or slag that can be dropped or thrown or that causes heat to be transferred through a deck, bulkhead, or overhead to a location not visible to the hot work operator is being done.

3.3.1.2 Combustibles have not been removed or protected from heat conduction or ignition sources.

3.3.1.3 Equipment cannot be protected from falling sparks.

3.3.1.4 Openings in decks, bulkheads, or overheads cannot be protected.

3.3.1.5 Ducts and conveyor systems cannot be blanked off, protected or shut down.

3.3.2 Each fire watch attending worker(s) performing hot work shall be equipped with a fully-charged and operable fire extinguisher, and shall remain at the job site for 30 minutes from the time the hot work is completed unless the contractor's Hot Work Supervisor surveys the affected work area and determines that there is no further fire hazard.

3.3.2.1 In the event that the fire watch leaves his/her post without permission of the person accomplishing the hot work, stop the hot work and immediately report the absence of the fire watch to the ship's fire watch division. Do not resume hot work until a fire watch is assigned and on station.

3.3.3 Where several workers are performing hot work at one site, the fire watch shall have a clear view of and immediate access to each worker performing hot work.

3.3.3.1 No more than 4 workers shall be attended by a single fire watch.

3.3.4 In cases in which hot material from hot work may involve more than one level, as in trunks and machinery spaces, a fire watch shall be stationed at each level unless positive means are available to prevent the spread or fall of hot material.

3.3.5 In cases where hot work is to be performed on a bulkhead or deck, combustible material shall be removed from the vicinity of the hot work on the opposite side of the bulkhead, overhead, or deck, and a fire watch shall be posted at each location.
3.3.5.1 If multiple blind compartments are involved in any hot work job, fire watches shall be posted simultaneously in each blind area.

3.4 Locate oxygen, acetylene, fuel gas, or gas supply systems off the ship. Manifolds connected to pierside supply systems may be placed on board ships as long as they are located on a weather deck and equipped with a shutoff valve located on the pier. The pierside shutoff valve shall be in addition to the shutoff valve at the inlet to each portable outlet header required by 2.2.

3.4.1 Liquid oxygen (LOX) tanks used for fuel gas/oxygen operations shall be stored to prevent collisions by trucks, forklifts, falling objects, etc.

3.4.2 LOX tanks shall be staged in designated locations on the quay wall/pier to be determined jointly by the contractor/ship/SUPERVISOR.

3.4.3 When gas cylinders are in use on board ship, they shall be located on the weather decks or in a location determined jointly by the contractor/ship/SUPERVISOR and shall be secured and in an upright position. The number of in-use cylinders shall be limited to those which are required for work in progress and which have pressure regulators connected to the cylinder valves. On-board reserve gas cylinders shall not exceed one-half the number of in-use cylinders and shall be located in a remote area of the weather decks or in a location determined jointly by the contractor/ship/SUPERVISOR. Reserve acetylene cylinders shall be secured in an upright position.

3.4.4 When not in use, gas cylinders and manifolds on board shall have valves closed, lines disconnected, protective cover (cap) in place, and shall be secured. Acetylene cylinders shall be secured in an upright position.

3.4.4.1 In order to eliminate the possibility of fire in confined and enclosed spaces as a result of gas escaping through leaking or improperly closed gas valves, the gas supply to the torch shall be shut off at the gas source whenever the torch is not to be used or whenever the torch is left unattended for a substantial period of time, such as during the lunch hour.

3.4.4.2 Overnight, at the change of shifts, or when the work operation is complete, the torch and hose shall be removed from confined spaces, including all tanks and voids.

3.4.4.3 Overnight, at the change of shifts, or when the work operation is complete, fuel gas and oxygen hoses shall be immediately removed from enclosed spaces unless alternate procedures are approved by the SUPERVISOR.
3.4.5 Upon completion of oxygen - fuel gas system hook-up, accomplish a pressure drop test to include the torch, hoses, and gages.

3.4.5.1 Apply pressure to the system. Back off pressure by turning off the valve supplying gases to the system. If the pressure on the gage drops, a leak in the system exists. If the pressure on the gage does not drop, the system is tight.

3.4.5.2 After applying pressure, wait 2 minutes to ensure pressure does not drop.

3.5 Use fire retardant materials aboard or immediately adjacent to the ship for staging, screening, temporary covers, shelters, deck covering, and ventilation ducts. Proper documentation of fire retardancy shall be available for review upon request.

3.5.1 Lumber, except that used for pallets, shall be fire retardant in accordance with Category One, Type I, of MIL-L-19140. Plywood and staging boards shall be Category 2, Type II, of MIL-L-19140.

3.5.2 Storage of material aboard ship shall be limited to that which is required for work in progress. Materials, trailers, temporary lights, flammable liquids, fueling of vehicles, and the rigging of hoses/welding leads/temporary lights aboard the ship shall comply with the following: Material, including that stowed in bins that are placed and held temporarily on hangar decks, well decks, or tank decks shall not exceed 8 feet in height. A 20-foot-wide lane shall be maintained the length of hangar decks to act as a fire break. Material shall occupy a deck space not to exceed 25-feet by 25-feet with adjacent 6-foot-wide aisles on each side for ready hose line access.

3.5.3 Prior to bringing equipment or working material aboard ship, its crating and packing shall be removed. If the equipment or material may be damaged during handling, the crating and packing shall be removed immediately after the equipment or working material is brought aboard and taken ashore for disposal. A small quantity of pallets may be staged in a location determined jointly by the contractor/ship/SUPERVISOR aboard ship for use in materials handling operations.

3.5.4 Trailers placed aboard the ship shall be equipped with an automatic or manual sprinkler system designed to provide 0.1 GPM per square foot of floor area and an audible alarm that will sound when the sprinkler system is activated. Tool issue shacks or other walk-in enclosures placed aboard the ship shall be constructed of fire retardant material, provided with at least one fire extinguisher of appropriate size and class at each access. The enclosure shall be supported at least 10 inches above the deck.

3.5.4.1 Smoke alarms, approved by Underwriter's Laboratory, shall be installed in enclosures and shall be audible outside the enclosures.
3.5.5 Temporary lights shall have 3-conductor cable, guard or shield, hook, and lamp holder. Exposed non-current-carrying metal parts of the fixture shall be grounded either through a third wire in the cable containing the current conductors, or through a separate wire which is grounded at the fixture's voltage source.

3.5.6 Flammable or combustible liquids with a flash point of 150 degrees Fahrenheit or less, including degreasers, solvents, and fuels, shall be kept in safety cans when not in actual use or when left unattended. These liquids shall be limited to one day's supply for on board use.

3.5.7 Fueling of vehicles or transfer of fuel between containers shall be accomplished at designated sites on weather decks or in a location determined jointly by the contractor/ship/SUPERVISOR. Notify ship's Officer of the Deck prior to the fueling or transfer operation. When fuel is transferred between containers, the containers shall be bonded and grounded to prevent static discharge.

3.5.7.1 Provide a minimum of 2 dry chemical portable extinguishers, each with an Underwriter's Laboratory rating of at least 60-B:C at the fueling site.

3.5.8 Rigging of hoses, welding leads, and temporary lights shall be kept clear of the decks on temporary trees or brackets and be arranged to minimize tripping and other safety hazards and to allow free access through doors, hatches, and passageways.

3.6 Accomplish temporary access requirements as follows:

3.6.1 Temporary access cuts may be made in fire zone boundaries provided they are equipped with fume-tight steel closures when installed. Boundary degradation by use of temporary access cuts or passage of service lines shall be permitted only upon granting of a written waiver by the SUPERVISOR, in conjunction with the ship's designated representative, for a limited time.

3.6.1.1 Submit one legible copy, in hard copy or electronic media, of a record of boundary openings and their locations to the SUPERVISOR and one additional copy to the ship's designated representative. Resubmit boundary opening data when any changes, additions, or deletions of boundary openings occur.

3.6.2 Ensure at least one unobstructed access on ships designed with 3 or fewer accesses to each main and auxiliary machine space and at least 2 unobstructed accesses on ships designed with 4 or more accesses to each main and auxiliary machinery space.

3.7 Accomplish a fire prevention and housekeeping inspection on a daily basis whenever work is in progress. The inspection shall be made jointly with the SUPERVISOR and the Commanding Officer's designated representative.
written report of the discrepancies and corrective action to be taken shall be prepared by the contractor and copies distributed to the SUPERVISOR and Commanding Officer's designated representative within 4 hours after completion of the inspection.

3.8 Determine fire zone boundaries as follows:

3.8.1 The SUPERVISOR, Ship's Force, and the contractor shall establish fire zone boundaries prior to start of production work.

3.8.1.1 Existing transverse watertight, airtight, and fume-tight bulkheads shall be used as fire zone boundaries on ships built prior to the requirements for fire zones.

3.8.1.2 For ships having fire zones by design, the designated bulkheads shall be used as fire zones.

3.8.2 Fire zone boundaries shall be continuous through the vertical extent of the ship, from the keel up to the highest weather deck, excluding the superstructure.

3.8.2.1 For ships that have established fire zone boundaries that run from keel up through the superstructure, the fire zone boundaries as depicted on the ship's damage control diagrams shall be observed.

3.8.2.2 On aircraft carriers, provide for closing of hangar division doors in case of fire in the event division doors being repaired by the contractor are mechanically inoperative. As a minimum, rig chain falls to manually close doors in the event of fire. Exceptions shall be permitted only upon execution of a written waiver approved by the SUPERVISOR.

3.8.3 Ships under 600 feet in length shall have a minimum of 2 fire zone boundaries. Ships 600 feet and over in length shall have a minimum of 3 fire zone boundaries.

3.8.3.1 Indicate each fire zone by installing a sign adjacent to each entrance.

3.8.3.2 Service line(s) shall not be run through fire zone boundaries unless quick disconnects are installed in temporary service lines within 10 feet of the opening, door, or closure. The quick disconnects shall be marked with international orange tape and all service line(s) must be able to be secured and pulled back within 3 minutes. Fuel gas/oxygen/compressed gas hoses, steam lines, high pressure hoses (above 90 PSI), or hoses carrying hazardous/toxic/flammable materials shall not be run through fire zone boundaries unless expressly authorized in writing by the SUPERVISOR. Hose numbers or sizes shall not restrict free and easy access or closure of fire zone boundary doors.
3.9 Report verbally each accident/fire occurring on the vessel involving contractor/subcontractor personnel to the SUPERVISOR as soon as management becomes aware of such an event.

3.9.1 Submit a formal written report, in hard copy or electronic media, of the event to the SUPERVISOR within 24 hours of each accident requiring medical treatment, and each fire. The written report shall contain the name and ID number of each injured person, date and time of accident/fire, extent of each personal injury or property damage, contractor/subcontractor name, Job Order, type of accident/fire, location of event (ship name and hull number, space, compartment), and a brief description of the event including occurrences leading up to the accident/fire.

4. NOTES:

4.1 None.
1. SCOPE:

1.1 Title: Controller; repair

2. REFERENCES:

2.1 Standard Items
2.2 Equipment Technical Manual
2.3 S9086-KC-STM-010/CH-300, Electric Plant - General
2.4 DOD-STD-2003, Electric Plant Installation Standard Methods for Surface Ships and Submarines
2.5 S9300-A6-GYD-010, Electrical Workmanship Inspection Guide for Surface Ships and Submarines
2.6 MIL-STD-1310, Shipboard Bonding, Grounding, and Other Techniques for Electromagnetic Compatibility and Safety

3. REQUIREMENTS:

3.1 Disconnect electrically and mechanically and remove each controller. Record and retain electrical hookup data.

3.1.1 Matchmark, identify, and retain shims.

3.1.2 Inspect each foundation for cracks, areas of distortion, and deterioration in excess of 25 percent of the thickness of each member of the structure.

3.1.2.1 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.1.2 to the SUPERVISOR.

3.1.3 Accomplish the requirements of 009-32 of 2.1 for each foundation of the removed equipment.
3.2 Disassemble each controller and clean components free of foreign matter.

3.3 Inspect each controller enclosure, mounting board, and component for mechanical and physical defects, improper values, and internal wiring for conformance to 2.2 and controller wiring diagram.

3.3.1 Test internal wiring and each coil for open circuits. Test insulation resistance to ground and between conductors, using a 500 volt megger. Record readings. Minimum acceptable resistance to ground shall be one megohm.

3.3.1.1 Disconnect solid-state devices prior to measuring insulation resistance.

3.3.2 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.3 and 3.3.1 to the SUPERVISOR.

3.4 Repair each controller, using 2.2 for guidance.

3.4.1 Straighten each enclosure and door. Free-up hinges and align door. Plug and seal unused cable openings.

3.4.1.1 Install ground straps on each door on controllers with door mounted energized components in accordance with MIL-E-2036 in place of those found to be missing or defective.

3.4.2 Accomplish the requirements of 009-32 of 2.1 for the interior and exterior of the enclosure.

3.4.3 Remove existing and install new enclosure gaskets.

3.4.4 Remove existing and install new door fasteners in place of those found to be missing or defective. Install new door fasteners where missing.

3.4.5 Remove existing and install new molded-rubber switch covers.

3.4.6 Remove existing and install new components in place of those found to be missing, defective or of improper value. Remove existing and install new wiring in place of wiring found to be defective or frayed. Install new wiring where missing.

3.4.7 Inspect, dress, and adjust contacts.

3.4.7.1 Install new contacts in place of those found to be missing or defective, or resilver contacts in accordance with ASTM B700.
3.4.8 Replate existing cadmium-plated parts with zinc in accordance with ASTM A153 after removal of cadmium plating. Replate zinc-plated parts in accordance with ASTM A153.

3.4.9 Wash, dip and bake, tape insulated coils and open transformers. Dipping shall be in varnish conforming to MIL-I-24092, Class 155.

3.4.9.1 Dip and bake coils and open transformers in Dolph 1105, Epoxylite Esterlite 605, or Schenectady International Isolite 862M varnish in localities where MIL-I-24092 varnish does not meet state and local Air Pollution Control District (APCD) Standards.

3.4.9.2 Repair and reinsulate coil and transformer leads.

3.4.10 Free-up and lubricate moving parts.

3.4.11 Adjust timing devices, relays, and contactors.

3.4.12 Repair defective connections.

3.4.13 Install a new wiring diagram and new heater table in each controller. The new diagram shall reflect actual configuration of the controller in which it is installed. New diagrams shall be sealed in transparent plastic and shall be mounted on the inside of each controller so as to be conveniently accessible.

3.5 Assemble each controller.

3.5.1 Dress and shape wiring and wire harnesses for neat appearance. Install wire clamps on both ends of wire hinges. Install flexible insulating tubing over wire hinges to prevent chafing.

3.5.2 Install new threaded fasteners, washers, and lockwashers in place of those found to be missing or defective.

(V) "SHOP OPERATIONAL TEST"

3.6 Accomplish an operational test of each controller and adjust to ensure correct operation in accordance with the wiring diagram of 3.4.13, using 2.2 for guidance.

(V) "INSULATION RESISTANCE TEST"

3.6.1 Accomplish 500-volt megger insulation resistance test, using Paragraphs 300-3.2.2 through 300-3.2.3, 300-3.4.8, 300-3.4.11, and 300-5.3.7.1 of 2.3 for guidance.
3.7 Install each controller, installing new fasteners conforming to MIL-DTL-1222, Type I or II, Grade 5, zinc coated, using shims retained in 3.1.1.

3.7.1 Fasteners requiring a permeability factor of 2.0 or less shall conform to Grade 304 CRES.

3.7.2 Remove existing and install new wire markers in place of wire markers found to be illegible. Install new wire markers where missing. New wire markers shall conform to SAE-AMS-DTL-23053, Class One, white, marked with indelible ink.

3.7.3 Repair and reinsulate cable ends terminating in the controller in accordance with Section One of 2.4. Resleeve conductors over 9000 circular mils.

3.7.4 Remove defective and install new lugs, using 2.5 for accept or reject criteria. Install new lugs where missing. New lugs shall conform to MIL-T-16366 or SAE-AS7928.

3.7.5 Bond and ground equipment in accordance with 2.6.

3.8 Connect each controller with the exception of the motor leads and the brake leads if applicable, using retained data in 3.1.

(V) "PRELIMINARY SEQUENCE TEST"

3.8.1 Accomplish a preliminary sequence test of each controller by cycling the controller through three start and stop cycles from each local and remote pushbutton station. Observe controller for proper sequence. Correct deficiencies.

3.8.2 Connect the motor leads and brake leads, if applicable, at completion of preliminary sequence test.

(V)(G) "OPERATIONAL TEST"

3.9 Accomplish an operational test of each controller with its associated motor for designed sequence of operation. Verify correct speed selection, correct motor rotation in each mode, and correct value of overload setting or size of heater coils based on motor nameplate full load running current.

4. NOTES:

4.1 Equipment technical manual and drawings will be listed in the invoking Work Item.
1. SCOPE:

1.1 Title: General Procedures for Woodwork; accomplish

2. REFERENCES:

2.1 0900-LP-015-1010, Wood: A Manual for Its Use as a Shipbuilding Material, Basic Wood Technology Applicable to Boat and Shipbuilding

2.3 0900-LP-015-1030, Wood: A Manual for Its Use as a Shipbuilding Material, Technical Data Applicable to Boat and Ship Design

2.5 MIL-STD-1623, Fire Performance Requirements and Approved Specifications for Interior Finish Materials and Furnishings (Navy Shipboard Use)

3. REQUIREMENTS:

3.1 Accomplish the requirements of 2.1 through 2.4 for performing woodworking procedures.

3.2 Install flush fitted wood plugs/dowels in holes resulting from the removal of fasteners.

3.2.1 Where holes are to be reused and where subjected to stress or weight, plugs/dowels shall be set in a resorcinol adhesive conforming to MIL-A-22397.

3.2.2 Where holes are not to be reused, plugs/dowels shall be set in a NAVSEA approved natural bedding compound such as Interlux 214 or Dolchem 3400.
3.2.3 Where deterioration and decay exists around the perimeter of the fastener holes and where through-bolt holes have been elongated, enlarge the holes by drilling to a size (diameter) that will remove the deterioration, decay, and elongation, prior to installing plugs/dowels.

3.2.3.1 Clean-bore drill bit diameter shall not be more than one inch larger than the original fastener hole diameter, unless otherwise specified.

3.2.4 Plugs/dowels shall be of the same wood species as the member being repaired, with their grain installed parallel with the grain of the existing wood, and then driven the full depth of the hole being repaired.

3.2.5 Soak plugs/dowels for a minimum of 10 minutes and saturate the exposed fastener holes with wood preservative conforming to MIL-W-18142, Type A, and allow to dry for a minimum of 72 hours prior to installation of plugs/dowels.

3.3 Install new fasteners conforming to the following requirements, unless otherwise specified.

3.3.1 Fastener material composition requirements:

3.3.1.1 Nickel copper alloy conforming to QQ-N-281, Grades 400 or 405.

3.3.1.2 Nickel copper aluminum alloy conforming to QQ-N-286, Grade 500 (K-Monel) where greater strength is required.

3.3.1.3 Copper silicon alloy conforming to ASTM B98, Grades 651 or 655.

3.3.1.4 Corrosion resistant steel (CRES) conforming to SAE-AMS-STD-66, Grades 304 or 316.

3.3.2 Fastener characteristics specifications:

3.3.2.1 Bolts, studs, and cap screws shall conform to MIL-DTL-1222.

3.3.2.2 Wood screws shall conform to FF-S-111.

3.3.2.3 Lag bolts (screws) shall conform to ASME B18.2.1.

3.3.2.4 Carriage bolts shall conform to ASME B18.5, Type I, Class One.

3.3.2.5 Nuts shall conform to MIL-DTL-1222.

3.3.2.6 Flat washers shall conform to FF-W-92, Grade I.
3.3.2.7 Lock washers shall conform to FF-W-100.

3.3.3 Fasteners subject to contact with sea water and bilge water shall be manufactured of the materials outlined in 3.3.1.1 through 3.3.1.3 and shall be coated with a light viscosity epoxy resin prior to installation.

3.3.3.1 Corrosion resistant steel (CRES), Grade 316, may be used as an alternative material substitute for the materials listed in 3.3.3 only if so specified in the Work Item.

3.3.4 Aluminum and aluminum alloy components and structural members shall be installed using CRES, Grade 304 or 316 fasteners.

3.3.4.1 Fasteners with compositions of copper alloys shall not be used in contact with aluminum and aluminum alloy components and structural members.

3.3.4.2 Install non-metallic (epoxy plastic, phenolic, polyimide [nylon], Teflon) sleeves over CRES fasteners where they come in contact with the aluminum and aluminum alloy components and structural members.

3.3.4.3 Install insulation tape, minimum thickness 20 mils, conforming to MIL-I-24391 (2 thicknesses) between faying surfaces of aluminum/aluminum alloy-to-CRES to extend approximately 1/4-inch beyond the faying surfaces.

3.3.4.4 Ensure that the surfaces of aluminum and aluminum alloy components and structural members which will come in contact with wood members and CRES fasteners are protected with a minimum of 2 coats of epoxy polyimide primer conforming to MIL-DTL-24441.

3.3.4.5 Apply one coat of phenolic varnish conforming to A-A-1800 on wood members which will come in contact with aluminum and aluminum alloy components and structural members.

3.3.5 To avoid bi-metallic corrosion, fastener material composition shall be the same material composition as that of the metal components and structural members that they are fastening except as noted in 3.3.4.

3.4 Accomplish installation of new fasteners as follows:

3.4.1 Drill pre-bored pilot holes for screws and fetter ring nails prior to installation to prevent damage to wood members.

3.4.1.1 Diameter of pilot holes shall not exceed 70 percent of the root diameter of screws for soft woods, and 90 percent for hard woods. For screw shanks, the hole in the material to be fastened shall be 100 percent shank diameter.
3.4.1.2 Maximum depth of pilot holes shall not exceed 90 percent of the length of screws.

3.4.1.3 Holes for fetter ring nails shall be pre-bored not to exceed 60 percent of the nail diameter.

3.4.2 Screws shall not be impact driven. The last 1/4-inch of screws shall be hand-tightened.

3.4.2.1 Fasteners shall be set snug but not so tight as to weaken the material by rupture of wood fibers adjacent to the fasteners.

3.4.3 Bolt holes shall be drilled for a tight fit.

3.4.4 Where watertight integrity shall be maintained, the fasteners shall be body bound.

3.4.5 Through-bolts and hull plank fasteners shall be bedded in marine oakum conforming to T-0-56 or caulking cotton, and a NAVSEA approved natural bedding compound such as Interlux 214 or Dolchem 3400.

3.4.6 Counterbore wood fastener holes to permit the installation of a wood plug (bung) over the fasteners, unless otherwise specified. Install wood plugs over fasteners.

3.4.6.1 The depth of counterboring is fixed by the thickness of the planking, which in turn fixes the depth of the wood plug (bung) used. The depth (thickness) of a bung plug shall be one-half to two-thirds its diameter to ensure that it will stay in place. The rule for counterboring for bung plugs is that the plug diameter shall be no larger than necessary to allow the largest part of the fastener to enter the hole.

3.4.6.2 Plugs shall be of the same wood species as the member being plugged and their grain shall be installed parallel with the grain of the existing wood.

3.4.6.3 Soak plugs for a minimum of 10 minutes and saturate the fastener holes with wood preservative conforming to MIL-W-18142, Type A, and allow to dry for a minimum of 72 hours prior to installation of plugs.

3.4.6.4 Coat plugs on faying surfaces with a NAVSEA approved natural bedding compound such as Interlux 214 or Dolchem 3400, prior to installation and cut level and smooth with surrounding surfaces, unless otherwise specified.

3.5 New wood materials shall conform to the following requirements, unless otherwise specified.
3.5.1 Wood materials used for new interior finish materials and furnishings shall conform to the requirements of MIL-L-19140 and 2.5.

3.5.2 Types, grades, and species of wood (lumber) shall be as specified in the invoking Work Item.

3.5.3 Lumber shall conform to the specified grade after seasoning to the required moisture content and after being sized to the approximate dimensions of the members to be fashioned from it.

3.5.4 New wood members shall be finished smooth on each side.

3.5.5 Uncaulked seams, joints, and faying surfaces shall be fair and in continuous contact when assembled, except where specifically exempted, such as for hull sheathing.

3.5.6 New wood members, when assembled in place, shall show no rupture as a result of overstraining.

3.5.7 Laminated member construction shall conform to MIL-W-2038 for Douglas Fir and MIL-W-15154 for red or white oak.

3.5.7.1 When bonding together wood surfaces which rely on mechanical fastening for main strength, the adhesive shall conform to MIL-A-22397.

3.5.8 Plywood shall conform to MIL-P-18066, Class 3A.

3.5.9 Moisture content of new wood materials shall fall within the following parameters.

3.5.9.1 New lumber shall have a moisture content of 13 percent, plus or minus 5 percent, at the time of installation.

3.5.9.2 New plywood shall have a moisture content of 10 percent, plus or minus 5 percent, at the time of installation.

3.6 New lumber and plywood shall be soaked for 10 minutes in wood preservative after boring, shaping, and fairing operations have been completed.

3.6.1 Apply one soaking brush coat of wood preservative on bare wood surfaces exposed by removals and machining operations before surfaces are covered.

3.6.2 Wood preservative shall conform to MIL-W-18142, Type A, unless otherwise specified.

3.6.3 Allow preservative-treated wood to dry for a minimum of 72 hours prior to gluing and/or painting operations.
3.7 Apply a heavy coating of a NAVSEA approved natural bedding compound such as Interlux 214 or Dolchem 3400 on the top surfaces of deck beams, frames headers, fillers, planking side of frames, deck beam ends, seams, and butts (except those to be caulked), and other faying (joining) surfaces before the faying surfaces are covered, except as follows: In between inner and outer layers of hull planking of crafts that do not have caulking seams, a wood bedding/sealant compound conforming to 3M-5200 shall be installed.

3.7.1 Install one layer of canvas conforming to CCC-C-419, Type III (8 ounces or heavier) between faying surfaces of new leveling foundation pads installed on weather decks, in addition to a NAVSEA approved natural bedding compound such as Interlux 214 or Dolchem 3400.

3.7.2 Remove surplus bedding/sealing compound after squeeze-out.

3.8 No new butt joints shall be established in any planking strake (hull shell or deck) that will leave a portion that is less than 12 feet in length. No new portion of a planking strake shall be installed which is less than 12 feet in length.

3.8.1 Butt joints in adjacent strakes shall be separated by a minimum of 3 strakes.

3.8.2 Butt joints in the same frame space shall be separated by a minimum of 3 frame spaces.

3.8.3 Planking strakes may be scarf-joined to maintain butt joint schedule. Scarfing shall be in accordance with 2.1 through 2.4.

3.9 Wood members requiring caulking seams shall be installed with their faying surfaces tight and with an outgage (special bevel for caulking) in the side(s) to be caulked.

3.10 Accomplish the following work to ensure watertight integrity of caulked seams (including butt and rabbet seams).

3.10.1 Reef out by hand, defective caulking compound and loose and decayed caulking (cotton/oakum) from existing caulking seams requiring installation of new caulking and caulking compound.

3.10.1.1 Exercise care when reefing out caulking compound and caulking to preclude damage to existing caulking seams. Power tools shall not be utilized for the reefing out process.

3.10.2 Where existing caulking is found to be sound and in good condition, set the existing caulking deeper into the seam opening to ensure that it is driven solidly home and to make room for additional caulking.
3.10.2.1 Set the existing caulking by driving the caulking uniformly, to the same hardness in each seam. To prevent a wedging effect it shall be set to a hardness that would not allow an awl to penetrate more than 3/8-inch.

3.10.3 Caulking seams shall be clean and dry before installing new caulking and caulking compound.

3.10.4 Caulk deck planking caulking seams using treated caulking cotton and spun-type marine oakum conforming to T-O-56. Treat the caulking cotton as follows.

3.10.4.1 The untreated caulking cotton shall be undyed, of not less than 3/4-inch staple length, and shall be free from oil, fire-damaged or scorched cotton, added waste, and substantially free from linters.

3.10.4.2 The untreated caulking cotton shall be soft and fully opened and contain no sizing. The amount or size of specks shall not be objectionably noticeable upon casual examination.

3.10.4.3 The untreated caulking cotton shall be well carded to form a sliver and shall consist of not less than 9 nor more than 12 slivers laid parallel to form a composite untwisted strand. Each sliver untreated shall measure approximately 500, plus or minus 50 feet, to the pound.

3.10.4.4 Treat the caulking cotton with a solvent solution of copper naphthenate-asphaltum to produce caulking cotton having a minimum of one percent metallic copper and 1-1/2 percent, plus or minus 1/2 percent, asphalt, based on the weight of the treated cotton. The copper shall be uniformly distributed throughout the cotton.

3.10.4.5 The treated caulking cotton shall be dry to the touch prior to installation.

3.10.5 Caulk hull shell planking caulking seams using treated caulking cotton conforming to the requirements outlined in 3.10.4.1 through 3.10.4.5 and spun-type marine oakum conforming to T-O-56.

3.10.5.1 Drive one to 2 strands of caulking cotton into the bottom of the seams, prior to installing marine oakum, to ensure that deep/tight seams are filled.

3.10.6 Caulking cotton and marine oakum caulking shall be looped, tucked, and hard-driven to a depth that provides space for installation of seam caulking compound.

3.10.6.1 The size of the seam in width and depth determines the required amount of cotton/oakum caulking and shall be filled to within 1/4-inch to 3/8-inch of the plank surface.
3.10.6.2 The amount of cotton/oakum caulking inserted shall be carefully controlled to limit the possibility to "caulk off" a plank from its frames if too much is driven in and forced beyond the outgage bevel.

3.10.6.3 The cotton/oakum caulking shall be driven uniformly, to the same hardness and depth in each seam, to prevent a wedging effect. It shall be set to a hardness that would not allow an awl to penetrate more than 3/8-inch.

3.10.6.4 Butt caulking seams shall be caulked ahead of adjoining longitudinal caulking seams to ensure that short ends of caulking will be locked in place.

3.10.6.5 The ends of sound existing caulking and new caulking shall be drawn out and tapered so as to be married in a continuous bulk and then be installed as stated in 3.10.6 through 3.10.6.4.

3.10.6.6 Caulking irons shall conform to GGG-I-671.

3.10.6.7 Hull shell planking caulking seams of heavy planked ships (e.g., MSOs) shall have the caulking set firmly home by means of a heavy horsing iron driven into the seams with a heavy mallet known as a beetle. This is a 2-man operation that requires one man to hold the long-handled horsing iron while the second man swings the horsing beetle. This operation ensures that the caulking will be well seated, will not work loose, and is the final means to stiffen the hull.

3.10.7 Pay (fill) deck planking caulking seams with polyurethane caulking compound conforming to MIL-S-24340, Type I, Class 2, or marine glue MIL-G-413, Class 2, as specified in the invoking Work Item.

3.10.7.1 The depth of the seam caulking compound shall be one to 1-1/2 times the width of the seam but no deeper than 3/8-inch.

3.10.7.2 Seal the surfaces of the seams and the installed cotton caulking with a seam primer that is compatible with the caulking compound.

3.10.7.3 Install one-inch wide masking tape on both sides of each caulking seam to keep the caulking compound from penetrating the open grain areas of the deck planking.

3.10.7.4 Remove the tape installed in 3.10.7.3 upon completion of caulking operations.

3.10.8 Pay hull shell planking caulking seams with caulking compound in accordance with the following requirements.
3.10.8.1 Pay underwater hull caulking seams with Interlux 30 brown underwater seam compound (oleoresinous material cut with an aromatic solvent).

3.10.8.2 Pay hull caulking seams above the waterline with Interlux 31 white seam compound (oleoresinous material cut with an aromatic solvent).

3.10.8.3 The depth of the seam caulking compound shall be one to 1-1/2 times the width of the seam.

3.10.8.4 Paint the surfaces of the seams and the installed cotton/oakum caulking with anti-fouling paint conforming to Formula 121 of MIL-P-15931 prior to filling underwater hull shell planking seams with caulking compound.

3.10.8.5 Seal the surfaces of the seams and the installed cotton/oakum caulking with a seam primer that is compatible with the caulking compound on hull shell planking seams existing above the waterline.

3.10.9 Prior to paying the caulking compound installed in 3.10.7 and 3.10.8, seams shall be thoroughly cleared and cleaned of foreign matter.

3.10.9.1 The caulking compound may be applied with a caulking gun but shall be handworked into the seams to eliminate air pockets and voids in the seams.

3.10.9.2 Remove surplus caulking compound from surrounding surfaces.

3.10.9.3 Pay and complete seams daily, leaving no exposed cotton/oakum caulking at the end of each work shift to ensure the cotton/oakum caulking remains dry and clean.

3.10.9.4 When installing caulking compound and its compatible primer, the manufacturer's instructions shall be strictly adhered to. Seams greater than 1/2-inch width shall be payed in 2 applications spaced 24 hours apart.

3.11 Blank openings resulting from removals and relocations, unless otherwise specified, in accordance with the following.

3.11.1 Blank deck planking as follows:

3.11.1.1 Route a 3/8-inch deep indentation on both the top and underside of the deck planking, centered over the area to be blanked.

3.11.1.2 The routed area shall extend a minimum of 3 inches beyond the perimeter of the area to be blanked.
3.11.1.3 Fit and install a Douglas Fir insert in the area to be blanked.

3.11.1.4 Fit and install a 3/8-inch thick plywood insert in each routed-out indentation.

3.11.1.5 Bed faying surfaces of the inserts with a NAVSEA approved natural wood bedding compound such as Interlux 214 or Dolchem 3400, and secure with carriage bolts to ensure watertight integrity. Remove surplus wood bedding compound left after squeeze-out.

3.11.2 Blank plywood bulkheads and plywood decks as follows:

3.11.2.1 Enlarge the hole to be blanked to a minimum of 4 inches square.

3.11.2.2 Install a fitted plywood insert in the resulting opening in the deck or bulkhead.

3.11.2.3 Install a plywood lap cover on one side of and centered over the area to be blanked. The lap cover shall extend a minimum of 3 inches beyond the perimeter of the area to be blanked.

3.11.2.4 Bed faying surfaces of the insert and the lap cover in a NAVSEA approved natural wood bedding compound such as Interlux 214 or Dolchem 3400, and secure with carriage bolts to ensure watertight integrity. Remove surplus wood bedding compound left after squeeze-out.

3.11.3 Blank double-sheathed bulkheads as follows:

3.11.3.1 Enlarge the opening in the inner sheathing to a minimum of 4 inches square.

3.11.3.2 Enlarge the opening in the outer sheathing to a size that extends a minimum of 3 inches beyond the perimeter of enlarged inner sheathing opening.

3.11.3.3 Install a fitted plywood insert in each opening. The plywood inserts shall be the same thickness as the sheathing.

3.11.3.4 Install one layer of canvas conforming to PIA-C-419, Type III (8 ounces or heavier), between the 2 inserts, the same size as the larger insert.

3.11.3.5 Bed faying surfaces of the inserts and the canvas in a NAVSEA approved natural wood bedding compound such as Interlux 214 or Dolchem 3400, and secure with carriage bolts to ensure watertight integrity. Remove surplus wood bedding compound left after squeeze-out.
3.11.4 Sand new plywood blanks and disturbed surfaces to fair in with surrounding areas.

3.11.4.1 Apply one coat of ready-mixed aluminum paint conforming to TT-P-38, to sanded surfaces, followed by 2 coats of finish paint to match the surrounding areas.

4. **NOTES:**

4.1 None.
1. SCOPE:

1.1 Title: Boiler Dry Lay-up; accomplish

2. REFERENCES:

2.1 S9086-GY-STM-010/CH-221, Boilers

3. REQUIREMENTS:

3.1 Fill or drain water in steam drum to a level below the bottom of the manhole.

3.1.1 Inject 10 pounds of sodium nitrite for each 1,000 gallons of boiler water in a slurry solution to the water in the boiler.

3.1.1.1 If boiler is pressurized, inject sodium nitrite after pressure drops to 100 PSIG or less.

3.2 Fill the steam drum to bring water level to the top of the gage glass using water conforming to the following requirements:

<table>
<thead>
<tr>
<th>CONSTITUENT or PROPERTY</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5.8 to 8.0</td>
</tr>
<tr>
<td>Conductivity</td>
<td>2.5 micromho/cm (at point of delivery)</td>
</tr>
<tr>
<td>Dissolved Silica</td>
<td>0.2 ppm (0.2 mg/L) max</td>
</tr>
<tr>
<td>Hardness</td>
<td>0.10 epm (0.10 meg/L) max</td>
</tr>
</tbody>
</table>

3.2.1 Submit one legible copy, in hard copy or electronic media, of chemical analysis to the SUPERVISOR prior to adding water to boiler.

3.2.2 Prevent water level from carrying the solution over into the superheater.

3.3 Remove and dispose of the solution from the boiler immediately.

3.3.1 Do not drain the solution to the bilge.
3.4 Remove each drum manhole plate and header handhole plate from boiler.

3.4.1 Do not remove seal welded handhole plates.

3.5 Blow out horizontal tubes with clean air to remove any water. Dry remaining solution from water walls, economizers, superheater headers, steam and water drums.

3.6 Circulate heated air with positive flow through the firesides and watersides, as long as the boiler is in a dry lay-up condition, in accordance with Paragraph 221-2.3.7.1 of 2.1.

3.6.1 Introduce and exhaust heated air in accordance with Table 221-2 of 2.1.

(V) "INSPECT BOILER LAY-UP"

3.6.2 Inspect the boiler daily and at the end of each work shift and ensure dry lay-up conditions are maintained in accordance with Paragraphs 221-2.4.6.2 and 221-2.4.6.3 of 2.1.

4. NOTES:

4.1 None.
1. **SCOPE:**

 1.1 Title: Technical Manual Contract Requirement (TMCR) for New Technical Manuals for Commercial Equipment/Component; provide

2. **REFERENCES:**

 2.1 NDMS-000172-000, Technical Manual Contract Requirement (TMCR); Commercial Off-The-Shelf (COTS) Equipment Requirements

3. **REQUIREMENTS:**

 3.1 Accomplish the requirements of 2.1.

 3.1.1 Deliver the data items listed in Paragraph 1.3 of 2.1 as follows:

 3.1.1.1 Submit 3 advance copies to the SUPERVISOR for review within 10 days upon receipt of equipment/component from the vendor.

 3.1.1.2 One copy shall be in a form suitable for offset printing.

 3.2 Submit supplementary data for commercial manuals in accordance with 2.1 to the SUPERVISOR.

 3.2.1 Deliver the data items listed in Paragraph 1.4 of 2.1 as follows:

 3.2.1.1 Submit 3 review draft copies (RDC) of the supplementary data to the SUPERVISOR for review within 10 days of receipt of equipment from vendor.

 3.2.1.2 One copy of the commercial manual with supplementary data inserted shall be in a form suitable for offset printing.

4. **NOTES:**

 4.1 2.1 is available and can be read on-line at:

1. **SCOPE:**

1.1 Title: Requirements for Contractor Cranes at Naval Facilities; accomplish

2. **REFERENCES:**

2.1 29 CFR Part 1910, Occupational Safety and Health Standards
2.2 29 CFR Part 1915, Occupational Safety and Health Standards for Shipyard Employment
2.3 29 CFR Part 1917, Marine Terminals
2.4 29 CFR Part 1926, Safety and Health Regulations for Construction
2.5 ASME B30.5, Mobile and Locomotive Cranes
2.6 ASME B30.8, Floating Cranes
2.7 ASME B30.22, Articulating Boom Cranes

3. **REQUIREMENTS:**

3.1 Notify the SUPERVISOR 24 hours prior to bringing any crane onto a Naval facility.

3.2 Comply with the requirements of 2.1 through 2.7 prior to bringing or using any contractor cranes on Naval facilities.

3.2.1 Maintain written documentation of the last weight test of the crane and all related weight handling equipment on site.

3.2.2 Provide a completed and signed Certificate of Compliance, Attachment A, for each crane brought onto a Naval facility.

3.2.2.1 Post a copy of Attachment A in cab of crane.

3.3 Designate in writing the trained and qualified operators and post the designations in the crane at all times.
3.3.1 Provide certification that operators for mobile cranes with gross capacities of 50,000 pounds or greater are designated as qualified by a crane operator qualification source.

3.3.2 Provide certification that the operator is qualified to operate the crane to be used.

3.3.3 Ensure the designated operators comply with the following requirements:

3.3.3.1 Have understanding of all signs, notices, and operating instructions, and the applicable hand signals prescribed by the ASME B30 standard for the type of crane in use. Post an illustration of the signals on the crane.

3.3.3.2 Not have uncorrected defective eyesight or hearing.

3.3.3.3 Not be known to suffer from heart disease, epilepsy, or similar ailments which suddenly could incapacitate him/her.

3.3.3.4 Be at least 18 years of age.

3.4 Ensure the handling and rigging gear and below the hook lifting devices and personnel comply with the following requirements:

3.4.1 Personnel performing rigging shall have an understanding of all signs, notices, and operating instructions, and be familiar with the applicable hand signals prescribed by the ASME B30 standard for the type of crane in use.

3.4.2 Personnel performing rigging shall be familiar with the rigging requirements in 2.1 through 2.4.

3.5 Inspect rigging gear in accordance with 2.1 through 2.4.

3.5.1 Maintain certification records on site available for review during all work.

3.5.2 All current certification records must include at a minimum the date of the inspection and signature of the inspector noting the expiration date of each certification.

(V) "INSPECT CRANE"

3.6 Contractor shall:

3.6.1 Ensure all inspections are performed in accordance with 2.1 through 2.4 (daily, monthly, quarterly, and yearly), and retain the current documentation of inspections. Documents shall be kept on site.
3.6.1.1 Perform daily pre-use inspections and testing on all load hoisting and lowering mechanisms, boom hoisting and lowering mechanisms, swinging mechanisms, traveling mechanisms (if to be used that day), and safety devices.

3.6.2 Cranes that have to be rerated shall be in accordance with SAE Recommended Practice, Crane Load Stability Test Code J765 and documentation maintained on site.

3.6.3 Post a completed copy of Attachment A in the cab of vehicle.

3.6.4 Have an operational anti-two-block device or a two-block damage prevention feature for all points of two-blocking.

3.6.5 Have a boom hoist disconnect, shutoff, or hydraulic relief to automatically stop the boom hoist when the boom reaches a predetermined high angle.

(V)(G) "INSPECT CERTIFICATION AND TESTING DOCUMENTATION"

3.7 Conduct a joint verification with the Government representative to ensure that a legible and indelible completed copy of Attachment A is maintained on the crane and the following certification and testing documentation is on site prior to entry and use on any Naval facility:

3.7.1 Crane certification
3.7.2 Load testing
3.7.3 Yearly, monthly, and daily inspection logs
3.7.4 Rope/sling certifications
3.7.5 Operator certifications/designations
3.7.6 Designation of person performing log inspections
3.7.7 Cranes which are permanently located on a Naval facility shall have a quarterly joint verification.

3.8 Develop and maintain on site a critical lift plan as follows:

3.8.1 Critical lifts are:

3.8.1.1 Lifts over 80 percent of the capacity of the crane or hoist (at any radius of lift),

3.8.1.2 Lifts involving more than one crane or hoist,
3.8.1.3 Lifts of personnel,
3.8.1.4 Lifts involving non-routine rigging or operation,
3.8.1.5 Lifts involving sensitive equipment, and
3.8.1.6 Lifts with unusual safety risks.

3.8.2 Specify the size and weight of the load to be lifted, including crane and rigging components which add to the weight. The OEM's maximum load capacities for the entire range of the lift shall also be provided.

3.8.3 Specify lift geometry, including the crane position, boom length and angle, height of lift, and radius for the entire range of the lift, and shall apply to both single and multiple crane lifts.

3.8.4 Specify a rigging plan showing the lift points, rigging gear, and rigging procedures.

3.8.5 Specify environmental conditions under which lift operations are to be stopped.

3.8.6 Demonstrate compliance with the requirements of Section 1926.550(g) of 2.4 for lifts of personnel.

3.8.7 Provide data that is needed to establish facility ground loading restrictions/conditions to the SUPERVISOR.

3.8.8 Complete and maintain a copy of Attachment B for each lift.

3.9 Report verbally each accident to the SUPERVISOR as soon as management becomes aware but not later than 4 hours of such an event.

3.9.1 Secure the accident site and protect evidence until released by the SUPERVISOR.

3.9.2 Withhold further crane operations until the cause is determined and corrective actions are implemented and approved by the SUPERVISOR.

3.9.3 A crane accident is when any of the following occurs during crane operations:

3.9.3.1 Personnel injury or death
3.9.3.2 Material or equipment damage
3.9.3.3 Dropped load
3.9.3.4 Derailment

3.9.3.5 Two-blocking

3.9.3.6 Overload

3.9.3.7 Collision, including unplanned contact between the load, crane, and/or other objects.

3.9.4 Provide a formal written report of the event to the SUPERVISOR within 24 hours of each accident.

3.9.5 Submit one legible copy, in hard copy or electronic media, of the accident report consisting of a summary of circumstances, and explanation of cause(s), and corrective actions taken, using Attachment C, to the SUPERVISOR.

4. **NOTES:**

4.1 None.
CERTIFICATE OF COMPLIANCE

Contractor shall complete this form and submit one copy to the Contracting Officer at least 24 hours prior to bringing any crane on Navy property. This certificate shall be signed by an official of the company that provides cranes for any application under this contract. This certificate is only valid for the contract specified. Cranes will not be allowed on any Naval activity without a signed copy of this certificate posted in cab. All operations are subject to periodic surveillance.

<table>
<thead>
<tr>
<th>LOCATION: (Include sketch if necessary)</th>
<th>DATE(S) OF CRANE OPERATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION OF WORK:</td>
<td>CONTRACTOR OFFICE:</td>
</tr>
<tr>
<td>CONTRACTOR OFFICER/PHONE:</td>
<td>CONTRACT NUMBER:</td>
</tr>
<tr>
<td>PRIME CONTRACTOR:</td>
<td>POINT OF CONTACT/PHONE:</td>
</tr>
<tr>
<td>CRANE SUPPLIER/PHONE: (If different from prime contractor)</td>
<td>POINT OF CONTACT/PHONE:</td>
</tr>
<tr>
<td>CRANE MANUFACTURER:</td>
<td>MODEL:</td>
</tr>
<tr>
<td></td>
<td>CAPACITY:</td>
</tr>
<tr>
<td></td>
<td>CRANE ID #:</td>
</tr>
<tr>
<td>GROSS VEHICLE WEIGHT:</td>
<td>MAXIMUM LIFT DURING OPERATION:</td>
</tr>
<tr>
<td>TRAVEL:</td>
<td>MAX OUTRIGGER LOAD DURING OPERATION:</td>
</tr>
<tr>
<td>OPERATING:</td>
<td></td>
</tr>
<tr>
<td>CRANE OPERATOR'S NAME(S):</td>
<td></td>
</tr>
</tbody>
</table>

I certify that: 1) The above noted crane conforms to all applicable OSHA regulations. The following regulations apply:___
2) That the operators noted above have been trained and are qualified for the operation of the above noted crane and that those operators have been trained not to bypass safety devices during lifting operations.

<table>
<thead>
<tr>
<th>CONTRACTOR OFFICIAL PRINTED NAME/TITLE:</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Signature)</td>
<td></td>
</tr>
</tbody>
</table>

POST ON CRANE (IN CAB OF VEHICLE)
<table>
<thead>
<tr>
<th>Item</th>
<th>Question</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Does the operator know the weight of the load to be lifted?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Is the load to be lifted within the crane manufacturer’s rated capacity in its present configuration?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Is the crane level and on firm ground?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Are outriggers required?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>If so, are outriggers fully extended and down, and the crane load off the wheels?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>If blocking is required, is the entire surface of the outrigger pad supported and is the blocking material of sufficient strength to safely support the loaded outrigger pad?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>If outriggers are not used, is the crane rated for on-rubber lifts by the manufacture’s load chart?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Is the swing radius of the crane counterweight clear of people and obstructions and accessible areas within the swing area barricaded to prevent injury or damage?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Has the hook been centered over the load in such a manner to minimize swing?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Is the load well secured and balanced in the sling or lifting device before it is lifted more than a few inches?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Is the lift and swing path clear of obstructions?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>If rotation of the load being lifted is hazardous, is a tag or restraint line being used?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Are personnel prevented from standing or passing under a suspended load?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Is the crane operator’s attention diverted?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Are proper signals being used at all times?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Do the operations ensure that side loading is prohibited?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Are personnel prevented from riding on a load?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Are start and stop motions in a smooth fluid motion (no sudden acceleration or deceleration)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>If operating near electric power lines, are the rules and guidelines understood and adhered to?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Is the lift a critical lift?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>If so, are all regulations understood and check-off sheets initialed and signed off?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contractor: Subcontractor:
Location: Date:
<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>From:</td>
<td>SUPERVISOR</td>
</tr>
<tr>
<td>UIC:</td>
<td></td>
</tr>
<tr>
<td>Activity:</td>
<td></td>
</tr>
<tr>
<td>Report No:</td>
<td></td>
</tr>
<tr>
<td>Crane No:</td>
<td></td>
</tr>
<tr>
<td>Cat:</td>
<td></td>
</tr>
<tr>
<td>Accident Date:</td>
<td></td>
</tr>
<tr>
<td>Time:</td>
<td></td>
</tr>
<tr>
<td>SPS:</td>
<td></td>
</tr>
<tr>
<td>GPS:</td>
<td></td>
</tr>
<tr>
<td>Crane Type:</td>
<td></td>
</tr>
<tr>
<td>Crane Manufacturer:</td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td></td>
</tr>
<tr>
<td>Weather:</td>
<td></td>
</tr>
<tr>
<td>Crane Capacity:</td>
<td></td>
</tr>
<tr>
<td>Hook Capacity:</td>
<td></td>
</tr>
<tr>
<td>Weight of Load on Hook:</td>
<td></td>
</tr>
<tr>
<td>Fatality/Permanent Total Disability?:</td>
<td>YES</td>
</tr>
<tr>
<td>Material/Property Cost Estimate:</td>
<td></td>
</tr>
<tr>
<td>Loss of Work Time Beyond the Day or Shift on Which It Occurred?:</td>
<td>YES</td>
</tr>
<tr>
<td>Accident Type:</td>
<td></td>
</tr>
<tr>
<td>Personal Injury</td>
<td></td>
</tr>
<tr>
<td>Overload</td>
<td></td>
</tr>
<tr>
<td>Derail</td>
<td></td>
</tr>
<tr>
<td>Damaged Rigging Gear</td>
<td></td>
</tr>
<tr>
<td>Load Collision</td>
<td></td>
</tr>
<tr>
<td>Two Blocked</td>
<td></td>
</tr>
<tr>
<td>Dropped Load</td>
<td></td>
</tr>
<tr>
<td>Damaged Crane</td>
<td></td>
</tr>
<tr>
<td>Crane Collision</td>
<td></td>
</tr>
<tr>
<td>Damaged Load</td>
<td></td>
</tr>
<tr>
<td>Other (Specify)</td>
<td></td>
</tr>
<tr>
<td>Cause of Accident:</td>
<td></td>
</tr>
<tr>
<td>Improper Operation</td>
<td></td>
</tr>
<tr>
<td>Equipment Failure</td>
<td></td>
</tr>
<tr>
<td>Inadequate Visibility</td>
<td></td>
</tr>
<tr>
<td>Improper Rigging</td>
<td></td>
</tr>
<tr>
<td>Switch Alignment</td>
<td></td>
</tr>
<tr>
<td>Inadequate Communication</td>
<td></td>
</tr>
<tr>
<td>Track Condition</td>
<td></td>
</tr>
<tr>
<td>Procedural Failure</td>
<td></td>
</tr>
<tr>
<td>Other (Specify)</td>
<td></td>
</tr>
<tr>
<td>Chargeable to:</td>
<td></td>
</tr>
<tr>
<td>Track Walker</td>
<td></td>
</tr>
<tr>
<td>Rigger</td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Management/Supervision</td>
<td></td>
</tr>
<tr>
<td>Other (Specify)</td>
<td></td>
</tr>
<tr>
<td>Crane Function:</td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td></td>
</tr>
<tr>
<td>Hoist</td>
<td></td>
</tr>
<tr>
<td>Rotate</td>
<td></td>
</tr>
<tr>
<td>Luffing</td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td></td>
</tr>
<tr>
<td>Telescoping</td>
<td></td>
</tr>
<tr>
<td>Is this accident indicative of a recurring problem?:</td>
<td>YES</td>
</tr>
<tr>
<td>If Yes, list Accident Report Nos.:</td>
<td></td>
</tr>
<tr>
<td>ATTACH COMPLETE AND CONCISE SITUATION DESCRIPTION AND CORRECTIVE/PREVENTIVE ACTIONS TAKEN AS ENCLOSURE (1). Include probable cause and contributing factors. Assess damages and define responsibility. For equipment malfunction or failure include specific description of the component and the resulting effect or problem caused by the malfunction or failure. List corrective/preventive actions assigned and responsible codes.</td>
<td></td>
</tr>
<tr>
<td>Preparer's Signature</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>CONCURRENCES (Include Signature, Code, and Date)</td>
<td></td>
</tr>
<tr>
<td>CONTRACTOR CERTIFYING OFFICIAL</td>
<td></td>
</tr>
</tbody>
</table>
WEIGHT HANDLING EQUIPMENT ACCIDENT REPORT INSTRUCTIONS

1 - **Report Date:** The date the accident report is completed.

2 - **From:** The Contractor who owns the crane.

3 - **Activity:** The Naval activity where the accident took place.

4 - **Report No.:** The activity-assigned accident number (e.g., 98-001).

5 - **Crane No.:** The activity-assigned crane number (e.g., PC-5).

6 - **Category:** Identify category of crane (i.e., 1, 2, or 3).

7 - **Accident Date:** The date the accident occurred (month/day/year).

8 - **Time:** The time (24 hour clock) the accident occurred (e.g., 1300).

9 - **Category of Service:** Special purpose service (SPS) or general purpose service (GPS).

10 - **Crane Type:** The type of crane involved in the accident (e.g., mobile, bridge).

11 - **Crane Manufacturer:** The manufacturer of the crane (e.g., Dravo, Grove, P&H).

12 - **Location:** The detailed location where the accident took place (e.g., building 213, dry dock 5)

13 - **Weather:** The weather conditions at time of accident (e.g., wind, rain, cold).

14 - **Crane Capacity:** The certified capacity of the crane (e.g., 60 tons).

15 - **Hook Capacity:** The capacity of the hook involved in the accident at the maximum radius of the operation.

16 - **Weight of Load on Hook:** If applicable, the weight of the load on the hook.

17 - **Fatality or permanent total disability?:** Check yes or no.

18 - **Material/Property Cost Estimate:** Estimate total cost of damage resulting from the accident.

19 - **Loss of work time beyond the day or shift on which it occurred?:** Check yes or no.

20 - **Accident Type:** Check all that apply.

21 - **Cause of Accident:** Check all that apply.

22 - **Chargeable to:** Check all that apply.

23 - **Crane Function:** Check the function(s) in operation at time of accident. Check all that apply.

24 - **Is this a recurring problem?:** Check yes or no. Identify any other similar accidents.

25 - **Situation Description/Corrective Actions:** Self-explanatory.

26 - **Concurrences:** Signatures of activity personnel verifying the accident report.
1. SCOPE:

1.1 Title: Technical Manual Contract Requirement (TMCR) for a Topically Structured Technical Manual; provide

2. REFERENCES:

2.1 NDMS-000173-000, Technical Manual Contract Requirements (TMCR); Hull, Mechanical and Electrical (HM&E) Equipment Technical Manual Requirements

3. REQUIREMENTS:

3.1 Accomplish the requirements of 2.1.

3.2 Deliver the data items listed in Paragraph 1.3 of 2.1 as follows:

 3.2.1 Submit 3 review draft copies (RDC) to the SUPERVISOR for review within 10 days of receipt of equipment.

 3.2.2 Submit one proof copy and one reproducible copy with integrally related art to the SUPERVISOR not later than 30 days after receipt of the reviewed final reproducible copy (FRC).

4. NOTES:

4.1 2.1 is available and can be read on-line at:

1. SCOPE:

1.1 Title: Technical Manual Contract Requirement (TMCR) for Updating Technical Manuals; provide

2. REFERENCES:

2.1 NDMS-000174-000, Technical Manual Contract Requirement (TMCR); Technical Manual Revision Requirements

2.2 NDMS-000175-000, Technical Manual Contract Requirement (TMCR); Technical Manual Change Package Requirements

3. REQUIREMENTS:

3.1 Accomplish the requirements of 2.1 or 2.2 as appropriate.

3.2 Deliver the data items listed in Paragraph 1.3 of 2.1 or 2.2 as applies:

3.2.1 Submit review draft copies (RDC) to the SUPERVISOR for review within 10 days after receipt of equipment/component.

3.2.2 Submit 3 review draft copies (RDC) to the SUPERVISOR for review within 10 days after receipt of equipment/component.

3.2.3 Deliver the data items listed in Paragraph 1.3 of 2.1 or 2.2 as appropriate.

4. NOTES:

4.1 2.1 and 2.2 are available and can be read on-line at: http://nsdsa.phdnswc.navy.mil/mspecs/mspecs.asp

4.2 1.2 and 2.2 are available and can be read on-line at: Thrones: 2.1 and 2.2 are available and can be read on-line at: Thrones.

II.

Category: 009-42

Date: 29 Jul 2004

Item No: 009-42

FY-06

Standard Item

NAVSEA

009-42
1. **SCOPE:**

 1.1 Title: Light-Off Assessment (LOA) Support for Steam Propulsion System; provide

2. **REFERENCES:**

 2.1 None.

3. **REQUIREMENTS:**

 3.1 Complete work in the main propulsion machinery spaces, steering gear rooms, shaft alleys, pump rooms, auxiliary machinery rooms, designated fuel tanks, and feedwater tanks at least 15 calendar days prior to the scheduled Light-Off Assessment (LOA). Repairs, installations, testing, and adjustments of auxiliary machinery, systems, and equipment outside those spaces which support the main propulsion system directly, indirectly, or for emergencies shall also be completed.

 3.1.1 The term complete is defined to mean the accomplishment of contractor responsible work that is possible without lighting off the boilers. Steam shall not be introduced into propulsion systems from any source until after a successful Light-Off Assessment.

 3.1.2 The following work shall be complete:

 3.1.2.1 Repair and installation of machinery, equipment, piping systems, gages, thermometers, meters, operating instructions and warning plates, protective guards, flange shields, remote shutdown devices, strainer shields, valves and handwheels, insulation and lagging, check valves, steam traps and orifices, regulators and reducing valves, remote operating gear and pull cables, valve reach rods, pipe hangers and braces, valve locking devices, valve position indicators, gage lines, label plates, relief valves and hand lifting levers, boiler uptakes and stacks, boiler safety valves and easing gear, sight glasses and guards, fuel strainers, fuel burner drip pans, soot blowers and chains, boiler casings, firefighting systems and equipment, automatic boiler control system (combustion and feedwater), main feed pump control systems, deck plates, handrails, ladders, ventilation systems, supply and exhaust vent screens, lighting systems (incandescent, fluorescent, and emergency battle lanterns), electric cables and runs, cable straps, cable
packing, cable tags, alarm systems, interior communication systems, ground straps, resilient mounts, safety devices, stenciling, tachometers, and access closures.

3.1.2.2 Calibration of gages, thermometers, tachometers, pyrometers, and meters

3.1.2.3 Cold setting of relief valves, steam turbine governors, diesel engine governors and overspeed trips, piping spring hangers, regulators and reducing valves, low suction trips, high temperature alarms and switches, high and low pressure control switches, low lube oil pressure alarms, boiler water high and low level alarms

3.1.2.4 Painting

3.1.2.5 Filling of lube oil, fuel oil, and feedwater tanks

3.1.2.6 Boilers in designated lay-up

3.1.2.7 Bilges shall be clean and gas free, "Safe for Workers"

3.1.3 Complete portions of required test procedures that can be completed without steam.

3.2 Correct contractor responsible preliminary LOA discrepancies prior to the turnover of engineering spaces to Ship's Force. The 2-week period prior to the LOA is reserved for Ship's Force preparation for LOA. Contractor work will not be allowed in the engineering spaces during this period unless specifically authorized by the SUPERVISOR.

3.2.1 Submit one legible copy, in hard copy or electronic media, of a weekly report on the status of completion of preliminary LOA discrepancies. Notify the SUPERVISOR immediately upon determination of any discrepancies that cannot be corrected prior to the scheduled LOA, giving the reason and expected completion date.

3.3 Provide the services of a contractor quick response team during the LOA to correct Government and contractor discrepancies.

3.3.1 Contractor shall coordinate the correction of discrepancies as they are discovered at the direction of the SUPERVISOR.

3.3.2 The quick response team members shall have with them (or readily accessible) the tools of their trade for immediate use in the correction of discrepancies.
4. **NOTES:**

4.1 The LOA is a comprehensive assessment of the ship in the key areas of: The level of knowledge and state of training of propulsion plant personnel; the adequacy of Engineering Department administrative programs and procedures; the material readiness of the propulsion plant; and the state of cleanliness and preservation of main propulsion and auxiliary machinery spaces. The LOA will be accomplished by the Propulsion Examining Board (PEB) or the Type Commander Staff. The assessment will be conducted immediately prior to scheduled boiler light-off and it must be concluded successfully prior to boiler light-off. The material assessment portion usually takes less than 12 hours. If restrictive discrepancies are identified, those discrepancies must be corrected prior to boiler light-off.

4.2 The SUPERVISOR will establish an inspection team and accomplish a preliminary LOA inspection in conjunction with Ship's Force 4 to 8 weeks prior to the LOA to determine and record discrepancies which would impact upon the LOA. The pre-LOA will be about 4 days in duration and will result in the identification of discrepancies and incomplete work considered necessary to support a successful Light-Off Assessment. Each discrepancy noted in the inspection will be described in simple terms on a 4-part, serialized form. The form will identify the general location of the discrepancy and the associated Work Item number, if applicable. The fourth copy of the form, made of hard card with an attachment wire, will be hung by the SUPERVISOR's inspection team in the immediate proximity of the discrepancy (on the deficient item itself, when practical). Upon completion of the pre-LOA the SUPERVISOR will identify contractor responsible discrepancies to the contractor. Deficient items identified that are the responsibility of the Government will be screened for accomplishment by the Ship's Force. That portion of this work that cannot be accomplished by the Ship's Force will be considered for accomplishment by the contractor.

4.2.1 Any time after completion of the pre-LOA inspection that additional discrepancies are discovered, they will be similarly identified and screened.
1. SCOPE:

1.1 Title: Light-Off Assessment (LOA) Support for Gas Turbine Propulsion System; provide

2. REFERENCES:

2.1 None.

3. REQUIREMENTS:

3.1 Complete work in the main propulsion machinery spaces, steering gear room, shaft alleys, pump rooms, auxiliary machinery rooms, designated fuel tanks, and feedwater tanks at least 15 calendar days prior to the scheduled Light-Off Assessment (LOA). Repairs, installations, testing, and adjustments of auxiliary machinery, systems, and equipment outside those spaces which support the main propulsion system directly, indirectly, or for emergencies shall also be completed.

3.1.1 The term complete is defined to mean the accomplishment of contractor responsible work that is possible without lighting off the gas turbine engines until after a successful Light-Off Assessment.

3.1.2 The following work shall be complete:

3.1.2.1 Repair and installation of machinery, equipment, piping systems, gages, thermometers, meters, operating instructions and warning plates, protective guards, flange shields, remote shutdown devices, strainer shields, valves and handwheels, insulation and lagging, check valves, steam traps and orifices, regulators and reducing valves, remote operating gear and pull cables, valve reach rods, pipe hangers and braces, valve locking devices, valve position indicators, indicators, gage lines, label plates, relief valves and hand lifting levers, waste heat boiler safety valves and easing gear, sight glasses and guards, fuel strainers, soot blowers, boiler casings, firefighting systems and equipment, handrails, ladders, access door and scuttles, ventilation systems, supply and exhaust vent screens, lighting systems (incandescent, fluorescent, and emergency battle lanterns), electric cables and runs, cable straps, cable packing, cable tags, alarm systems, ground straps, flex hose, resilient-mounts, safety devices, stenciling,
interior communication systems, tachometers, and resiliently mounted pipe hangers.

3.1.2.2 Calibration of gages, thermometers, tachometers, pyrometers, and meters

3.1.2.3 Cold setting of relief valves, gas turbine governors, overspeed trips, piping spring hangers, regulators and reducing valves, high temperature alarms and switches, high and low pressure control switches, low lube oil pressure alarms, waste heat boiler water high and low level alarms

3.1.2.4 Painting

3.1.2.5 Filling of lube oil, fuel oil, and feedwater tanks

3.1.2.6 Bilges shall be clean and gas free, "Safe for Workers"

3.1.3 Complete portions of required test procedures that can be completed without gas turbine engine light-off.

3.2 Correct contractor responsible preliminary LOA discrepancies prior to the turnover of engineering spaces to Ship's Force. The 2-week period prior to the LOA is reserved for Ship's Force preparation for LOA. Contractor work will not be allowed in the engineering spaces during this period unless specifically authorized by the SUPERVISOR.

3.2.1 Submit one legible copy, in hard copy or electronic media, of a weekly report on the status of completion of preliminary LOA discrepancies. Notify the SUPERVISOR immediately upon determination of any discrepancies that cannot be corrected prior to the scheduled LOA, giving the reason and expected completion date.

3.3 Provide the services of a contractor quick response team during the LOA to correct Government and contractor discrepancies.

3.3.1 Contractor shall coordinate the correction of discrepancies as they are discovered at the direction of the SUPERVISOR.

3.3.2 The quick response team members shall have with them (or readily accessible), the tools of their trade for immediate use in the correction of discrepancies.

4. NOTES:

4.1 The LOA is a comprehensive assessment of the ship in the key areas of: The level of knowledge and state of training of propulsion plant personnel; the adequacy of Engineering Department administrative programs and procedures; the material readiness of the propulsion plant; and the state of cleanliness and preservation of main propulsion and auxiliary machinery.
spaces. The LOA will be accomplished by the Propulsion Examining Board (PEB) or the Type Commander Staff. The assessment will be conducted immediately prior to scheduled gas turbine engine light-off and it must be concluded successfully prior to gas turbine engine light-off. The material assessment portion usually takes less than 12 hours. If restrictive discrepancies are identified, those discrepancies must be corrected prior to gas turbine light-off.

4.2 The SUPERVISOR will establish an inspection team, and accomplish a preliminary LOA inspection in conjunction with Ship's Force 4 to 8 weeks prior to the LOA to determine and record discrepancies which would impact upon the LOA. The pre-LOA will be about 4 days in duration and will result in the identification of discrepancies and incomplete work considered necessary to support a successful Light-Off Assessment. Each discrepancy noted in the inspection will be described in simple terms on a 4-part, serialized form. The form will identify the general location of the discrepancy and the associated Work Item number, if applicable. The fourth copy of the form, made of hard card with an attachment wire, will be hung by the SUPERVISOR's inspection team in the immediate proximity of the discrepancy (on the deficient item itself, when practical). Upon completion of the pre-LOA the SUPERVISOR will identify contractor responsible discrepancies to the contractor. Deficient items identified that are the responsibility of the Government will be screened for accomplishment by the Ship's Force. That portion of this work that cannot be accomplished by the Ship's Force will be considered for accomplishment by the contractor.

4.2.1 Any time after completion of the pre-LOA inspection that additional discrepancies are discovered, they will be similarly identified and screened.
1. SCOPE:

1.1 Title: Tapered Plug Valve; repair

2. REFERENCES:

2.1 None.

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

3.3 Repair valve as follows:

3.3.1 Machine, grind, or lap and spot-in plug to bore to obtain an 80 percent minimum surface contact, evenly distributed over 100 percent of the area.

(V) "INSPECT CONTACT"

3.3.1.1 Inspect contact using blueing method.

3.3.1.2 Vertical misalignment of ports in the plug valve and body with the plug fully seated shall not be of a degree that will restrict flow.

3.3.2 Chase and tap exposed threaded areas.

3.3.3 Dress and true gasket mating surfaces.

3.4 Assemble valve installing new packing and gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

3.4.1 Lubricate each MIL-V-24509 valve with grease conforming to SAE-AMS-G-6032.
3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) "SEAT TIGHTNESS"

3.5.2 Test for seat tightness with valve in closed position with opposite side open for inspection.

3.5.2.1 Plug shall be seated by hand force.

3.5.2.2 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage or, in the event of visible leakage, until accurate determination of leakage can be made.

3.5.2.3 Maximum allowable leakage for a metal-to-metal seated valve: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour.

3.5.2.4 Allowable leakage for soft seated plug: None.

(V)(G) "SEAT TIGHTNESS"

3.5.3 Test plug valve of duplex strainer to each strainer chamber with unpressurized side top cover removed (2 tests per strainer). Allowable leakage: With the drain valve closed the non-pressurized side shall not fill within one hour.

4. NOTES:

4.1 Test pressures of 3.5.2 and 3.5.3 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/ Allies Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/ Studs and Bolts to</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>MIL-DTL-1222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/ Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>2/ Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to **ASTM D5363**. Check Class 3 fit stud ends in accordance with SAE-J2270.
TABLE 2

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th>1/</th>
<th>2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>Nonferrous</td>
</tr>
<tr>
<td>3/ Studs and Bolts to MIL-DTL-1222</td>
<td>5/ For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td>For services to 775 degrees Fahrenheit; Grade 5 steel</td>
<td>4/ 5/ Phosphor Bronze - Any Grade Silicon Bronze - Any Grade Nickel Copper - Class A</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
<td></td>
</tr>
<tr>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
<td></td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>5/ For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td>4/ 5/ Phosphor Bronze - Any Grade Silicon Bronze - Any Grade Nickel Copper - Class A or Class B</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2 (CON'T)

<table>
<thead>
<tr>
<th>1/ Alloy Steel/Carbon Steel</th>
<th>2/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to **ASTM D5363**. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)**</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.

2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. **SCOPE:**
 1.1 Title: Tapered Plug Valve; repair

2. **REFERENCES:**
 2.1 None.

3. **REQUIREMENTS:**
 3.1 Matchmark valve parts.

(V) "**INSPECT PARTS FOR DEFECTS**"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

3.3 Repair valve as follows:

 3.3.1 Machine, grind, or lap and spot-in plug to bore to obtain an 80 percent minimum surface contact, evenly distributed over 100 percent of the area.

 (V) "**INSPECT CONTACT**"

 3.3.1.1 Inspect contact using blueing method.

 3.3.1.2 Vertical misalignment of ports in the plug valve and body with the plug fully seated shall not be of a degree that will restrict flow.

 3.3.2 Chase and tap exposed threaded areas.

 3.3.3 Dress and true gasket mating surfaces.

3.4 Assemble valve installing new packing and gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

 3.4.1 Lubricate each MIL-V-24509 valve with grease conforming to SAE-AMS-G-6032.
3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) "SEAT TIGHTNESS"

3.5.2 Test for seat tightness with valve in closed position with opposite side open for inspection.

3.5.2.1 Plug shall be seated by hand force.

3.5.2.2 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage or, in the event of visible leakage, until accurate determination of leakage can be made.

3.5.2.3 Maximum allowable leakage for a metal-to-metal seated valve: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour.

3.5.2.4 Allowable leakage for soft seated plug: None.

(V)(G) "SEAT TIGHTNESS"

3.5.3 Test plug valve of duplex strainer to each strainer chamber with unpressurized side top cover removed (2 tests per strainer). Allowable leakage: With the drain valve closed the non-pressurized side shall not fill within one hour.

4. NOTES:

4.1 Test pressures of 3.5.2 and 3.5.3 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>1/ Alloy Steel</th>
<th>2/ Carbon Steel</th>
<th>3/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
<td>Phosphor Bronze – Any Grade</td>
</tr>
<tr>
<td>Bolts to MIL-DTL-1222</td>
<td></td>
<td></td>
<td>Silicon Bronze – Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper – Class A</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
<td>Phosphor Bronze – Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze – Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper – Class A or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class B</td>
</tr>
<tr>
<td>Socket Head</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
<td>N/A</td>
</tr>
<tr>
<td>Cap Screws</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud and, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to **ASTM D5363**. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.
<table>
<thead>
<tr>
<th>VALVE BODY MATERIAL</th>
<th>1/ Alloy Steel / Carbon Steel</th>
<th>2/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/ Studs and Bolts</td>
<td>5/ For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>4/ 5/ Phosphor Bronze - Any Grade Silicon Bronze - Any Grade Nickel Copper - Class A</td>
</tr>
<tr>
<td>to MIL-DTL-1222</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For services to 775 degrees Fahrenheit; Grade 6-7 or B-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel – Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel – Copper – Aluminum alloy QQ-N-286.</td>
<td></td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>5/ For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>4/ 5/ Phosphor Bronze - Any Grade Silicon Bronze - Any Grade Nickel Copper - Class A or Class B</td>
</tr>
<tr>
<td></td>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td></td>
</tr>
<tr>
<td>1/ Alloy Steel/Carbon Steel</td>
<td>2/ Nonferrous</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²)</th>
<th>Master Gage Range (lb/in²)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.

2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. SCOPE:

1.1 Title: Butterfly Valve, Synthetic and Metal Seated; repair

2. REFERENCES:

2.1 None.

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

3.3 Repair valve as follows:

3.3.1 Polish stem to remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.

3.3.3 Machine, grind, or lap and spot-in metal-to-metal seat to disc to obtain a leakage rate at or below that allowed in 3.5.5.

3.3.4 Polish seating surface of synthetic seated valve to remove high spots, nicks, and burrs.

3.4 Assemble valve installing new bushings, O-Rings, V-Rings, valve liner, seat assemblies, washers, pins, and fasteners in accordance with manufacturer's specifications or instructions.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.
3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table One.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) "SEAT TIGHTNESS"

3.5.2 Test for seat tightness alternately on each side of the disc with opposite side open for inspection.

3.5.3 Disc shall be seated by hand force.

3.5.4 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage, or in the event of visible leakage, until accurate determination of leakage can be made.

3.5.5 Leakage rate of metal-to-metal seated valves conforming to MIL-V-22133, Type II shall not exceed the following criteria:

<table>
<thead>
<tr>
<th>Valve size inches</th>
<th>Leakage rate gal/min</th>
<th>Valve size inches</th>
<th>Leakage rate gal/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.5</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>2-1/2</td>
<td>2.25</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>3.25</td>
<td>14</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>9.5</td>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>20</td>
<td>140</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>24</td>
<td>200</td>
</tr>
</tbody>
</table>

3.5.5.1 Leakage rate of metal-to-metal seated valves conforming to MIL-V-24624 shall have a maximum seat leakage rate of 10 cubic centimeters per inch of nominal pipe size per hour.

3.5.6 Allowable leakage for synthetic seated valve: None.

4. NOTES:

4.1 The test pressure of 3.5.2 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.
<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.

2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. SCOPE:

1.1 Title: Gate Valve; repair

2. REFERENCES:

2.1 S9253-AD-MMM-010, Maintenance Manual for Valves, Traps, and Orifices (Non-Nuclear), User's Guide and General Information

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

3.3 Repair valve as follows:

3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish in way of packing surface and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.

3.3.3 Dress and true gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in gate to seats (including backseat) to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.4.1 Inspect contact using blueing method. Transfer line shall not exceed 3/16 inch in width and shall appear within the lower 75 percent of the gate seating surface.
(I)(G) "VERIFY LEVEL I PARTS" (See 4.3)

3.4 Assemble valve installing new gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

3.4.1 Pack feedwater, condensate, and steam valves with valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.1.

3.4.2 Pack valves of systems other than feedwater, condensate, or steam with valve stem packing conforming to MIL-P-24396, Type B.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) or (I)(G) "SEAT TIGHTNESS" (See 4.4)

3.5.2 Test for seat tightness alternately on each side of gate for double seated valves, and on outboard side only on single-seated valves, with the opposite side open for inspection.

3.5.2.1 Do not exceed the handwheel closing force specified in Table 4.

3.5.2.2 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage, or in the event of visible leakage, until accurate determination of leakage can be made. Maximum allowable leakage: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour.
4. **NOTES:**

4.1 The test pressures of 3.5.2 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.

4.4 The paragraph referencing this note is considered an (I)(G) if the valve is Level I. If the valve is not Level I, the paragraph is considered a (V)(G).
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>1/ Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.
<table>
<thead>
<tr>
<th>ITEM NO: 009-47 FY-06</th>
</tr>
</thead>
</table>

TABLE 2

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th>1/</th>
<th>2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>Nonferrous</td>
</tr>
<tr>
<td>3/</td>
<td>4/</td>
</tr>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>5/</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>4/</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>For services to 775 degrees Fahrenheit; Grade 5 steel</td>
<td></td>
</tr>
<tr>
<td>5/</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade B-7 or B-16</td>
<td></td>
</tr>
<tr>
<td>4/</td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td>5/</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
<td></td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>5/</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td></td>
</tr>
<tr>
<td>4/</td>
<td>Nickel Copper - Class A or Class B</td>
</tr>
<tr>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td></td>
</tr>
<tr>
<td>4/</td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td></td>
</tr>
<tr>
<td>1/</td>
<td>Nonferrous</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
</tr>
<tr>
<td></td>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)**</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.
2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
TABLE 4
SEAT LEAKAGE TEST HANDWHEEL CLOSING FORCE

<table>
<thead>
<tr>
<th>Handwheel Diameter (Inches)</th>
<th>Total Tangential Force on Rim of Handwheel (Pounds)</th>
<th>Total Torque on Handwheel Nut (Foot Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 and below</td>
<td>90</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>112</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>118</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>121</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>124</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>127</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>133</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>135</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>138</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>141</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>144</td>
<td>108</td>
</tr>
<tr>
<td>21</td>
<td>147</td>
<td>128</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>27</td>
<td>150</td>
<td>169</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>188</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
<td>225</td>
</tr>
</tbody>
</table>
1. **SCOPE:**

1.1 Title: Gate Valve; repair

2. **REFERENCES:**

2.1 S9253-AD-MMM-010, Maintenance Manual for Valves, Traps, and Orifices (Non-Nuclear), User's Guide and General Information

3. **REQUIREMENTS:**

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

3.3 Repair valve as follows:

3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish in way of packing surface and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.

3.3.3 Dress and true gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in gate to seats (including backseat) to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.4.1 Inspect contact using blueing method. Transfer line shall not exceed 3/16 inch in width and shall appear within the lower 75 percent of the gate seating surface.
3.4 Assemble valve installing new gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

3.4.1 Pack feedwater, condensate, and steam valves with valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.1.

3.4.2 Pack valves of systems other than feedwater, condensate, or steam with valve stem packing conforming to MIL-P-24396, Type B.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

3.5.2 Test for seat tightness alternately on each side of gate for double seated valves, and on outboard side only on single-seated valves, with the opposite side open for inspection.

3.5.2.1 Do not exceed the handwheel closing force specified in Table 4.

3.5.2.2 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage, or in the event of visible leakage, until accurate determination of leakage can be made. Maximum allowable leakage: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour.
4. **NOTES:**

4.1 The test pressures of 3.5.2 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.

4.4 The paragraph referencing this note is considered an (I)(G) if the valve is Level I. If the valve is not Level I, the paragraph is considered a (V)(G).
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
<th>Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class B</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
<td></td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.
<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>VALVE BODY MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/</td>
<td>Alloy Steel/Carbon Steel</td>
</tr>
<tr>
<td>3/</td>
<td>Studs and Bolts to MIL-DTL-1222</td>
</tr>
<tr>
<td>4/</td>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
</tr>
<tr>
<td>5/</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>6/</td>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
</tr>
<tr>
<td>7/</td>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
</tr>
<tr>
<td>8/</td>
<td>Nuts to MIL-DTL-1222</td>
</tr>
<tr>
<td>9/</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>Alloy Steel / Carbon Steel</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>1/</td>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
</tr>
<tr>
<td>2/</td>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.

2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
<table>
<thead>
<tr>
<th>Handwheel Diameter (Inches)</th>
<th>Total Tangential Force on Rim of Handwheel (Pounds)</th>
<th>Total Torque on Handwheel Nut (Foot Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 and below</td>
<td>90</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>112</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>118</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>121</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>124</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>127</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>133</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>135</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>138</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>141</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>144</td>
<td>108</td>
</tr>
<tr>
<td>21</td>
<td>147</td>
<td>128</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>27</td>
<td>150</td>
<td>169</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>188</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
<td>225</td>
</tr>
</tbody>
</table>
1. SCOPE:

1.1 Title: Pressure Seal Bonnet Valve; repair (shop)

2. REFERENCES:

2.1 T9074-AS-GIB-010/271, Requirements for Nondestructive Testing Methods
2.2 MIL-STD-2035, Nondestructive Testing Acceptance Criteria
2.3 803-6074287, Repair Guide, Pressure Seal Valves
2.4 803-5001021, Pressure Seal Rings Standard and Oversize Valve Pressure Class 600-1500
2.5 S9253-AD-MMM-010, Maintenance Manual for Valves, Traps, and Orifices (Non-Nuclear), User's Guide and General Information

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

(I) "LIQUID PENETRANT INSPECT"

3.2.1 Accomplish liquid penetrant inspection of seats (including back seat), discs, or gate and body inlay area in accordance with 2.1.

3.2.1.1 Acceptance criteria shall be in accordance with Section 7 of 2.2, except hairline cracks in hard-faced areas of seats and discs or gate are acceptable provided the valve does not show evidence of leakage.

3.3 Repair valve as follows:
3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square (RMS) finish in way of packing surface and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.

3.3.3 Dress and true gasket mating surfaces.

3.3.4 Inspect and repair sealing surfaces of pressure seal ring as follows:

(V) "VISUAL INSPECT"

3.3.4.1 Inspect valve body to verify that stainless steel inlay is free of steam cuts and cracks and diameter of inlay area is round to within 0.003 inch and free of non-design taper. Measure diameter at top and bottom of inlay area in increments of 45 degrees, on each circle.

3.3.4.2 For the inlay, correct out-of-round, non-design tapered condition and provide 32 RMS finish. Finished inlay diameter shall provide 0.002 to 0.005 inch clearance on the standard size diameter for seal rings described by 2.3.

3.3.4.3 Machine valve bonnet tapered area for concentricity and design angle to within 0.002 inch total indicator reading and 32 RMS finish.

3.3.5 Machine, grind, or lap and spot-in discs or gate to seats (including back seat) to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.5.1 Inspect contact using blueing method.

3.3.5.2 Transfer line for gate valve shall not exceed 3/16 inch in width and shall appear within the lower 75 percent of the gate seating surface.

3.3.5.3 Transfer line for globe valve shall not exceed 1/16 inch in width.

(I)(G) "VERIFY LEVEL I PARTS" (See 4.3)

3.4 Assemble valve installing new fasteners in accordance with Table One.

3.4.1 Install new seal ring in accordance with 2.3, using 2.4 for guidance.

3.4.1.1 The SUPERVISOR must approve fitting new seal ring to inlay bores above first oversize.
3.4.1.2 Attach a metal identification tag to the valve bonnet indicating the size of seal ring installed, straight or tapered body neck, name of installing activity, and date of installation.

3.4.2 Install new valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.5.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 2.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) or (I)(G) "SEAT TIGHTNESS" (See 4.4)

3.5.2 Test gate valve alternately on each side of gate with opposite side open for inspection.

(V)(G) or (I)(G) "SEAT TIGHTNESS" (See 4.4)

3.5.3 Test globe valve in the direction tending to open valve.

3.5.4 Do not exceed the handwheel closing force specified in Table 3.

3.5.5 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage, or in the event of visible leakage, until accurate determination of leakage can be made. Maximum allowable leakage: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour.

4. NOTES:

4.1 The test pressures of 3.5.2 and 3.5.3 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.
4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.

4.4 The paragraph referencing this note is considered an (I)(G) if the valve is Level I. If the valve is not Level I, the paragraph is considered a (V)(G).

4.5 Reference 2.4 provides guidance with respect to applicable APLs and other information not in direct conflict with the material and hardness requirements for seal rings specified in 2.3.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/ Alloy Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/ Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.
TABLE 2 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.

2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
TABLE 3

HANDWHEEL CLOSING FORCE

<table>
<thead>
<tr>
<th>Total Tangential Force on Rim of Handwheel (Pounds)</th>
<th>Total Torque on Handwheel Nut (Foot Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handwheel Diameter (Inches)</td>
<td></td>
</tr>
<tr>
<td>2 and below</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>112</td>
</tr>
<tr>
<td>6</td>
<td>118</td>
</tr>
<tr>
<td>7</td>
<td>121</td>
</tr>
<tr>
<td>8</td>
<td>124</td>
</tr>
<tr>
<td>9</td>
<td>127</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
</tr>
<tr>
<td>11</td>
<td>133</td>
</tr>
<tr>
<td>12</td>
<td>135</td>
</tr>
<tr>
<td>14</td>
<td>138</td>
</tr>
<tr>
<td>16</td>
<td>141</td>
</tr>
<tr>
<td>18</td>
<td>144</td>
</tr>
<tr>
<td>21</td>
<td>147</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
</tr>
<tr>
<td>27</td>
<td>150</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
</tr>
</tbody>
</table>
1. SCOPE:

1.1 Title: Pressure Seal Bonnet Valve; repair (in-line)

2. REFERENCES:

2.1 T9074-AS-GLB-010/271, Requirements for Nondestructive Testing Methods
2.2 MIL-STD-2035, Nondestructive Testing Acceptance Criteria
2.3 803-6074287, Repair Guide, Pressure Seal Valves
2.4 803-5001021, Pressure Seal Rings Standard and Oversize Valve Pressure Class 600-1500
2.5 S9253-AD-MMM-010, Maintenance Manual for Valves, Traps, and Orifices (Non-Nuclear), User's Guide and General Information

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean free of foreign matter (including paint), and inspect parts for defects.

(I) "LIQUID PENETRANT INSPECT"

3.2.1 Accomplish liquid penetrant inspection of seats (including back seat), discs or gate, and body inlay area in accordance with 2.1.

3.2.1.1 Acceptance criteria shall be in accordance with Section 7 of 2.2, except hairline cracks in hardfaced seats and discs or gate are acceptable provided the valve does not show evidence of leakage.

3.3 Repair valve as follows:

3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square (RMS) finish in way of packing surface and remove raised edges and foreign matter.
3.3.2 Chase and tap exposed threaded areas.

3.3.3 Inspect and repair sealing surfaces of inlay area and bonnet as follows:

(V) "VISUAL INSPECT"

3.3.3.1 Inspect valve body to verify that stainless steel inlay is free of steam cuts and cracks and that diameter of inlay area is round to within 0.003 inch and free of non-design taper. Measure diameter at top and bottom of inlay area in increments of 45 degrees, on each circle.

3.3.3.2 For the inlay, correct out-of-round, non-design tapered condition and provide 32 RMS finish. Finished inlay diameter shall not exceed oversize number one diameter, plus 0.002 to 0.005 inch clearance described by 2.3.

3.3.3.3 Machine valve bonnet tapered area for concentricity and design angle to within 0.002 inch total indicator reading and 32 RMS finish.

3.3.4 Machine, grind, or lap and spot-in discs or gate to seats (including back seat) to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.4.1 Inspect contact using blueing method.

(I)(G) "VERIFY LEVEL I PARTS" (See 4.3)

3.4 Assemble valve, installing new fasteners in accordance with Table One.

3.4.1 Install new seal ring in accordance with 2.3, using 2.4 for guidance.

3.4.1.1 The SUPERVISOR must approve new seal rings to inlay bores above first oversize.

3.4.1.2 Attach a metal identification tag to the valve bonnet indicating the size of seal ring installed, straight or tapered body neck, name of installing activity, and date of installation.

3.4.2 Install new valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.5.

4. NOTES:

4.1 Operational test of the valve will be specified in Work Item.
4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.
1. **SCOPE:**
 1.1 Title: Horizontal Swing Check Valve; repair

2. **REFERENCES:**
 2.1 None.

3. **REQUIREMENTS:**
 3.1 Matchmark valve parts.

 (V) "INSPECT PARTS FOR DEFECTS"

 3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

 3.3 Repair valve as follows:
 3.3.1 Chase and tap exposed threaded areas.
 3.3.2 Machine, grind, or lap and spot-in disc to seat to obtain 360-degree continuous contact.

 (V) "INSPECT CONTACT"

 3.3.2.1 Inspect contact using blueing method.
 3.3.3 Dress and true gasket mating surfaces.

 3.4 Assemble valve installing new gaskets, bushings, disc retaining nut, hinge pin, and plug in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

 3.5 Hydrostatically test valve as follows:
 3.5.1 Hydrostatic test equipment shall have the following capabilities:
 3.5.1.1 Manual overpressure protection release valve.
3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V) (G) "SEAT TIGHTNESS"

3.5.2 Test for seat tightness in the direction tending to close the valve (back pressure) for a minimum of 5 minutes. Allowable leakage as follows:

<table>
<thead>
<tr>
<th>VALVE SIZE (NOM)</th>
<th>LEAKAGE RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 2 inches inclusive</td>
<td>25 cc/hr./in. dia.</td>
</tr>
<tr>
<td>2-1/2 inches - 10 inches inclusive</td>
<td>50 cc/hr./in. dia.</td>
</tr>
<tr>
<td>Over 10 inches</td>
<td>100 cc/hr./in. dia.</td>
</tr>
</tbody>
</table>

The back pressure applied shall be in accordance with the following:

<table>
<thead>
<tr>
<th>VALVE PRESSURE RATING</th>
<th>TEST BACK PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 PSIG and Below</td>
<td>50 PSIG</td>
</tr>
<tr>
<td>Over 150 PSIG</td>
<td>100 PSIG</td>
</tr>
</tbody>
</table>

4. **NOTES:**

4.1 None.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>Bolts to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIL-DTL-1222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuts to</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>MIL-DTL-1222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socket Head</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
<tr>
<td>Cap Screws</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.
TABLE 2

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th>1/</th>
<th>5/</th>
<th>2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>Nonferrous</td>
</tr>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
<td>4/ 5/ Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
<td>4/ 5/</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td>Nickel Copper - Class A or Class B</td>
</tr>
</tbody>
</table>
TABLE 2 (CON'T)

<table>
<thead>
<tr>
<th>1/</th>
<th>2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>Nonferrous</td>
</tr>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From* To**</td>
<td>From To</td>
<td>From To</td>
</tr>
<tr>
<td>5000 9500</td>
<td>0 10000</td>
<td>100</td>
</tr>
<tr>
<td>3000 5800</td>
<td>0 6000</td>
<td>30</td>
</tr>
<tr>
<td>2500 4800</td>
<td>0 5000</td>
<td>30</td>
</tr>
<tr>
<td>1500 2800</td>
<td>0 3000</td>
<td>20</td>
</tr>
<tr>
<td>1000 1800</td>
<td>0 2000</td>
<td>15</td>
</tr>
<tr>
<td>750 1300</td>
<td>0 1500</td>
<td>10</td>
</tr>
<tr>
<td>500 800</td>
<td>0 1000</td>
<td>10</td>
</tr>
<tr>
<td>250 500</td>
<td>0 600</td>
<td>5</td>
</tr>
<tr>
<td>150 250</td>
<td>0 300</td>
<td>2</td>
</tr>
<tr>
<td>100 175</td>
<td>0 200</td>
<td>2</td>
</tr>
<tr>
<td>75 125</td>
<td>0 160</td>
<td>1</td>
</tr>
<tr>
<td>50 80</td>
<td>0 100</td>
<td>1</td>
</tr>
<tr>
<td>20 50</td>
<td>0 60</td>
<td>0.5</td>
</tr>
<tr>
<td>10 25</td>
<td>0 30</td>
<td>0.2</td>
</tr>
<tr>
<td>7 10</td>
<td>0 15</td>
<td>0.1</td>
</tr>
<tr>
<td>5 7</td>
<td>0 10</td>
<td>0.1</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.
2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.
 * Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.
 ** Values allow for reading pressures up to relief valve setting.
 *** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. **SCOPE:**

 1.1 **Title:** Horizontal Swing Check Valve; repair

2. **REFERENCES:**

 2.1 None.

3. **REQUIREMENTS:**

 3.1 Matchmark valve parts.

 (V) "**INSPECT PARTS FOR DEFECTS**"

 3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

 3.3 Repair valve as follows:

 3.3.1 Chase and tap exposed threaded areas.

 3.3.2 Machine, grind, or lap and spot-in disc to seat to obtain 360-degree continuous contact.

 (V) "**INSPECT CONTACT**"

 3.3.2.1 Inspect contact using blueing method.

 3.3.3 Dress and true gasket mating surfaces.

 3.4 Assemble valve installing new gaskets, bushings, disc retaining nut, hinge pin, and plug in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

 3.5 Hydrostatically test valve as follows:

 3.5.1 Hydrostatic test equipment shall have the following capabilities:

 3.5.1.1 Manual overpressure protection release valve.
3.5.1.2 **Self-actuated and resetting relief valve** with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 **Master and backup test gages with gage range and graduation shown on Table 3.**

3.5.1.4 **Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.**

(V)(G) "**SEAT TIGHTNESS**"

3.5.2 **Test for seat tightness in the direction tending to close the valve (back pressure) for a minimum of 5 minutes.** Allowable leakage as follows:

<table>
<thead>
<tr>
<th>VALVE SIZE (NOM)</th>
<th>LEAKAGE RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 2 inches inclusive</td>
<td>25 cc/hr./in. dia.</td>
</tr>
<tr>
<td>2-1/2 inches - 10 inches inclusive</td>
<td>50 cc/hr./in. dia.</td>
</tr>
<tr>
<td>Over 10 inches</td>
<td>100 cc/hr./in. dia.</td>
</tr>
</tbody>
</table>

The back pressure applied shall be in accordance with the following:

<table>
<thead>
<tr>
<th>VALVE PRESSURE RATING</th>
<th>TEST BACK PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 PSIG and Below</td>
<td>50 PSIG</td>
</tr>
<tr>
<td>Over 150 PSIG</td>
<td>100 PSIG</td>
</tr>
</tbody>
</table>

4. **NOTES:**

4.1 None.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>1/ Alloy Steel</th>
<th>2/ Carbon Steel</th>
<th>Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>to MIL-DTL-1222</td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>Nuts to</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>MIL-DTL-1222</td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class B</td>
</tr>
<tr>
<td>Socket Head</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
<td></td>
</tr>
<tr>
<td>Cap Screws</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud and, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.
<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>VALVE BODY MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/ Alloy Steel/Carbon Steel</td>
<td>2/ Nonferrous</td>
</tr>
<tr>
<td>3/ Studs and Bolts to MIL-DTL-1222</td>
<td>4/ Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td>5/ Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>Nickel Copper - Class A</td>
</tr>
</tbody>
</table>

For services up to and including 650 degrees Fahrenheit; Grade 5 steel

For services to 775 degrees Fahrenheit; Grade B-7 or B-16

For services to 1,000 degrees Fahrenheit; Grade B-16

For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel

Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.

Nuts to MIL-DTL-1222

For services up to and including 650 degrees Fahrenheit; Grade 5 steel

For service to 775 degrees Fahrenheit; Grade 2H or 4 steel

For services to 1,000 degrees Fahrenheit; Grade 4 steel

ITEM NO: 009-50
FY-06 (CH-1)
TABLE 2 (CON'T)

<table>
<thead>
<tr>
<th>1/ Alloy Steel/Carbon Steel</th>
<th>2/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
Table 3 - Master Gage Selection for Hydrostatic Tests

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²)</th>
<th>Master Gage Range (lb/in²)**</th>
<th>Master Gage Maximum Graduation Size (lb/in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.
2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. SCOPE:

1.1 Title: Globe, Globe Angle, and Globe Stop Check Valve; repair

2. REFERENCES:

2.1 S9253-AD-MMM-010, Maintenance Manual for Valves, Traps, and Orifices (Non-Nuclear), User's Guide and General Information

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

3.3 Repair valve as follows:

3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish in way of packing surface and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.

3.3.3 Dress and true gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in disc to seat to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.4.1 Inspect contact using blueing method (soft seated valves excluded). Transfer line (hard seated valves) shall not exceed 1/16-inch in width.
3.4 Assemble valve installing new gaskets in accordance with manufacturer's specifications, and fasteners in accordance with Table One, or Table 2 for DDG-51 class.

3.4.1 Pack feedwater, condensate, and steam valves with valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.1.

3.4.2 Pack valves of systems other than feedwater, condensate, or steam with valve packing conforming to MIL-P-24396, Type B.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) or (I)(G) "SEAT TIGHTNESS" (See 4.4)

3.5.2 Test for seat tightness in the direction tending to open valve.

3.5.2.1 Do not exceed the handwheel closing force specified in Table 4.

3.5.2.2 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage, or in the event of visible leakage, until accurate determination of leakage can be made. Maximum allowable leakage: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour.

(V)(G) or (I)(G) "SEAT TIGHTNESS" (See 4.4)

3.5.3 Back pressure test globe stop check valve with stem in the open position. Allowable leakage as follows:
VALVE SIZE (NOM) vs. LEAKAGE RATE

<table>
<thead>
<tr>
<th>VALVE SIZE (NOM)</th>
<th>LEAKAGE RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 2 inches inclusive</td>
<td>25 cc/hr./in. dia.</td>
</tr>
<tr>
<td>2-1/2 inches - 10 inches inclusive</td>
<td>50 cc/hr./in. dia.</td>
</tr>
<tr>
<td>Over 10 inches</td>
<td>100 cc/hr./in. dia.</td>
</tr>
</tbody>
</table>

The back pressure applied shall be in accordance with the following:

VALVE PRESSURE RATING vs. TEST BACK PRESSURE

<table>
<thead>
<tr>
<th>VALVE PRESSURE RATING</th>
<th>TEST BACK PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 PSIG and below</td>
<td>50 PSIG</td>
</tr>
<tr>
<td>Over 150 PSIG</td>
<td>100 PSIG</td>
</tr>
</tbody>
</table>

4. **NOTES:**

4.1 The test pressures of 3.5.2 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.

4.4 The paragraph referencing this note is considered an (I)(G) if the valve is Level I. If the valve is not Level I, the paragraph is considered a (V)(G).
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>1/</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/ Studs and</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>Bolts to MIL-DTL-1222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.
<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>VALVE BODY MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/</td>
</tr>
<tr>
<td></td>
<td>Alloy Steel/Carbon Steel</td>
</tr>
<tr>
<td>3/</td>
<td>Studs and Bolts to MIL-DTL-1222</td>
</tr>
<tr>
<td></td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td></td>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
</tr>
<tr>
<td></td>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
</tr>
<tr>
<td></td>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
</tr>
<tr>
<td></td>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
</tr>
<tr>
<td>5/</td>
<td>Nuts to MIL-DTL-1222</td>
</tr>
<tr>
<td></td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td></td>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
</tr>
<tr>
<td></td>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
</tr>
</tbody>
</table>
TABLE 2 (CON'T)

<table>
<thead>
<tr>
<th>1/ Alloy Steel/Carbon Steel</th>
<th>2/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in^2g)</th>
<th>Master Gage Range (lb/in^2g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in^2g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within two percent of each other.

2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
<table>
<thead>
<tr>
<th>Handwheel Diameter (Inches)</th>
<th>Total Tangential Force on Rim of Handwheel (Pounds)</th>
<th>Total Torque on Handwheel Nut (Foot Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 and below</td>
<td>90</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>106</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>112</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>118</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>121</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>124</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>127</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>133</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>135</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>138</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>141</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>144</td>
<td>108</td>
</tr>
<tr>
<td>21</td>
<td>147</td>
<td>128</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>27</td>
<td>150</td>
<td>169</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>188</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
<td>225</td>
</tr>
</tbody>
</table>
1. **SCOPE:**

1.1 Title: Globe, Globe Angle, and Globe Stop Check Valve; repair

2. **REFERENCES:**

2.1 S9253-AD-MMM-010, Maintenance Manual for Valves, Traps, and Orifices (Non-Nuclear), User's Guide and General Information

3. **REQUIREMENTS:**

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

3.3 Repair valve as follows:

3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish in way of packing surface and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.

3.3.3 Dress and true gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in disc to seat to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.4.1 Inspect contact using blueing method (soft seated valves excluded). Transfer line (hard seated valves) shall not exceed 1/16-inch in width.
3.4 Assemble valve installing new gaskets in accordance with manufacturer's specifications, and fasteners in accordance with Table One, or Table 2 for DDG-51 class.

3.4.1 Pack feedwater, condensate, and steam valves with valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.1.

3.4.2 Pack valves of systems other than feedwater, condensate, or steam with valve packing conforming to MIL-P-24396, Type B.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

3.5.2 Test for seat tightness in the direction tending to open valve.

3.5.2.1 Do not exceed the handwheel closing force specified in Table 4.

3.5.2.2 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage, or in the event of visible leakage, until accurate determination of leakage can be made. Maximum allowable leakage: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour.

3.5.3 Back pressure test globe stop check valve with stem in the open position. Allowable leakage as follows:
<table>
<thead>
<tr>
<th>Valve Size (Nom)</th>
<th>Leakage Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 2 inches inclusive</td>
<td>25 cc/hr./in. dia.</td>
</tr>
<tr>
<td>2-1/2 inches - 10 inches inclusive</td>
<td>50 cc/hr./in. dia.</td>
</tr>
<tr>
<td>Over 10 inches</td>
<td>100 cc/hr./in. dia.</td>
</tr>
</tbody>
</table>

The back pressure applied shall be in accordance with the following:

<table>
<thead>
<tr>
<th>Valve Pressure Rating</th>
<th>Test Back Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 PSIG and below</td>
<td>50 PSIG</td>
</tr>
<tr>
<td>Over 150 PSIG</td>
<td>100 PSIG</td>
</tr>
</tbody>
</table>

4. **NOTES:**

4.1 The test pressures of 3.5.2 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.

4.4 The paragraph referencing this note is considered an (I)(G) if the valve is Level I. If the valve is not Level I, the paragraph is considered a (V)(G).
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th>Item</th>
<th>Studs and Bolts to MIL-DTL-1222</th>
<th>Nuts to MIL-DTL-1222</th>
<th>Socket Head Cap Screws</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/</td>
<td>Alloy Steel Grade B-16</td>
<td>Grade 4 or 7</td>
<td>FF-S-86</td>
</tr>
<tr>
<td>2/</td>
<td>Carbon Steel Grade B-16</td>
<td>Grade 4 or 7</td>
<td>FF-S-86</td>
</tr>
<tr>
<td>3/</td>
<td>Nonferrous Phosphor Bronze - Any Grade</td>
<td>Phosphor Bronze - Any Grade</td>
<td>FF-S-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nickel Copper - Class A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class A or Class B</td>
<td></td>
</tr>
</tbody>
</table>

1/ **Alloy steel** is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ **Nonferrous Alloy** except Aluminum.

3/ **Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to **ASTM D5363**. Check Class 3 fit stud ends in accordance with **SAE J2270**.

4/ **Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.**

5/ **Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.**
<table>
<thead>
<tr>
<th>VALVE BODY MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 2</td>
</tr>
<tr>
<td>1/ Alloy Steel/Carbon Steel</td>
</tr>
<tr>
<td>3/ Studs and Bolts to MIL-DTL-1222</td>
</tr>
<tr>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
</tr>
<tr>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
</tr>
<tr>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
</tr>
<tr>
<td>4/ Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>5/</td>
</tr>
<tr>
<td>5 of 8</td>
</tr>
<tr>
<td>FY-06 (CH-1)</td>
</tr>
<tr>
<td>Alloy Steel/Carbon Steel</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>TABLE 2 (CON'T)</td>
</tr>
<tr>
<td>1/</td>
</tr>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel.</td>
</tr>
<tr>
<td>2/</td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222.</td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²)</th>
<th>Master Gage Range (lb/in²)**</th>
<th>Master Gage Maximum Graduation Size (lb/in²)***</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. **Master gage and back-up gages shall track within two percent of each other.**

2. **System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.**

* **Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.**

** **Values allow for reading pressures up to relief valve setting.**

*** **Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.**
<table>
<thead>
<tr>
<th>Total Handwheel Diameter (Inches)</th>
<th>Total Tangential Force on Rim of Handwheel (Pounds)</th>
<th>Total Torque on Handwheel Nut (Foot Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 and below</td>
<td>90</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>106</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>112</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>118</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>121</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>124</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>127</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>133</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>135</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>138</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>141</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>144</td>
<td>108</td>
</tr>
<tr>
<td>21</td>
<td>147</td>
<td>128</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>27</td>
<td>150</td>
<td>169</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>188</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
<td>225</td>
</tr>
</tbody>
</table>
1. SCOPE:

1.1 Title: Relief Valve; repair

2. REFERENCES:

2.1 None.

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

3.3 Repair valve as follows:

3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish and remove raised edges and foreign matter.

3.3.2 Machine, grind, or lap and spot-in metallic disc to seat to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.2.1 Inspect contact using blueing method. Transfer line shall not exceed 1/16-inch in width.

3.3.3 Dress and true gasket mating surfaces.

3.3.4 Chase and tap exposed threaded areas.

3.4 Assemble valve installing new packing, soft seats, and gaskets in accordance with manufacturer's specifications and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:
3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) "SHOP TEST"

3.6 Shop test and set valve to lifting pressure.

3.6.1 Seat tightness test shall be accomplished for a minimum of 3 minutes. Allowable leakage: None.

3.6.2 Purge valve of test medium.

3.6.3 Install wire and lead lock seals.

3.7 Attach a metal tag to valve, stamped with the following information:

3.7.1 Ship name and hull number.

3.7.2 Valve number or identification.

3.7.3 Valve lifting pressure.

3.7.4 Date valve tested and set.

3.7.5 Name of repair facility.

4. NOTES:

4.1 Test medium, seat tightness, and lifting pressures will be specified in Work Item.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.
<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>VALVE BODY MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/</td>
<td>2/</td>
</tr>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>Nonferrous</td>
</tr>
<tr>
<td>3/</td>
<td>4/</td>
</tr>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
<td>Nickel Copper - Class A or Class B</td>
</tr>
<tr>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>Nickel Copper - Class A or Class B</td>
</tr>
<tr>
<td></td>
<td>4/ 5/</td>
</tr>
<tr>
<td>ITEM NO: 009-52</td>
<td>FY-06</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>TABLE 2 (CON'T)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1/</th>
<th>2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>Nonferrous</td>
</tr>
</tbody>
</table>

For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel

Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.
2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.
 * Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.
 ** Values allow for reading pressures up to relief valve setting.
 *** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. Scope:
 1.1 Title: Relief Valve; repair

2. References:
 2.1 None.

3. Requirements:
 3.1 Matchmark valve parts.
 (V) "inspect parts for defects"

 3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

 3.3 Repair valve as follows:
 3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish and remove raised edges and foreign matter.
 3.3.2 Machine, grind, or lap and spot-in metallic disc to seat to obtain a 360-degree continuous contact.
 (V) "Inspect contact"
 3.3.2.1 Inspect contact using blueing method. Transfer line shall not exceed 1/16-inch in width.
 3.3.3 Dress and true gasket mating surfaces.
 3.3.4 Chase and tap exposed threaded areas.

 3.4 Assemble valve installing new packing, soft seats, and gaskets in accordance with manufacturer's specifications and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

 3.5 Hydrostatically test valve as follows:
3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

3.6 Shop test and set valve to lifting pressure.

3.6.1 Seat tightness test shall be accomplished for a minimum of 3 minutes. Allowable leakage: None.

3.6.2 Purge valve of test medium.

3.6.3 Install wire and lead lock seals.

3.7 Attach a metal tag to valve, stamped with the following information:

3.7.1 Ship name and hull number.

3.7.2 Valve number or identification.

3.7.3 Valve lifting pressure.

3.7.4 Date valve tested and set.

3.7.5 Name of repair facility.

4. NOTES:

4.1 Test medium, seat tightness, and lifting pressures will be specified in Work Item.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
<th>Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/ Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4/</td>
</tr>
<tr>
<td>4/ Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class B</td>
</tr>
<tr>
<td>5/ Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
<td></td>
</tr>
</tbody>
</table>

1/ **Alloy steel** is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ **Nonferrous Alloy** except Aluminum.

3/ **Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud and, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit.** The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ **Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.**

5/ **Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.**
TABLE 2
VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>1/ Alloy Steel/Carbon Steel</th>
<th>2/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/ Studs and Bolts to MIL-DTL-1222</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>4/ Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
<td></td>
<td>4/ Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
<td>4/ Phosphor Bronze - Any Grade</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
<td>4/ Phosphor Bronze - Any Grade</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
<td>4/ Phosphor Bronze - Any Grade</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>4/ Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td>4/ Phosphor Bronze - Any Grade</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td>4/ Phosphor Bronze - Any Grade</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/ Nickel Copper - Class A</td>
</tr>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>Nonferrous</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²)</th>
<th>Master Gage Range (lb/in²)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.
2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. SCOPE:

1.1 Title: Bolted Bonnet Steam Valve; repair (shop)

2. REFERENCES:

2.1 T9074-AS-GIB-010/271, Requirements for Nondestructive Testing Methods

2.2 MIL-STD-2035, Nondestructive Testing Acceptance Criteria

2.3 S9253-AD-MMM-010, Maintenance Manual for Valves, Traps, and Orifices (Non-Nuclear), User's Guide and General Information

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

(I) "LIQUID PENETRANT INSPECT"

3.2.1 Accomplish liquid penetrant inspection of seats (including back seat), discs, or gate in accordance with 2.1.

3.2.1.1 Acceptance criteria shall be in accordance with Section 7 of 2.2, except hairline cracks in hard-faced areas of seats and discs or gate are acceptable provided the valve does not show evidence of leakage.

3.3 Repair valve as follows:

3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish in way of packing surface and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.
3.3.3 Dress and true gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in gate or discs to seats (including back seat) to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.4.1 Inspect contact using blueing method.

3.3.4.2 Transfer line for gate valve shall not exceed 3/16 inch in width and shall appear within the lower 75 percent of the gate seating surface.

3.3.4.3 Transfer line for globe valve shall not exceed 1/16 inch in width.

(I)(G) "VERIFY LEVEL I PARTS" (See 4.3)

3.4 Assemble valve, installing new gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One.

3.4.1 Install new valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.3.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 2.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) or (I)(G) "SEAT TIGHTNESS" (See 4.4)

3.5.2 Test gate valve alternately on each side of gate with opposite side open for inspection.

(V)(G) or (I)(G) "SEAT TIGHTNESS" (See 4.4)

3.5.3 Test globe valve in the direction tending to open valve.
3.5.4 Do not exceed the handwheel closing force specified in Table 3.

3.5.5 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage, or in the event of visible leakage, until accurate determination of leakage can be made. Maximum allowable leakage: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour.

(V)(G) or (I)(G) "BACK PRESSURE TEST" (See 4.4)

3.5.6 Back pressure test globe stop check valve with stem in the open position. Allowable leakage as follows:

<table>
<thead>
<tr>
<th>VALVE SIZE (NOM)</th>
<th>LEAKAGE RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 2 inches inclusive</td>
<td>25 cc/hr./in.dia.</td>
</tr>
<tr>
<td>2-1/2 inches - 10 inches inclusive</td>
<td>50 cc/hr./in.dia.</td>
</tr>
<tr>
<td>Over 10 inches</td>
<td>100 cc/hr./in.dia.</td>
</tr>
</tbody>
</table>

The back pressure applied shall be in accordance with the following:

<table>
<thead>
<tr>
<th>VALVE PRESSURE RATING</th>
<th>TEST BACK PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 PSIG and Below</td>
<td>50 PSIG</td>
</tr>
<tr>
<td>Over 150 PSIG</td>
<td>100 PSIG</td>
</tr>
</tbody>
</table>

4. NOTES:

4.1 The test pressures of 3.5.2 and 3.5.3 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.

4.4 The paragraph referencing this note is considered an (I)(G) if the valve is Level I. If the valve is not Level I, the paragraph is considered a (V)(G).
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to **ASTM D5363**. Check Class 3 fit stud ends in accordance with SAE-J2270.
TABLE 2 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From* To** From To</td>
<td></td>
<td>From To</td>
</tr>
<tr>
<td>5000 9500 0 10000 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000 5800 0 6000 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500 4800 0 5000 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500 2800 0 3000 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 1800 0 2000 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>750 1300 0 1500 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 800 0 1000 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 500 0 600 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 250 0 300 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 175 0 200 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 125 0 160 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 80 0 100 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 50 0 60 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 25 0 30 0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 10 0 15 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 7 0 10 0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.
2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.
 * Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.
 ** Values allow for reading pressures up to relief valve setting.
 *** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
TABLE 3
HANDWHEEL CLOSING FORCE

<table>
<thead>
<tr>
<th>Handwheel Diameter (Inches)</th>
<th>Total Tangential Force on Rim of Handwheel (Pounds)</th>
<th>Total Torque on Handwheel Nut (Foot Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 and below</td>
<td>90</td>
<td>7.5</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>106</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>112</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>118</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>121</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>124</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>127</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>54</td>
</tr>
<tr>
<td>11</td>
<td>133</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>135</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>138</td>
<td>81</td>
</tr>
<tr>
<td>16</td>
<td>141</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>144</td>
<td>108</td>
</tr>
<tr>
<td>21</td>
<td>147</td>
<td>128</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>27</td>
<td>150</td>
<td>169</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
<td>188</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
<td>225</td>
</tr>
</tbody>
</table>
1. **SCOPE:**

 1.1 **Title:** Bolted Bonnet Steam Valve; repair (shop)

2. **REFERENCES:**

 2.1 T9074-AS-GLB-010/271, Requirements for Nondestructive Testing Methods

 2.2 MIL-STD-2035, Nondestructive Testing Acceptance Criteria

 2.3 S9253-AD-MMM-010, Maintenance Manual for Valves, Traps, and Orifices (Non-Nuclear), User's Guide and General Information

3. **REQUIREMENTS:**

 3.1 Matchmark valve parts.

 (V) "INSPECT PARTS FOR DEFECTS"

 3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

 (I) "LIQUID PENETRANT INSPECT"

 3.2.1 Accomplish liquid penetrant inspection of seats (including back seat), discs, or gate in accordance with 2.1.

 3.2.1.1 Acceptance criteria shall be in accordance with Section 7 of 2.2, except hairline cracks in hard-faced areas of seats and discs or gate are acceptable provided the valve does not show evidence of leakage.

 3.3 Repair valve as follows:

 3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish in way of packing surface and remove raised edges and foreign matter.

 3.3.2 Chase and tap exposed threaded areas.
3.3.3 Dress and true gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in gate or discs to seats (including back seat) to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.4.1 Inspect contact using blueing method.

3.3.4.2 Transfer line for gate valve shall not exceed 3/16 inch in width and shall appear within the lower 75 percent of the gate seating surface.

3.3.4.3 Transfer line for globe valve shall not exceed 1/16 inch in width.

(I)(G) "VERIFY LEVEL I PARTS" (See 4.3)

3.4 Assemble valve, installing new gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One.

3.4.1 Install new valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.3.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 2.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) or (I)(G) "SEAT TIGHTNESS" (See 4.4)

3.5.2 Test gate valve alternately on each side of gate with opposite side open for inspection.

(V)(G) or (I)(G) "SEAT TIGHTNESS" (See 4.4)

3.5.3 Test globe valve in the direction tending to open valve.
3.5.4 Do not exceed the handwheel closing force specified in Table 3.

3.5.5 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage, or in the event of visible leakage, until accurate determination of leakage can be made. Maximum allowable leakage: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour. (V)(G) or (I)(G) "BACK PRESSURE TEST" (See 4.4)

3.5.6 Back pressure test globe stop check valve with stem in the open position. Allowable leakage as follows:

<table>
<thead>
<tr>
<th>VALVE SIZE (NOM)</th>
<th>LEAKAGE RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 2 inches inclusive</td>
<td>25 cc/hr./in.dia.</td>
</tr>
<tr>
<td>2-1/2 inches - 10 inches inclusive</td>
<td>50 cc/hr./in.dia.</td>
</tr>
<tr>
<td>Over 10 inches</td>
<td>100 cc/hr./in.dia.</td>
</tr>
</tbody>
</table>

The back pressure applied shall be in accordance with the following:

<table>
<thead>
<tr>
<th>VALVE PRESSURE RATING</th>
<th>TEST BACK PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 PSIG and Below</td>
<td>50 PSIG</td>
</tr>
<tr>
<td>Over 150 PSIG</td>
<td>100 PSIG</td>
</tr>
</tbody>
</table>

4. NOTES:

4.1 The test pressures of 3.5.2 and 3.5.3 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.

4.4 The paragraph referencing this note is considered an (I)(G) if the valve is Level I. If the valve is not Level I, the paragraph is considered a (V)(G).
Table One

Valve Body Material

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
<th>Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A 4/</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class B 5/</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
<td></td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud and, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.
<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in² g)</th>
<th>Master Gage Range (lb/in² g)**</th>
<th>Master Gage Maximum Graduation Size (lb/in² g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.

2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
TABLE 3

HANDWHEEL CLOSING FORCE

<table>
<thead>
<tr>
<th>Total Tangential Force on Rim of Handwheel (Pounds)</th>
<th>Total Torque on Handwheel Nut (Foot Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Handwheel Diameter (Inches)</td>
<td></td>
</tr>
<tr>
<td>2 and below</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>112</td>
</tr>
<tr>
<td>6</td>
<td>118</td>
</tr>
<tr>
<td>7</td>
<td>121</td>
</tr>
<tr>
<td>8</td>
<td>124</td>
</tr>
<tr>
<td>9</td>
<td>127</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
</tr>
<tr>
<td>11</td>
<td>133</td>
</tr>
<tr>
<td>12</td>
<td>135</td>
</tr>
<tr>
<td>14</td>
<td>138</td>
</tr>
<tr>
<td>16</td>
<td>141</td>
</tr>
<tr>
<td>18</td>
<td>144</td>
</tr>
<tr>
<td>21</td>
<td>147</td>
</tr>
<tr>
<td>24</td>
<td>150</td>
</tr>
<tr>
<td>27</td>
<td>150</td>
</tr>
<tr>
<td>30</td>
<td>150</td>
</tr>
<tr>
<td>36</td>
<td>150</td>
</tr>
</tbody>
</table>
1. SCOPE:

1.1 Title: Bolted Bonnet Steam Valve; repair (in-line)

2. REFERENCES:

2.1 T9074-AS-GIB-010/271, Requirements for Nondestructive Testing Methods

2.2 MIL-STD-2035, Nondestructive Testing Acceptance Criteria

2.3 S9253-AD-MMM-010, Maintenance Manual for Valves, Traps, and Orifices (Non-Nuclear), User's Guide and General Information

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean free of foreign matter (including paint), and inspect parts for defects.

(I) "LIQUID PENETRANT INSPECT"

3.2.1 Accomplish liquid penetrant inspection of seats (including back seat), discs or gate in accordance with 2.1.

3.2.1.1 Acceptance criteria shall be in accordance with Section 7 of 2.2, except hairline cracks in hard-faced areas of seats and discs or gate are acceptable provided the valve does not show evidence of leakage.

3.3 Repair valve as follows:

3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish in way of packing surface and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.
3.3.3 Clean and spot-in bonnet to body gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in gate or discs to seats (including back seat) to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.4.1 Inspect contact using blueing method.

(I)(G) "VERIFY LEVEL I PARTS" (See 4.3)

3.4 Assemble valve, installing new gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One.

3.4.1 Install new valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.3.

4. NOTES:

4.1 Operational test of valve will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.
1. SCOPE:

1.1 Title: Bolted Bonnet Steam Valve; repair (in-line)

2. REFERENCES:

2.1 T9074-AS-GIB-010/271, Requirements for Nondestructive Testing Methods

2.2 MIL-STD-2035, Nondestructive Testing Acceptance Criteria

2.3 S9253-AD-MMM-010, Maintenance Manual for Valves, Traps, and Orifices (Non-Nuclear), User’s Guide and General Information

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean free of foreign matter (including paint), and inspect parts for defects.

(I) "LIQUID PENETRANT INSPECT"

3.2.1 Accomplish liquid penetrant inspection of seats (including back seat), discs or gate in accordance with 2.1.

3.2.1.1 Acceptance criteria shall be in accordance with Section 7 of 2.2, except hairline cracks in hard-faced areas of seats and discs or gate are acceptable provided the valve does not show evidence of leakage.

3.3 Repair valve as follows:

3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish in way of packing surface and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.
3.3.3 Clean and spot-in bonnet to body gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in gate or discs to seats (including back seat) to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.4.1 Inspect contact using blueing method.

(I)(G) "VERIFY LEVEL I PARTS" (See 4.3)

3.4 Assemble valve, installing new gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One.

3.4.1 Install new valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.3.

4. NOTES:

4.1 Operational test of valve will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>1/ Alloy Steel</th>
<th>2/ Carbon Steel</th>
<th>3/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4/ Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class B 5/</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class B 5/</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
<td></td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud and, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.
1. SCOPE:

1.1 Title: Regulating/Reducing Valve; repair

2. REFERENCES:

2.1 T9074-AS-GIB-010/271, Requirements for Nondestructive Testing Methods
2.2 MIL-STD-2035, Nondestructive Testing Acceptance Criteria

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

(I) "LIQUID PENETRANT INSPECT"

3.2.1 Accomplish liquid penetrant inspection of hard-faced metallic seats and discs in accordance with 2.1.

3.2.1.1 Acceptance criteria shall be in accordance with Section 7 of 2.2, except hairline cracks in hard-faced areas of seats and discs are acceptable provided the valve does not show evidence of leakage.

3.3 Repair valve as follows:

3.3.1 Straighten stems and pushrods to within 0.002 inch total indicator reading. Polish stems and pushrods to a 32 Root-Mean-Square finish in way of packing or seal surfaces and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.

3.3.3 Dress and true gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in metallic discs to seats to obtain a 360-degree continuous contact.
3.3.4.1 Inspect contact using blueing method. Transfer line shall not exceed 1/16-inch in width.

3.4 Assemble valve, installing new packing, gaskets, diaphragms, springs, and soft seats in accordance with manufacturer's specifications and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) "SHOP TEST"

3.5.2 Test and set valve in shop.

3.5.2.1 Test shall be applied for a minimum of 3 minutes.

3.6 Attach a metal tag to valve, stamped with the following information:

3.6.1 Ship name and hull number.

3.6.2 Valve number or identification.

3.6.3 Valve regulation range and set point.

3.6.4 Date valve tested and set.

3.6.5 Name of repair facility.

4. NOTES:

4.1 Valve body, inlet, regulated pressure/temperature, and test medium will be designated in Work Item.
4.2 Nitrogen or air may be used for shop test of steam valves.

4.3 Repairs to pilot control will be specified in Work Item.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.
<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>VALVE BODY MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/ Alloy Steel/Carbon Steel</td>
</tr>
<tr>
<td>3/ Studs and Bolts to MIL-DTL-1222</td>
<td>5/ For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td></td>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
</tr>
<tr>
<td></td>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
</tr>
<tr>
<td></td>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
</tr>
<tr>
<td></td>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
</tr>
<tr>
<td>5/ Nuts to MIL-DTL-1222</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td></td>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
</tr>
<tr>
<td></td>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
</tr>
</tbody>
</table>
TABLE 2 (CON'T)

<table>
<thead>
<tr>
<th>1/</th>
<th>2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>Nonferrous</td>
</tr>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)**</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From*</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.
2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.
* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.
** Values allow for reading pressures up to relief valve setting.
*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. SCOPE:

1.1 Title: Regulating/Reducing Valve; repair

2. REFERENCES:

2.1 T9074-AS-GIB-010/271, Requirements for Nondestructive Testing Methods

2.2 MIL-STD-2035, Nondestructive Testing Acceptance Criteria

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

(I) "LIQUID PENETRANT INSPECT"

3.2.1 Accomplish liquid penetrant inspection of hard-faced metallic seats and discs in accordance with 2.1.

3.2.1.1 Acceptance criteria shall be in accordance with Section 7 of 2.2, except hairline cracks in hard-faced areas of seats and discs are acceptable provided the valve does not show evidence of leakage.

3.3 Repair valve as follows:

3.3.1 Straighten stems and pushrods to within 0.002 inch total indicator reading. Polish stems and pushrods to a 32 Root-Mean-Square finish in way of packing or seal surfaces and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.

3.3.3 Dress and true gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in metallic discs to seats to obtain a 360-degree continuous contact.
3.3.4.1 Inspect contact using blueing method. Transfer line shall not exceed 1/16-inch in width.

3.4 Assemble valve, installing new packing, gaskets, diaphragms, springs, and soft seats in accordance with manufacturer's specifications and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

3.5 Hydrostatically test valve as follows:

3.5.1 Hydrostatic test equipment shall have the following capabilities:

3.5.1.1 Manual overpressure protection release valve.

3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.5.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

3.5.2 Test and set valve in shop.

3.5.2.1 Test shall be applied for a minimum of 3 minutes.

3.6 Attach a metal tag to valve, stamped with the following information:

3.6.1 Ship name and hull number.

3.6.2 Valve number or identification.

3.6.3 Valve regulation range and set point.

3.6.4 Date valve tested and set.

3.6.5 Name of repair facility.

4. NOTES:

4.1 Valve body, inlet, regulated pressure/temperature, and test medium will be designated in Work Item.
4.2 Nitrogen or air may be used for shop test of steam valves.

4.3 Repairs to pilot control will be specified in Work Item.
| ITEM NO: 009-55 | FY-06 (CH-1) |

TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
<th>Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4/</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5/</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
<td></td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud and, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.
| TABLE 2 |
|---|---|
| VALVE BODY MATERIAL |

<table>
<thead>
<tr>
<th>1/</th>
<th>2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>Nonferrous</td>
</tr>
<tr>
<td>3/ Studs and Bolts to MIL-DTL-1222</td>
<td>4/ Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>5/ For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
</tr>
<tr>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuts to MIL-DTL-1222</th>
<th>5/ Phosphor Bronze - Any Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td>Nickel Copper - Class A or Class B</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td>4/ 5/</td>
</tr>
</tbody>
</table>
TABLE 2 (CON'T)

<table>
<thead>
<tr>
<th>1/ Alloy Steel/Carbon Steel</th>
<th>2/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. **Master gage and back-up gages shall track within 2 percent of each other.**

2. **System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.**

* **Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.**

** **Values allow for reading pressures up to relief valve setting.**

*** **Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.**
1. **SCOPE:**

 1.1 Title: Boiler Wet Lay-Up; accomplish

2. **REFERENCES:**

 2.1 S9086-GX-STM-020/CH-220, Boiler Water/Feedwater Test and Treatment

3. **REQUIREMENTS:**

 3.1 Accomplish hydrazine/morpholine wet lay-up of each boiler.

 3.1.1 Accomplish the safety and handling of hydrazine in accordance with Paragraph 220-22.71 of 2.1.

 3.2 Notify the SUPERVISOR 24 hours prior to lay-up of each boiler.

 3.3 Provide the volume of water required to fill the boiler, superheater, economizer, and associated piping by consulting Table 220-22-11 of 2.1. Include an additional 500 gallons for reserve in the total amount required in Table 220-22-11 of 2.1. Water used for lay-up shall conform to the following requirements:

<table>
<thead>
<tr>
<th>CONSTITUENT or PROPERTY</th>
<th>REQUIREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORE STEAM AND CONDENSED SHORE STEAM</td>
<td>EXPERIMENTAL</td>
</tr>
<tr>
<td>USED AS FEEDWATER</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>8.0 to 9.5</td>
</tr>
<tr>
<td>Conductivity</td>
<td>25 micromho/cm max</td>
</tr>
<tr>
<td>Dissolved Silica</td>
<td>0.2 ppm max</td>
</tr>
<tr>
<td>Hardness</td>
<td>0.10 epm max</td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>0.10 ppm max</td>
</tr>
</tbody>
</table>

SHORE PROCESSED FEEDWATER	mericho/cm max at point of delivery)
(DEMINERALIZERS, REVERSE OSMOSIS)	
Conductivity	2.5 micromho/cm max
Silica	0.2 ppm max

 3.3.1 Submit one legible copy, in hard copy or electronic media, of chemical analysis to the SUPERVISOR.
3.3.2 The use of filming amines to control steam/steam condensate pH is prohibited.

3.3.3 Provide a pierside tank that will hold the quantity of feedwater required. The tank shall be used to mix the hydrazine/morpholine solution.

3.3.4 For each 1,000 gallons of water added to the tank, 2,500 milliliters (2/3 gallon) of catalyzed 15-percent hydrazine and 375 milliliters (4/5 pint) of 40-percent morpholine shall be used.

3.3.4.1 Transfer the required amount of hydrazine into narrow mouthed one-gallon or two-gallon polyethylene bottles with polyethylene or polypropylene screw closures.

3.3.4.2 Transfer the required amount of morpholine to a narrow mouthed pint, quart, or gallon polyethylene bottle as appropriate to the volume needed. Pour the morpholine and hydrazine into the tank.

3.3.4.3 Immediately fill the tank with feedwater to the level calculated in 3.3 for the quantity of hydrazine solution desired.

3.3.5 Remove water from the boiler, superheater, and economizer. Close boiler drains and openings with the exception of steam drum, superheater, and economizer vents.

3.3.6 Immediately fill the boiler, including superheater and economizer, taking suction from the hydrazine/morpholine-treated tank.

3.3.6.1 While filling the boiler, close each vent in turn as the treated water overflows. After the boiler is filled as shown by an overflow from the highest vent, crack each lower vent in turn to ensure that there are no trapped air pockets.

3.4 Maintain positive pressure on the boiler, not to exceed 150 PSIG, using a head tank, nitrogen, or shore steam.

3.5 Determine the hydrazine concentration on the day the boiler is placed under lay-up and weekly thereafter.

3.5.1 Draw a sample through the boiler water sample line after allowing the boiler water to flow for five minutes to flush the line. Allow the sample bottle to overflow before capping the bottle to eliminate trapped air.

3.5.1.1 Determine the hydrazine concentration as soon as possible, but within one hour after sampling.
3.5.1.2 The hydrazine concentration will normally be between 30 and 70 ppm. If the hydrazine content falls below 2.5 ppm, the lay-up is lost and the boiler shall be dumped and treated again.

3.5.2 Submit one legible copy, in hard copy or electronic media, of a report to the SUPERVISOR of the hydrazine concentration on the day the lay-up commences and weekly thereafter.

3.6 Drain the superheater and bring the boilers to operating level. Dispose of removed solution in accordance with local, state, and federal regulations.

3.6.1 Do not drain the solution to the bilge.

4. NOTES:

4.1 None.
1. **SCOPE:**

1.1 Title: Reduction Gear Security Requirements; accomplish

2. **REFERENCES:**

2.1 Standard Items

2.2 S9086-H7-STM-010/CH-262, Lubricating Oils, Greases, Specialty Lubricants, and Lubrication Systems

2.3 S9086-HK-STM-010/CH-241, Propulsion Reduction Gears, Couplings, Clutches, and Associated Components

3. **REQUIREMENTS:**

3.1 Accomplish the requirements of Paragraph 262-3.10 of 2.2 to prevent entry of foreign matter into the lube oil system during work accomplished by the Work Item.

 3.1.1 Notify the ship's Engineering Officer via the SUPERVISOR before opening and closing each main reduction gear or main reduction gear attached components.

 3.1.2 Accomplish the requirements of 241-3.5.2 of 2.3 to prevent rust/moisture damage to components when the reduction gear is going to remain inoperative in excess of eight weeks.

3.2 Remove and dispose of system's fluids to accomplish the requirements of the Work Item.

3.3 Provide and install temporary machinery protection in accordance with 2.3 and the following requirements:

 3.3.1 Establish a limited access area and the physical boundary of the security control area.
3.3.2 The security control area shall be established prior to and maintained during the time an access to the reduction gears is opened.

(V)(G) "INSPECTION/APPROVAL OF SECURITY CONTROL AREA"

3.3.3 Notify the SUPERVISOR prior to opening any clean system or component within the area. The SUPERVISOR shall inspect and approve the security control area prior to start of work.

3.3.4 Maintain on site an accountability log of all tools and equipment entering and leaving the security control area to verify adherence to the requirements set forth in 3.6.

3.3.4.1 Inspect the log at the beginning and end of each shift to ensure that it describes the equipment and tools within the security control area.

3.3.4.2 Use Attachment A to log all tools and equipment.

3.3.4.3 Use Attachment B for shift turnover verification.

3.3.4.4 Turn over accountability log to the SUPERVISOR at time of final closure.

3.3.5 Post warning signs at the entry points to the security control area and limited access area to maintain control of the area and inform personnel that the reduction gear is open.

3.3.5.1 Set up Limited Access Area with rope/line and signs to restrict unnecessary traffic.

3.3.6 Provide 24-hour continuous on-site surveillance by contractor personnel in the area as long as the reduction gear is exposed.

3.3.6.1 Policing of limited access area shall be routine while gear is exposed.

3.4 Observe Ship's Force security control/accountability measures.

3.5 Provide reduction gear security during periods that require the gear train to be exposed from access openings where direct or indirect paths to gearing will result.

3.5.1 Notify the ship's Engineering Officer or designated representative prior to disassembly and removal of the following gear casing components:
3.5.1.1 Hinged, pinned, or bolted gear casing covers, inspection ports, and plates

3.5.1.2 Sight flow indicators, gear mesh spray nozzles, thermometers, and associated fittings

3.5.1.3 Oil supply and return piping, vent lines, fittings, and plugs.

3.5.2 The ship's Engineering Officer or designated representative shall be present at all times when external connections are attached to the reduction gear casing, oil sump, and oil piping.

3.5.3 Assemble an enclosure made from Herculite or canvas covering conforming to A-A-55308 over the top of the reduction gear housing, lashing the bottom of the enclosure to the deck structure or piping at deck level.

3.5.3.1 Snaps, staples, or similar shall not be used on enclosure. Utilize heavy duty zippers and velcro hook-pile. Secure all grommets attached to enclosure with line or lanyard to prevent loss of grommets.

3.5.3.2 Lash the top edge of the enclosure to overhead structural members to form a work area over and around the reduction gear casing.

3.5.3.3 Lace the top flaps to sides and down the center to form a closed top, if lifting gear is to be used. Unlace to utilize lifting gear.

3.5.3.4 Lace all but one of the corners to each other, utilizing stiffeners, to form a secure work area. The unlaced corner shall be used for a security door constructed to be capable of being secured. Stencil "CONTROLLED AREA – AUTHORIZED PERSONNEL ONLY" on the sides and top of the enclosure or install signs at enclosure boundaries.

3.5.4 The surrounding limited access area shall be secured and policed to remove overhead or local dirt, loose objects, or any potential security violating objects prior to and during gear exposure.

3.5.5 Prior to opening casing, ensure no foreign material exists on adjacent surfaces that could contaminate the internal areas upon lifting casing covers, piping, and associated equipment.
3.5.6 Construct a temporary cover over openings of the gear train, in addition to the required limited access area controls, if it becomes necessary to stop work with the casing/cover removed.

3.6 Prepare an Accountability Log, Attachment A, immediately after limited access area has been approved by the SUPERVISOR, but prior to opening an access. Maintain the Accountability Log while reduction gears and attached components are open.

3.6.1 Station a Control Watch at the enclosure door/flap and maintain Attachment A for all material and hardware which is small enough to fit inside access opening.

3.6.2 The Control Watch shall record the date and time in the appropriate block on the Accountability Log each time accountability is started or stopped, and each time access is opened or closed. The log shall be turned over to another Control Watch before the access is closed. The outgoing Control Watch and the incoming Control Watch shall sign the shift turnover verification log to show that all items recorded as "in" are accounted for.

3.6.3 Any material permanently installed shall be noted in Accountability Log.

3.7 Inspection equipment, tools, and personnel clothing shall be captured, secured, and accounted for to preclude introduction of foreign matter into the reduction gear.

3.7.1 Acceptable methods of capturing are:

3.7.1.1 Drilling and lockwiring
3.7.1.2 Tackwelding or silver brazing
3.7.1.3 Using nylock-type locking devices
3.7.1.4 Upsetting or staking threads
3.7.1.5 Attaching a lanyard
3.7.1.6 Taping with duct tape

3.7.2 All personnel working in or around an open gear casing shall have all eye glasses, buttons, zippers, and other loose items on their clothing properly taped to prevent them from breaking loose and falling into the gear casing. All jewelry, pens, change, metal objects, loose items, etc., shall be removed from the person and clothing pockets prior to entering area.
3.8 Notify the SUPERVISOR in all matters involving foreign material retrieval from the reduction gear. Report all incidents breaching reduction gear security to the ship's Engineering Officer or Duty Engineering Officer via the SUPERVISOR, followed by a written incident report, Attachment C.

3.8.1 Submit one legible copy, in hard copy or electronic media, of each incident report within 4 hours after notification to the SUPERVISOR.

3.8.2 The SUPERVISOR will review each incident report and decide if a trouble report is required.

3.8.2.1 Use Attachment D for the trouble report.

(V)(G) "INSPECTION PRIOR TO FINAL CLOSURE"

3.9 Accomplish a visual inspection of the exposed reduction gear and associated components prior to installing access covers and openings. Ensure no foreign matter has entered or remains within the reduction gear and/or components. Inspect ledges, including the underside of ledges, pockets, gear teeth, and bearing journals and caps, using mirrors, periscopes, and borescopes.

3.9.1 The inspection shall be made jointly with the SUPERVISOR and the ship's Engineering Officer or designated representative.

3.9.2 Verification that all tools and equipment listed on the accountability log have been either logged out satisfactorily or are annotated as installed, permanently or temporarily, in the remarks column of the accountability log shall be accomplished prior to final closure. Accountability shall be stopped when the access is closed.

3.10 Disassemble and remove the enclosure and limited area boundary when directed by the SUPERVISOR.

3.11 Accomplish the requirements of 009-32 of 2.1 for new and disturbed surfaces.

4. NOTES:

4.1 In support of emergency inspections, limited inspections or minor repairs to the propulsion reduction gear, the requirements for a security control area may be omitted at the discretion of the SUPERVISOR with the concurrence of the ship's Engineering Officer. If the security control area is precluded during these special circumstances, the security of the reduction gear shall be maintained.

4.1.1 The requirements for contractor accountability cannot be waived.
4.2 Definitions of terms used are:

4.2.1 Clean Work Area: An area requiring a cleanliness/accountability level at least equal to that required for in-shop repair of similar equipment to permit the easy recovery of any dropped tools, material, etc. This area shall be free of excess moisture and contaminants, i.e., abrasive materials resulting from blasting, grinding, or other particle generating processes. Areas where this condition would apply are inspection and/or access covers removed or open.

4.2.2 Security Control Area: An area or enclosure that provides a physical boundary around access opening (Herculite) which will preclude the inadvertent introduction of any uncontrolled personnel, tools, equipment or foreign material. This area shall always meet the requirements of a Clean Work Area and can be upgraded to a Limited Access/Exclusion Area. A Controlled Area shall always require Physical Separation.

4.2.3 Full Enclosure: An enclosure that has all edges (sides, top, and bottom) secured with cabling that is woven through grommets and secured to stanchions, foundations, deck grating, etc. The enclosure will be considered adequately secured if a person cannot enter through any opening other than the designed entry accesses.

4.2.4 Limited Access Area: An area requiring the maximum level of concern and accountability for personnel and material. During this condition a Full Enclosure is required. This type of area isolation is required where the recovery of dropped or broken material would be difficult and/or requires extensive rework of the task in progress. The Full Enclosure shall be locked when unattended by production and during the unattended time keys shall be controlled by the Ship's Engineering Office. An area established outside the security control area to limit the personnel allowed to enter the reduction gear area and is intended to prevent unnecessary traffic.

4.2.5 Accountability: The method used to maintain foreign material exclusion from reduction gears by keeping a formal record (accountability log) of all materials, including tools and hardware that may pass through access opening.
<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item/Description</th>
<th>Material Use</th>
<th>Qty</th>
<th>Item In - AT Date/Time Inspector*</th>
<th>Qty</th>
<th>Item Out - SAT Date/Time Inspector*</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The person designated to sign for an action verifies, based on personal observation, and certifies by their signature that the action has actually been performed in accordance with the specified requirements.

** The person designated to sign for an action verifies, based on personal observation, certified records of direct reports from control watches, and certifies by their signature that the action has been performed in accordance with the specified requirements.
Logged items remaining within the exposed location at the change of shift shall be verified present by the in-coming and out-going control watches. This verification shall be accomplished by physically checking the area and confirming those items required to be logged. Both the outgoing and incoming shift control watches shall sign the shift turnover verification to certify that the remaining items have been physically verified, no unnecessary items are left in accountability area, containments are satisfactory, and area is cleaned.

<table>
<thead>
<tr>
<th>Crl Watch Start</th>
<th>Date/Time Started</th>
<th>Crl Watch Stop</th>
<th>Date/Time Stopped</th>
<th>Date/Time</th>
<th>Line Supervisor/QA Inspector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>System Open</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>System Closed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Log and Area</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Remarks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inspector* Date/Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIS LOG IS CLOSED. ALL ITEMS ARE ACCOUNTED FOR AS INDICATED.

Inspector**______________ Date/Time_________________ Supervisor**____________ Date/Time_____________

* The person designated to sign for an action verifies, based on personal observation, and certifies by their signature that the action has actually been performed in accordance with the specified requirements.

** The person designated to sign for an action verifies, based on personal observation, certified records of direct reports from control watches, and certifies by their signature that the action has been performed in accordance with the specified requirements.
ATTACHMENT C

CRITIQUE REPORT FORM

<table>
<thead>
<tr>
<th>SHIP NO.</th>
<th>PREPARED BY:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME/DATE:</td>
<td>CRITIQUE SER NO:</td>
</tr>
<tr>
<td></td>
<td>(Code Yr. Seq. No)</td>
</tr>
</tbody>
</table>

NOTE:

1. If the information of items 1-14 is available, a formal critique meeting is not required.
2. Provide the following information on supplemental sheets. List all facts in detail and in sequences. Provide timing of events and list individuals involved with their respective shop or code number. List temporary corrective actions and determine causes.

<table>
<thead>
<tr>
<th>Topic of Discussion and Report</th>
<th>Sign</th>
<th>Topic of Discussion and Report</th>
<th>Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Description of incident</td>
<td></td>
<td>8. List damage incurred</td>
<td></td>
</tr>
<tr>
<td>2. Location of incident</td>
<td></td>
<td>9. What is the basic cause of this problem? Include background info.</td>
<td></td>
</tr>
<tr>
<td>3. Discovered by/time/date.</td>
<td></td>
<td>10. Is a trouble report recommended? List reason.</td>
<td></td>
</tr>
<tr>
<td>4. List in order the immediate actions taken/actions taken by whom/identify persons notified.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Identify any work stopped and by whom; identify what must be accomplished prior to resuming work stopped.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Identify work in progress/ related to problem and include system or plant conditions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Were temporary corrective actions adequate? Were additional actions necessary and taken? Identify.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. List damage incurred</td>
<td></td>
<td>9. What is the basic cause of this problem? Include background info.</td>
<td></td>
</tr>
<tr>
<td>10. Is a trouble report recommended? List reason.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Was a formal critique meeting necessary to provide the above info?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Include Ship's CO or EDD or EOOW remarks.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Provide applicable shop/ technical code concurrence.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Supplementary info attached to this critique report form.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. DESCRIPTION OF INCIDENT
__
__
__
__

2. LOCATION OF INCIDENT
SPACE (NAME) __
FRAME ___
LEVEL ___

3. DISCOVERED BY:
NAME ___
RANK OR POSITION __
TIME (NAVY) __________________________ DATE ________________

4. LIST IN ORDER THE IMMEDIATE ACTIONS TAKEN AND BY WHAT PERSONS:
__
__
__
__

IDENTIFY PERSONS NOTIFIED:
NAME ___________________________________ RANK/POSITION __________________________

5. IDENTIFY ANY WORK STOPPED AND BY WHOM:
__
__
__
__
__

(a). IDENTIFY WHAT MUST BE ACCOMPLISHED BEFORE THIS WORK MAY BE RESTARTED:
__
__
6. IDENTIFY WORK CURRENTLY IN PROGRESS WHICH IS RELATED TO THE INCIDENT:

__
__
__

OPERATING CONDITIONS OF SHIP AND/OR STATUS OF SYSTEMS OR COMPONENTS AT TIME OF INCIDENT:
__
__
__
__
__
__
__

7. WERE TEMPORARY CORRECTIVE ACTIONS ADEQUATE?

YES []
NO [] IDENTIFY:
__
__
__
__

(a) WERE ADDITIONAL ACTIONS NECESSARY?

YES []
NO [] IDENTIFY:
__
__
__
__

8. LIST DAMAGE INCURRED:

__
__
__
__

9. WHAT IS THE BASIC CAUSE OF THE PROBLEM?

PERSONNEL []
PROCEDURE []
EQUIPMENT []
OTHER []
BRIEF DESCRIPTION:

__
__
__
__
__
__

10. WAS A FORMAL CRITIQUE MEETING NECESSARY TO PROVIDE THE ABOVE INFORMATION?

YES []

NO []

ORIGINATOR

(PRINT OR TYPE)

NAME: ___

POSITION: ___

DATE: ___

SIGNATURE

__
ATTACHMENT D

TROUBLE REPORT NO. __________

SHIP ___________________________ DATE OF ISSUE ______________________

TIME/DATE OF INCIDENT ___________________________ PRELIMINARY ____________ FINAL ___________

1. Summary of incident.

2. Description of incident and general description of apparent cause.
 Design___ Material___ Personnel___ Procedure___
 A. Description of incident.

 B. Discussion of apparent cause.

3. Operating conditions of ship and/or status of system or components.

4. Immediate temporary corrective action taken and results.

5. PERMANENT CORRECTIVE ACTION.

6. AREAS OF RESPONSIBILITY FOR FURTHER SHIPYARD EVALUATIONS.

7. SIMILAR TROUBLE REPORTS.

8. ORIGINATOR(S):

_____________________________ DATE: ____________________

_____________________________ DATE: ____________________

9. CONCURRENCES:

_____________________________ DATE: ____________________
Code 605, Repair Dept Control Mgr

_____________________________ DATE: ____________________
Code 300, Quality Assurance Officer

_____________________________ DATE: ____________________
Code 240, Chief Design Engineer

10. Approved:

_____________________________ DATE: ____________________
Code 600, Repair Officer
1. SCOPE:

1.1 Title: Pump and Driver Shaft Alignment; accomplish

2. REFERENCES:

2.1 S6226-JX-MMA-010, Instruction Manual for the Indicator Reverse Method of Pump Shaft Alignment

2.2 803-6397419, Standard Machinery Shim Kits

3. REQUIREMENTS:

3.1 Measure pump and driver shaft alignment using the indicator reverse method and the mathematical equations or graphs or alignment computer in accordance with 2.1.

3.1.1 Determine soft foot and correct in accordance with Section 2-2 of 2.1. Shims shall be in accordance with 2.2.

(V) or (V)(G) "INSPECT PIPING ALIGNMENT" (See 4.4)

3.2 Inspect piping alignment in accordance with Section 2-3 of 2.1 prior to removal and at installation.

3.2.1 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.2 to the SUPERVISOR.

3.3 Measure indicator sag in accordance with Section 2-4 of 2.1.

(V)(G) "COLD ALIGNMENT" (See 4.5)

3.4 Align each shaft to the offset and angular alignments in accordance with the cold alignment settings invoked in the Work Item (see 4.1). Cold alignments for horizontally mounted machinery shall be accomplished in accordance with Chapter 2, Sections 2-1 through 2-7 of 2.1, and vertically mounted machinery shall be in accordance with Chapter 5, Sections 5-1 through 5-3 of 2.1.
3.4.1 Submit one legible copy, in hard copy or electronic media, of a completed alignment data collection form (Page 7-2 of 2.1) for the results of the requirements of 3.4 to the SUPERVISOR.

3.5 Align shafts so that offset and angular alignments are acceptable when the unit is hot. Acceptable alignment tolerances shall be based on the rated speed of the pump and the alignment tolerance listed in Table 1-1 of 2.1 (see 4.2). Hot alignments for horizontally mounted machinery shall be accomplished in accordance with Chapter 2, Section 2-1 through 2-8 of 2.1. Accomplish hot alignment check only on units that the cold alignment has been compensated for thermal growth. (Hot alignment readings must be taken within 30 minutes of shutting down unit).

3.5.1 Fit and install new chocks and shims conforming to ASTM A240 to accomplish alignment. Shims shall be in accordance with 2.2.

3.5.2 Drill and ream foundations. Fit and install new SAE-AMS-QQ-S-763, Grade 304, dowels in each unit to retain final satisfactory unit alignment in accordance with Section 2-8 of 2.1.

(V)(G) "FINAL HOT ALIGNMENT"

3.6 Accomplish a final hot alignment check of horizontally mounted pumps with dowels installed.

3.6.1 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.6 to the SUPERVISOR. The report shall include the following:

3.6.1.1 Ship's name and hull number

3.6.1.2 Contractor and subcontractor

3.6.1.3 Job Order and Work Item number

3.6.1.4 Identity of pump aligned

3.6.1.5 Completed alignment data collection form (Page 7-2 of 2.1) for final hot alignment condition

4. NOTES:

4.1 Reference that contains the cold setting alignment will be identified in the invoking Work Item.

4.2 Hot alignment criteria if different from zero will be identified in the invoking Work Item.
4.3 Motor driven units must be run a minimum of 4 hours to achieve operating temperature. Turbine driven unit must be run a minimum of 2 hours to achieve operating temperature.

4.4 (V) is invoked for prior-to-removal inspection. (V)(G) is invoked for installation inspection.

4.5 (V)(G) is invoked only when hot alignment is not required.
1. **SCOPE:**

 1.1 Title: Organotin Antifouling Material; control

2. **REFERENCES:**

 2.1 S9086-VD-STM-010/CH-631, Preservation of Ships in Service

3. **REQUIREMENTS:**

 3.1 Accomplish work associated with application, removal, or disturbance of organotin materials in accordance with 2.1, using this item for control, clean-up, safety precautions, and environmental practices.

 3.1.1 Apply and dispose of organotin material in accordance with federal, state, and local regulations.

 3.1.2 Personnel with occupational exposure to organotin shall be in the medical monitoring program.

 3.1.3 Safety and environmental protection shall include total encapsulation of the work site.

 3.1.3.1 Blank ship intake ventilators and close hatches within the work site enclosure to prevent entry of paint, blasting particles, or vapors into the ship. Take precautions to prevent circulation of paint mists and vapors throughout the interior of the ship.

 3.1.3.2 Remove all unnecessary equipment from the containment.

 3.1.4 Accomplish the following clean-up at the completion of the painting or blasting operation:

 3.1.4.1 Sweep (in a wet state) or vacuum all dry dock and equipment surfaces after painting or blasting.

 3.1.4.2 Clean up accidental spills immediately.
3.1.4.3 Decontaminate keel blocks, staging, planks, suspended platforms, dry dock, or equipment surfaces contaminated with organotin paint prior to reuse.

3.1.5 Provide personal protective equipment (PPE) for personnel as follows:

3.1.5.1 Organotin workers shall wear protective impervious clothing, including gloves, aprons, suits, hoods, and boots when needed to prevent skin contact.

3.1.5.2 Abrasive blasting operators, in addition to their regular protective clothing, shall wear rubber boots and impervious coveralls as outer garments. All openings shall be taped.

3.1.5.3 Blasters/blasting support personnel (personnel within the work area containment) shall use self-contained breathing apparatus (SCBA) with a full facepiece operated in pressure-demand mode, or a combination supplied-air respirator with full facepiece and an auxiliary self-contained air supply operated in pressure-demand mode.

3.1.5.4 Protective equipment shall be cleaned before/after use.

3.1.5.5 Personnel handling potentially contaminated items shall wear rubber gloves and disposable coveralls.

3.1.5.6 Where small areas of paint removal are required, a small containment shall be set up around the area. Paint removal other than blasting shall be used to remove paint a minimum of 6 inches on either side of repair.

3.1.6 Provide training for all personnel involved in the application, removal, disturbance, or disposal of organotin and support personnel. Training shall be documented.

3.1.6.1 Training shall include the hazards, physical symptoms, appropriate emergency procedures, and proper conditions and precautions for the safe handling or use of organotin to workers in areas where exposure may occur. Additionally, training shall include the use of PPE and shall ensure that personnel have a knowledge of job hazards, proper maintenance, clean up methods, and respirator usage.

3.1.7 As a minimum, the following safety and health precautions shall be enforced:

3.1.7.1 No eating, drinking, or smoking in work areas.

3.1.7.2 Protective clothing must be worn.
3.1.7.3 Avoid inhaling vapor, dust, mist, or fumes.

3.1.7.4 Avoid direct contact of paint with skin.

3.1.7.5 Avoid eye and skin contact with mist or spray.

3.1.7.6 After working with organotin and immediately upon removal of protective clothing, personnel must shower using soap and water unless otherwise informed.

3.1.7.7 Avoid contact between hands and mouth if hands have been exposed to the material.

3.1.8 Post the exposure zone whenever organotin work is in progress.

3.1.8.1 During the application, removal or disturbance of organotin, a sign must be posted at each entrance to the work area and at each entrance to the dry dock reading: ANTI-FOULING PAINT CONTAINING ORGANOTIN BEING APPLIED OR REMOVED.

3.1.8.2 Work areas shall be posted with signs stating PPE requirements.

4. NOTES:

4.1 None.
1. SCOPE:

1.1 Title: Schedule and Associated Reports; provide and manage

2. REFERENCES:

2.1 None.

3. REQUIREMENTS:

3.1 Definitions.

3.1.1 Production Schedule: The schedule used by contractor and subcontractor personnel as a means of planning, tracking, and coordinating the accomplishment of contract work.

3.1.2 Activity: A portion of an individual Work Item which is a logical subdivision of the Work Item representing a manageable unit of work which must be accomplished at a specific period of time in relation to other activities of the Job Order.

3.1.3 Event: The beginning or ending point of an activity.

3.1.4 Key Event: An event which, if slippage occurs, could impact or delay the overall schedule. Key events may be identified by either the contractor or the SUPERVISOR.

3.1.5 Milestone: A significant event identified in the solicitation.

3.1.6 Critical Path: That sequence of activities which forms the longest duration, and directly affects the completion of the availability. Factors in determining critical path are: time duration required for the activity, space limitations, manpower available, and the interface between Work Item activities.

3.1.7 Controlling Work Items: Those Work Items which are on the critical path of the Job Order and those Work Items which, by virtue of scope, material requirements, complexity, or other considerations, have the potential for impact on the scheduled completion of the availability.
3.1.8 Network: A graphic display showing the planned sequence and interdependent relationship of activities, milestones, and key events within the Job Order.

3.1.9 Total Float: The total number of days that a path of activities can be delayed without affecting the project finish date.

3.2 Prepare and provide a production schedule to the SUPERVISOR for availabilities of 10 days to 64 days in duration five days after award. For availabilities of 65 to 120 days in duration, provide no later than 15 days after contract award. For availabilities greater than 120 days in duration, provide no later than 30 days after contract award. The production schedule shall establish an orderly and systematic overhaul program that reflects the manner in which the project will be performed. Schedule shall be inclusive of milestones and key events, and known Alteration Installation Team (AIT), Commercial Industrial Services (CIS), and Fleet Maintenance Activity (FMA) work.

3.2.1 Schedule each Work Item to the activity level which shall list the start and completion dates for each activity in sufficient detail that can be measured toward each milestone.

3.2.2 Assign each activity in the production schedule a short title to describe the nature of the activity and equipment or machinery involved.

3.2.3 Schedule shall identify submission dates of required reports.

3.2.4 Schedule shall identify the critical path and controlling work items within the Job Order.

3.2.5 Identify the amount of total float available on each Work Item activity based on a five day work week unless otherwise specified. Show each early and late start and finish date.

3.2.6 The Production Schedule shall be revised weekly to include additions, deletions, modifications, progress, and completions.

3.2.6.1 Submit one legible copy, in hard copy or electronic media, of the Production Schedule to the SUPERVISOR one day prior to the weekly progress meeting.

3.2.7 Submit one legible copy, in hard copy or electronic media, of the production schedule to the SUPERVISOR in accordance with the requirements of 3.2.

3.3 Prepare a time-oriented work package network that displays critical path Work Items and controlling Work Items, milestones, key events, and Work Items that interrelate with controlling Work Items. Display critical path and controlling Work Items at the activity level.
3.3.1 The network may be partitioned into sub-networks by milestones, ship's system, ship area, or other logical divisions.

3.3.2 The network or any sub-network thereof, may be continued on additional pages. Each page of the network or sub-networks shall be clearly identified and show all off page interdependencies.

3.3.3 Label each Work Item, activity, milestone, and key event of the network with the activity or event identifier (ID) and title.

3.3.4 Submit one legible copy, in hard copy or electronic media, of the network to the SUPERVISOR in accordance with the requirements of 3.2.

3.3.5 Schedule five additional controlling Work Items as designated by the SUPERVISOR during the availability.

3.3.6 Revise the network weekly in support of the weekly production schedule revisions of 3.2.6.

3.3.6.1 Each revised network shall be available for review by the SUPERVISOR.

3.3.6.2 Submit one legible copy, in hard copy or electronic media, of the revised network to the SUPERVISOR at the 50 percent point in the availability. The SUPERVISOR may, at his discretion, designate the submittal of a revised network at two other times during the availability.

3.4 Provide milestone and key event listing.

3.4.1 After development of the schedule and network, generate a listing of milestones and key events, showing for each: Event Title, Original Schedule Date, Revised Schedule Date, and Actual Date of Accomplishment.

3.4.1.1 The revised schedule date and actual date of accomplishment shall be left blank on the initial submission and filled in to reflect actual conditions on subsequent submission of the listing.

3.4.1.2 Submit one legible copy, in hard copy or electronic media, of the milestone and key event list to the SUPERVISOR in accordance with the requirements of 3.2, and provide subsequent weekly reports to the SUPERVISOR reflecting contemporary contract performance.

3.5 Provide manpower management information.

3.5.1 Develop a total manpower loading curve showing proposed manning throughout the contract period in men per day. The curve shall indicate that portion of the total which is subcontractor provided.
3.5.2 Develop individual key trade manning curves showing proposed manning by trade throughout the contract period in men per day. The curves shall indicate that portion of the total which is subcontractor provided.

3.5.3 Prepare a weekly manpower utilization report showing total mandays expended during the previous week, indicating that portion of the total which is subcontractor provided. Indicate the number of days worked during the previous week.

3.5.4 Submit one legible copy, in hard copy or electronic media, of the manpower curves developed in 3.5.1 and 3.5.2 to the SUPERVISOR in accordance with the requirements of 3.2.

3.5.5 Update the manpower curves of 3.5.1 and 3.5.2 when the schedule and network revisions are completed.

3.5.5.1 Submit one legible copy, in hard copy or electronic media, of the updated manpower curves to the SUPERVISOR at the 25, 50, and 75 percent points in the availability.

3.6 Manage and schedule subcontractor's performance with respect to work progress, material procurement, and interface control to support the production schedule.

3.6.1 Submit one legible copy, in hard copy or electronic media, of a complete list of subcontractors, by Work Item to the SUPERVISOR at the same time the production schedule is submitted. The subcontractor list shall include:

3.6.1.1 Work Item paragraph number

3.6.1.2 Specific work to be accomplished

3.6.1.3 Subcontractor's business address

3.6.2 Submit one legible copy, in hard copy or electronic media, of a report to the SUPERVISOR of the changes to the original list prior to making the change whenever any subcontractor is added or deleted.

3.7 Prepare a test plan by Work Item for hydrostatic, operational, weight, and safety device tests required by the Job Order, indicating start dates for tests scheduled.

3.7.1 The test plan shall include:

3.7.1.1 Work Item and paragraph.

3.7.1.2 Description of equipment(s) undergoing test(s) and type of test(s), e.g., hydrostatic, operational, etc.
3.7.1.3 Reference document(s), e.g., Technical Manual, Design Test Memo (DMT), Test Procedure, etc.

3.7.1.4 Scheduled start and completion dates of test(s).

3.7.2 Submit one legible copy, in hard copy or electronic media, of the test plan to the SUPERVISOR in accordance with the requirements of 3.2.

3.7.3 Revise the test plan of 3.7 weekly to reflect the addition, deletion, or modification of Work Items, and changes made by the contractor.

3.7.3.1 Submit one legible copy, in hard copy or electronic media, of the revised test plan to the SUPERVISOR one day prior to progress meeting.

3.7.4 Coordinate tests to be accomplished with the SUPERVISOR one working day prior to execution. This coordination is in addition to test/inspection notification requirements.

3.8 Provide cognizant shipyard management representation to participate in the weekly progress meeting at the time and location mutually agreeable to all parties. The representative must be authorized to make management decisions relative to the routine requirements of the Job Order which, in good faith, commit the contractor.

3.8.1 Submit one legible copy, in hard copy or electronic media, of the following information to the SUPERVISOR one working day prior to the weekly progress meeting:

3.8.1.1 The manpower utilization data required by 3.5.3.

3.8.1.2 A report listing for each Work Item of the Job Order, the Work Item number, Work Item title, scheduled start date, scheduled completion date, actual start date, and the percentage complete. The report shall address changes to the milestones and key events list and major problems of each Work Item and proposed corrective action. The Work Items shall be listed in increasing order, by Work Item number. The report shall reflect the addition, deletion, or modification of Work Items. Completed Work Items need not be addressed.

3.8.1.3 A report listing contractor and Government furnished material not received, showing the Work Item number and title, material description, expected delivery date, required delivery date, and action proposed to resolve problems resulting from late delivery. Material with expected delivery dates before the required delivery date need not be listed in this report.

3.8.1.4 A report listing late or deficient government furnished information, showing the associated Work Item number, deficiency description, and proposed corrective action.
3.8.1.5 A report of overdue contractor condition reports by Work Item number and expected submission date. The report shall also include those deficiency and condition reports for which Government response is outstanding.

3.8.1.6 The revised weekly test schedule required by 3.7.3.

3.9 Provide a representative whose only function is to coordinate Ship's Force, AIT, CIS, and FMA work with contractor work.

3.9.1 Representative shall meet with the Ship's Force, AIT, CIS, and FMA no later than 5 days prior to the availability start and then daily thereafter commencing on the first day of the availability to compare and coordinate programmed Ship's Force, AIT, and FMA work with the contractor schedule. The representative shall submit a report at the weekly progress conference of conflicts where programmed Ship's Force, AIT, and FMA work interferes with the contractor schedule.

3.9.2 Representative shall identify at the weekly progress conference Ship's Force, AIT, CIS, and FMA actions necessary to support contractor testing and equipment operation schedule.

3.10 Participate in review conferences at the 25, 50, and 75 percent points in the availability. Data required to be provided at the 25, 50, and 75 percent points will be used at the review conferences. The conferences will be scheduled at a time and place mutually agreeable to all parties. The contractor shall:

3.10.1 Be prepared to discuss planned production manning versus actual production manning by total, individual key trades and subcontractors.

3.10.2 Address known factors that may impact milestones and the contract completion. Provide recommended courses of action to resolve problem areas.

3.10.3 Determine the most realistic completion date of the Job Order.

3.10.4 Two days prior to the 25 percent review conference, provide the SUPERVISOR with the status of open and inspect reports and be prepared to discuss possible impact of growth in these items at the 25 percent review conference.

3.10.5 Three days prior to the 50 percent review conference, provide the SUPERVISOR with the following:

3.10.5.1 A machinery reinstallation plan showing projected dates for installing the equipment on the foundation, hook-up of the equipment, and operational tests of the equipment.
3.10.5.2 A valve status list showing projected completion and reinstallation dates.

3.10.5.3 A list of items not complete that are required for Production Completion Date (PCD), formerly known as machinery space turnover. Annotate those items on the list which may be in jeopardy of completing by PCD.

3.10.6 Two days prior to the 75 percent review conference, provide the following to the SUPERVISOR:

3.10.6.1 A list of outstanding Light-Off Assessment (LOA) items with projected completion dates.

3.10.6.2 A test schedule for underway replenishment equipment.

4. **NOTES:**

4.1 The SUPERVISOR will provide the Ship's Force, AIT, **CIS**, and FMA availability data required in 3.9.
1. SCOPE:

1.1 Title: Shipboard Use of Fluorocarbons; control

2. REFERENCES:

2.1 29 CFR Part 1915, Occupational Safety and Health Standards for Shipyard Employment

2.2 NFPA Standard 306, Standard for the Control of Gas Hazards on Vessels

2.3 40 CFR Part 82, Protection of Stratospheric Ozone, Subpart F

3. REQUIREMENTS:

3.1 Accomplish work associated with the use of fluorocarbons aboard ship in accordance with this item.

3.2 Maintain at the work site a copy of the credentials of the Competent/Qualified Person who will monitor atmosphere, inspect and certify spaces are safe to enter, and who will supervise all activities.

3.2.1 A Qualified Person is defined as a National Fire Protection Association Certified Marine Chemist, an Industrial Hygienist, or a Competent Person as defined in 2.1. These Qualified Persons shall be capable of specifying the necessary protection and precautions to be taken during fluorocarbon operations, as designated in 2.1 and 2.2.

3.3 Maintain a copy of the following at the work site:

3.3.1 Identification of hose/piping routes and steps to be taken to protect hoses along those routes.

3.3.2 Type and location of warning signs.

3.3.3 Type and location of portable ventilation required.

3.3.4 Means of communication to be utilized.

3.3.5 Type of hoses and material compatibility to fluorocarbons.
3.3.6 Type of emergency breathing devices that are immediately accessible.

3.3.7 Type and location of portable oxygen and halide monitoring detectors/alarms.

3.3.8 Emergency evacuation and rescue procedures.

3.3.9 Open flame and hot work controls.

3.3.10 Results of preliminary tests, ensuring system integrity and absence of leakage.

3.3.11 Provisions for periodic inspections which include adjacent spaces to ensure work area containment and work practices are effective.

3.4 Submit written notification to the SUPERVISOR and the Commanding Officer's designated representative at least 4 hours, but not more than 24 hours prior to commencement, each time fluorocarbons are utilized aboard ship for any purpose. Identify the time, location, and purpose of each evolution. Notify the SUPERVISOR and designated ship's representative immediately prior to the actual start and upon completion of each evolution.

3.4.1 Deliver notification of work planned Tuesday through Friday to the Commanding Officer's designated representative at least 30 minutes and not more than 24 hours preceding start of work.

3.4.2 Deliver notification of work planned over a weekend or Monday following that weekend to the Commanding Officer's designated representative no later than 0900 on the Friday immediately preceding that weekend.

(I)(G) "INSPECT WORK SITE AND PROCESS PRIOR TO FLUOROCARBON OPERATIONS"

3.5 A certified technician shall, as required by 2.2, pressure test the fluorocarbon charging and flushing handling equipment, i.e., hoses, piping, valves, fittings, and manifolds, using dry nitrogen with trace amounts of HCFC-22 compound at 150 percent of charging equipment working pressure within 30 days prior to use aboard ship. Hold test pressure for 15 minutes. Allowable leakage: None.

3.5.1 Attach a solid metal tag with the following to each piece of equipment passing test:

3.5.1.1 Name and address of testing facility

3.5.1.2 Description of equipment

3.5.1.3 Date of test
3.5.1.4 Test pressure

3.6 Provide ventilation to maintain oxygen content above 19.5 percent and not greater than 22.0 percent by volume in spaces where fluorocarbon compounds are in use.

3.7 Establish and maintain telephone communication between the pumping station and the space involved when the fluorocarbon compound is being transferred by hose or pipe.

3.8 Ensure that all personnel in a space where fluorocarbon operations are being carried out have an emergency escape breathing device (EEBD) in their possession or in the immediate area so that they can quickly don the units in case of a leak.

3.8.1 Each person shall have received instruction and practice in the use of the particular EEBD to be used, prior to entering each space where fluorocarbon operations are being carried out.

3.9 Suspend hot work in spaces prior to hook-up, test, and disconnect operations in which fluorocarbon compounds are exposed to the atmosphere.

3.9.1 Hot work is permitted in spaces traversed by lines carrying fluorocarbon compounds provided the lines are clearly tagged and no hot work is attempted within 3 feet of a tagged line.

3.10 Provide a halide monitor with alarm or equivalent instrument to continuously monitor the atmosphere in spaces where fluorocarbon compounds are used. If the concentration of fluorocarbon compound in the space exceeds the threshold limit value for the compound (where the instrument is set to alarm), clear the space of personnel, notify Quarterdeck Watch immediately and the SUPERVISOR as soon as practical but not more than 30 minutes after the instrument alarms.

3.11 Post a caution sign in the area and at each entrance to the area.

3.11.1 The sign shall read: CAUTION: No open flames. Do not enter without testing the air for fluorocarbons.

3.11.2 The sign letters shall be at least one-inch high.

3.12 Provide a minimum of 2 people familiar with the operation while a fluorocarbon compound is being used in quantities exceeding 10 pounds.

3.13 Accomplish preliminary pressure tests of charging/flushing equipment after connecting aboard ship each time equipment is used. Pressure shall equal 100 percent of charging/flushing equipment working pressure. Hold test pressure for 15 minutes. Allowable leakage: None.
3.13.1 Ensure charging equipment is isolated from equipment to be charged prior to test.

3.14 A certified technician shall, as required by 2.3, ensure that fluorocarbon gases are not vented to the interior of the ship or to the atmosphere when pressure is released from the system by utilizing reclaiming/recycling equipment tested and certified by an Environmental Protection Agency (EPA) approved laboratory or organization.

3.14.1 Collect CFC's for either recycling back into the same system/piece of equipment from which the material was removed or recovering the CFC's for turn-in.

4. **NOTES**:

4.1 Following are examples of commonly used fluorocarbon compounds:

 Trichlorofluoromethane, Freon 11, R-11, (CFC-11)
 Dichlorodifluoromethane, Freon 12, R-12, (CFC-12)
 Chlorotrifluoromethane, R-13 (also component of R-503) (CFC-13)
 Pentachlorofluoroethane, (CFC-111)
 Tetrachlorodifluoroethane, (CFC-112)
 1,1,2 Trichloro-1,2,2 Trifluoroethane, Freon 113, Freon TF, Freon PCA, Genetron 113 (CFC-113)
 1,2 Dichlorotetrafluorothane, R-114, Freon 114 (CFC-114)
 Chloropentafluoroethane, R-115 (also component of R-502) (CFC-115)
 Heptachlorofluoroethane, (CFC-211)
 Hexachlorodifluoroethane, (CFC-212)
 Pentachlorotrifluoroethane, (CFC-213)
 Tetrachlorotetrafluoroethane, (CFC-214)
 Trichloropentafluoroethane, (CFC-215)
 Dichlorohexafluoroethane, (CFC-216)
 Chloroheptafluoroethane, (CFC-217)

4.2 EEBD equipment for Government representatives will be provided by the Government.

4.3 ODS material must be procured as Government Furnished Material (GFM) from the DOD ODS Reserve. Notify the SUPERVISOR at least 14 working days prior to anticipated usage.

4.4 The following definitions are delineated by Navy policy:

4.4.1 Recover - To remove refrigerant in any condition from a system and store it in an external container without necessarily testing or processing it in any way.

4.4.2 Recycle - To reduce contaminants in used refrigerant by oil separation and single or multiple passes through devices such as replaceable core filter dryers which reduce moisture, acidity and particulate matter. The
term usually applies to procedures implemented at the field job site or at a local service shop.

4.4.3 Reclaim - To reprocess refrigerant to new product specifications by means which may include distillation. Chemical analysis of the refrigerant is required to determine that appropriate product specifications are met. This usually implies the use of processes or procedures which are available only at refrigerant reprocessing or manufacturing facilities.
1. SCOPE:

1.1 Title: Boiler Handhole and Manhole Seats and Plates; inspect

2. REFERENCES:

2.1 S9221-C1-GTP-010, Repair and Overhaul Main Propulsion Boiler

2.2 803-841216, Handhole Plates and Arch Bars for Boilers

3. REQUIREMENTS:

3.1 Remove handhole and manhole plates from headers and drums of boilers. Plates shall be identified and tagged as to respective boilers.

3.2 Wirebrush clean to bare metal handhole and manhole plates, studs, strongbacks, and fasteners. Wirebrush clean to bare metal handhole and manhole gasket seating surfaces using a power driven wire cupbrush. Ensure complete removal of rust and gasket material.

3.2.1 Wirebrush clean to bare metal external surfaces in way of "B" and "C" measurement contact areas using a power-driven wire wheel or needle gun.

3.3 Visually inspect gasket seating surfaces of handhole and manhole plates and the drum and header for erosion, corrosion, gouges, steam cuts, crack indications, excessive pitting, grooves, and any irregularities that may cause poor or leaky joints. Inspect external surfaces of headers in way of "B" and "C" measurement areas for erosion and corrosion. Inspect studs and nuts for deterioration and damaged and stripped threads.

3.3.1 Visually inspect, measure, and record the following handhole and manhole gasket seating surface criteria in accordance with Paragraph 5-8.2 of 2.1 and Attachment A.

3.3.1.1 Seat taper: Use template of flat stock and feeler gage to measure maximum taper around periphery of handhole and manhole seats.
3.3.1.2 Minimum wall thickness: Measure header wall thickness using a point micrometer at each side of the header cross sectional minor axis.

3.3.1.3 Minimum seat thickness: Measure header seat thickness with a flat-faced micrometer at the 4 points of the header cross sectional major and minor axis.

3.3.1.4 Handhole Plate Overlap: Measure maximum gap clearance between shoulder of the handhole plate and handhole with handhole plate located in the most extreme misaligned position. Subtract the measurement from the plate seat width to establish the amount of plate overlap. Handhole plates used for measurements shall conform to 2.2.

3.3.1.5 Manhole Plate Clearance: Measure clearance between shoulder of manhole plate and manhole at 8, 45-degree increments, with the manhole plate accurately centered.

3.4 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.3 to the SUPERVISOR. Report shall list each handhole and manhole seat which failed to meet the minimum allowable values listed in Appendices 5D, 5E, and 6C of 2.1.

3.5 Install handhole and manhole plates, using new gaskets conforming to MIL-G-15342 and applicable boiler technical manual.

4. NOTES:

4.1 Equipment technical manual will be listed in the invoking Work Item.
1. **SCOPE:**

 1.1 Title: Lubricating Oils and Hydraulic Fluids; analyze

2. **REFERENCES:**

 2.1 S9086-H7-STM-010/CH-262, Lubricating Oils, Greases, Specialty Lubricants, and Lubrication Systems

 2.2 S9086-S4-STM-010/CH-556, Hydraulic Equipment (Power Transmission and Control)

 2.3 S9086-HB-STM-010/CH-233, Diesel Engines

3. **REQUIREMENTS:**

 3.1 Accomplish tests of each sample in accordance with the specified test methods of Table One or Table 2 of this item.

 3.1.1 Test selections shall be based on the sample type and service.

 3.2 Determine whether water present in each sample is fresh or salt water.

 3.2.1 Measure and record salinity content in parts per million (ppm).

 3.3 Accomplish a spectrographic analysis of each sample, recording and reporting the concentration of the following elements in ppm with the indicated degree of accuracy:

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td></td>
</tr>
</tbody>
</table>

 1 of 4
3.3.1 The sensitivity and reliability of the equipment used for the test shall be that the standard deviation obtained in the analysis for each specified element shall not exceed the appropriate value in the following table:

<table>
<thead>
<tr>
<th>ELEMENT CONCENTRATION IN STANDARD REFERENCE SPECIMEN (RANGE IN PPM)</th>
<th>STANDARD DEVIATION (MAXIMUM IN PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-9</td>
<td>1.5</td>
</tr>
<tr>
<td>10-19</td>
<td>2</td>
</tr>
<tr>
<td>20-49</td>
<td>3</td>
</tr>
<tr>
<td>50-99</td>
<td>5</td>
</tr>
<tr>
<td>100-199</td>
<td>8</td>
</tr>
<tr>
<td>200-500</td>
<td>15</td>
</tr>
</tbody>
</table>

3.4 Accomplish specific gravity test for each MIL-H-19457 sample and determine hydrocarbon oil content.

3.5 Accomplish specific gravity and ignition test for each MIL-H-22072 sample and determine high temperature stability after 168 hours at 158, plus or minus 2 degrees Fahrenheit.

3.6 Submit one legible copy, in hard copy or electronic media, of a report listing completed test results of 3.1 through 3.5 for each sample to the SUPERVISOR.

3.6.1 Reports shall be submitted within 48 hours after the qualified chemical laboratory receives each sample.

3.6.2 Reports shall include recommendations for continued use, disposal, or resampling of each tested oil or fluid sample.

3.7 Use Table 262-4-1 of 2.1 and Table 556-8-1 of 2.2 for guidance for test accept and reject criteria for each in-service sample.

3.7.1 Use Table 233-8-2 of 2.3 for test accept and reject criteria for 9000 Series lube oil.

3.8 Use the applicable Military Specification for accept and reject criteria of each sample from new fluids and oils.

4. NOTES:

4.1 Ship's Force will identify (MIL-SPEC) specification for each sample from in-service sources.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FLASH POINT DEG C (DEG F) D92</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PERCENT WATER D95</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>VISCOSITY CS @ 40 DEG. C (104 DEG. F) and 100 DEG. C (212 DEG. F) D445</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACID NO. D974</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PRECIPITATION NO. D91</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASH D482</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TOTAL BASE NO. D664 (TEST KIT)</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

X -- IDENTIFIES EACH TEST REQUIRED FOR EACH FLUID TYPE
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FLASH POINT DEG. C (DEG. F) D92</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PERCENT WATER D95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>VISCOSITY CS @ 40 DEG. C (104 DEG.F) and 100 DEG. C (212 DEG. F) ASTM D445</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PERCENT WATER D1744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NEUTRALIZATION NO. MAX. ASTH D974</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PARTICLE COUNT NAS CLASS 9 MAX</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

TABLE 2

HYDRAULIC FLUIDS

X -- IDENTIFIES EACH TEST REQUIRED FOR EACH FLUID TYPE
1. **SCOPE:**

 1.1 Title: Synthetic Fire-Resistant Hydraulic Fluid; control

2. **REFERENCES:**

 2.1 None.

3. **REQUIREMENTS:**

 3.1 Accomplish the following for control of MIL-H-19457 and/or MIL-H-22072 Synthetic Fire-Resistant Hydraulic Fluid:

 3.1.1 Monitor and exercise positive control of accesses to and egresses from areas in which the hydraulic fluid is being handled.

 3.1.1.1 Post warning signs at entrances and in work areas (2-inch minimum letters on signs) stating: **CAUTION: SYNTHETIC FIRE-RESISTANT HYDRAULIC FLUID HANDLING. UNAUTHORIZED PERSONNEL KEEP OUT.**

 3.1.1.2 All areas shall be roped off or otherwise secured and identified.

 3.1.2 Hydraulic fluid shall be contained and immediately cleaned up in event of spill.

 3.1.2.1 Rags in sufficient quantity shall be on hand to clean up and control spills.

 3.1.2.2 Plastic bags for disposal of oily rags shall be available and partially filled or filled bags removed at the end of each shift.

 3.1.2.3 Used fluid shall be pumped into drums stenciled: **USED SYNTHETIC FLUID,** for disposal.

 3.1.3 Requirements for handling:
3.1.3.1 In addition to normal personal protective equipment (PPE), rubber gloves, face shields, and rubber aprons shall be used by personnel handling fire-resistant hydraulic fluid.

3.1.3.2 Spills on clothing shall be cause to remove clothing and rinse in fresh water.

3.1.3.3 Spills on skin shall be washed with soap and rinsed with fresh water.

3.2 Submit one legible copy, in hard copy or electronic media, of a report of each spill in excess of 5 gallons to the SUPERVISOR.

3.3 Upon completion of work the contractor shall notify the SUPERVISOR in writing of the completion of the work, certifying that the area is cleaned and that the area is safe to enter.

4. **NOTES:**

4.1 None.
1. SCOPE:

1.1 Title: Polychlorinated Biphenyls (PCBs); control

2. REFERENCES:

2.1 40 CFR Part 761, Polychlorinated Biphenyls (PCBs) Manufacturing, Processing, Distribution in Commerce, and Use Prohibitions

2.2 Toxic Substances Control Act (TSCA)

3. REQUIREMENTS:

3.1 Visually inspect equipment suspected of containing PCBs for leaks, deterioration, and corrosion prior to opening, removing, or installing equipment.

3.1.1 Submit one legible copy, in hard copy or electronic media, of a report listing results of the inspection conducted in 3.1 to the SUPERVISOR if PCBs are identified.

3.2 Consider wool felt to contain PCB's and chromium.

3.2.1 Submit one legible copy, in hard copy or electronic media, of a report listing the type of wool felt (gasket or damping material), location, and approximate quantity to the SUPERVISOR.

3.3 Provide a copy of a control, method of removal, and disposal plan in accordance with 2.1 and/or 2.2 to the SUPERVISOR.

4. NOTES:

4.1 None.
1. SCOPE:

1.1 Title: Light-Off Assessment (LOA) Support for Diesel Propulsion System; provide

2. REFERENCES:

2.1 None.

3. REQUIREMENTS:

3.1 Complete work in the main propulsion machinery spaces, steering gear room, shaft alleys, pump rooms, auxiliary machinery rooms, designated fuel tanks, and feedwater tanks at least 15 calendar days prior to the scheduled Light-Off Assessment (LOA). Repairs, installations, testing, and adjustments of auxiliary machinery, systems, and equipment outside those spaces which support the main propulsion system directly, indirectly, or for emergencies shall also be completed.

3.1.1 The term complete is defined to mean the accomplishment of contractor responsible work that is possible without lighting off the main propulsion diesel engines until after a successful Light-Off Assessment.

3.1.2 The following work shall be complete:

3.1.2.1 Repair and installation of machinery, equipment, blowers, piping systems, gages, thermometers, meters, operating instructions and warning plates, protective guards, flange shields, remote shutdown devices, strainer shields, valves and handwheels, insulation and lagging, check valves, steam traps and orifices, regulators and reducing valves, remote operating gear and pull cables, valve reach rods, pipe hangers and braces, valve locking devices, valve position indicators, indicators, gage lines, label plates, relief valves and hand lifting levers, boiler safety valves and easing gear, sight glasses and guards, fuel strainers, soot blowers, boiler casings, fire fighting systems and equipment, handrails, ladders, access doors and scuttles, ventilation systems, supply and exhaust vent screens, lighting systems (incandescent, fluorescent, and emergency battle lanterns), electric cables and runs, cable straps, cable packing, cable tags, alarm systems,
ground straps, flex hoses, resilient mounts, safety devices, stenciling, interior communication systems, tachometers, and resiliently-mounted pipe hangers.

3.1.2.2 Calibration of gages, thermometers, tachometers, pyrometers, and meters.

3.1.2.3 Cold setting of relief valves, diesel engine governors, overspeed trips, piping spring hangers, regulators and reducing valves, high temperature alarms and switches, high and low pressure control switches, low lube oil pressure alarms, ship service boiler water high and low level alarms.

3.1.2.4 Painting.

3.1.2.5 Filling of lube oil, fuel oil, and feedwater tanks.

3.1.2.6 Bilges shall be clean and gas free, "Safe for Workers."

3.1.3 Complete portions of required test procedures that can be completed without diesel engine light-off.

3.2 Correct contractor responsible preliminary LOA discrepancies prior to the turnover of engineering spaces to Ship's Force. The 2-week period prior to the LOA is reserved for Ship's Force preparation for LOA. Contractor work will not be allowed in the engineering spaces during this period unless specifically authorized by the SUPERVISOR.

3.2.1 Submit one legible copy, in hard copy or electronic media, of a weekly report on the status of completion of preliminary LOA discrepancies. Notify the SUPERVISOR immediately upon determination of any discrepancies that cannot be corrected prior to the scheduled LOA, giving the reason and expected completion date.

3.3 Provide the services of a contractor quick response team during the LOA to correct Government and contractor discrepancies.

3.3.1 Coordinate the correction of discrepancies as they are discovered at the direction of the SUPERVISOR.

3.3.2 The quick response team members shall have with them (or readily accessible), the tools of their trade for immediate use in the correction of discrepancies.

4. NOTES:

4.1 The LOA is a comprehensive assessment of the ship in the key areas of: The level of knowledge and fire fighting capability of propulsion plant personnel; the adequacy of Engineering Department administrative programs and
procedures; the material readiness of the propulsion plant; and the state of cleanliness and preservation of main propulsion and auxiliary machinery spaces. The LOA will be accomplished by the Propulsion Examining Board (PEB) or the Type Commander Staff. The assessment will be conducted immediately prior to scheduled diesel engine light-off and it must be concluded successfully prior to diesel engine light-off. The material assessment portion usually takes less than 12 hours. If restrictive discrepancies are identified, those discrepancies must be corrected prior to diesel engine light-off.

4.2 The SUPERVISOR will establish an inspection team and accomplish a preliminary LOA inspection in conjunction with Ship's Force 4 to 8 weeks prior to the LOA to determine and record discrepancies which would impact upon the LOA. The pre-LOA will be about 4 days in duration and will result in the identification of discrepancies and incomplete work considered necessary to support a successful Light-Off Assessment. Each discrepancy noted in the inspection will be described in simple terms on a 4-part, serialized form. The form will identify the general location of the discrepancy and the associated work Item number, if applicable. The fourth copy of the form, made of hard card with an attachment wire, will be hung by the SUPERVISOR'S inspection team in the immediate proximity of the discrepancy (on the deficient item itself, when practical). Upon completion of the pre-LOA the Supervisor will identify contractor responsible discrepancies to the contractor. Deficient items identified that are the responsibility of the Government will be screened for accomplishment by the Ship's Force. That portion of this work that cannot be accomplished by the Ship's Force will be considered for accomplishment by the contractor.

4.2.1 Any time after completion of the pre-LOA inspection that additional discrepancies are discovered, they will be similarly identified and screened.
1. **SCOPE:**
 1.1 Title: Integrated Total Ship Testing; manage

2. **REFERENCES:**
 2.1 None.

3. **REQUIREMENTS:**
 3.1 Prepare and manage an Integrated Total Ship Test Management Plan.
 3.1.1 Define and document the responsibility, lines of authority, and interrelation of personnel who manage, perform, or verify work.
 3.1.2 Include a schedule of the restoration of ship's installed services to support completion of Stage 5 testing.
 3.1.3 Include a procedure for reporting problems in delivery dates of the Contractor furnished material (CFM), Government furnished material (GFM), Government furnished equipment (GFE), and Government furnished information (GFI) for ship's systems.
 3.1.4 Include organizational responsibility for equipment and system installation, repair, maintenance, start-up, operation, and test.
 3.1.5 Submit one legible copy, in hard copy or electronic media, of the Management Plan to the SUPERVISOR not later than 15 working days prior to start of availability.
 3.2 Develop an Integrated Total Ship Test Plan, using GFI for guidance.
 3.2.1 Include a shipyard Test Sequence Network (TSN) and test schedule, with Government and Contractor responsibilities defined.
 3.2.2 Include required external services, with Government and Contractor responsibilities.
 3.2.3 Include a list of necessary test equipment and software, with required dates and responsible provider.
3.2.4 Include organizational responsibility for equipment operation and accomplishment of testing, including Government and Contractor manning requirements.

3.2.5 Include a list of SUPERVISOR, contractor, Alteration Installation Team (AIT), and Ship's Force key test team personnel, with test sign-off authority.

3.2.6 Include administrative procedures for submittal of Test Problem Reports (TPRs), Test Procedures (TPs), Test Failure Reports (TFRs), and test status.

3.2.7 Include identification and display of the combat system critical path for testing.

3.2.8 Include provision for completion of total ship testing through Stage 5 prior to dock trials.

3.2.9 Define the requirements of both Contractor and Government for general and special purpose test equipment, weapon test shapes, dummy loads, and test weights, to accomplish total ship testing. Identify known and anticipated deficiencies in required type, quantity, calibration, or availability, to support the production or test schedule.

3.2.10 Submit one legible copy, in hard copy or electronic media, of the Test Plan to the SUPERVISOR at the start of the availability.

3.3 Develop and manage a Total Ship Testing Task Group.

3.3.1 The group shall consist of representatives of the SUPERVISOR, Contractor, AIT Team(s) on scene, and Ship's Force.

3.3.2 A Contractor representative shall act as Chairman. Decisions remain subject to approval of the SUPERVISOR.

3.3.2.1 Provide the status of Total Ship Testing. Document problems impeding progress of meeting scheduled dates or of satisfying technical requirements.

3.3.2.2 Maintain minutes and agendas. Minutes shall include a list of attendees, action items with assignments, highlights of proceedings, and identified problems with their potential impact.

3.3.2.3 Distribute copies of the minutes to the members not later than 2 working days after each meeting.

3.4 Manage Total Ship Testing.

3.4.1 Accomplish the requirements of the Test Plan of 3.2.
3.4.2 Coordinate testing in accordance with the Test Plan.

3.4.3 Coordinate stationing of test personnel in accordance with the Test Plan. Provide test procedures and test data sheets to test personnel.

3.4.4 Coordinate the performance of each test procedure and the recording of each test result on data sheet provided in Attachment A.

3.4.4.1 Ensure sufficient information is provided on the comment sheet for any identified discrepancy, including corrective action.

3.4.4.2 Submit one legible copy, in hard copy or electronic media, of completed data sheets and test procedures for each test in accordance with the Test Plan to the SUPERVISOR within 5 working days of test completion. Include the documentation of each test procedure not completed, and reasons for incompletion.

3.4.5 Coordinate preparations for sea trials.

3.4.6 Develop a test status report that summarizes the results of the test and certification program.

3.4.6.1 Provide the rationale for test procedures not attempted, incomplete, or failed.

3.4.6.2 Provide details and status of test procedures that were completed with discrepancies.

3.4.7 Submit one legible copy, in hard copy or electronic media, of the test status report to the SUPERVISOR not later than 5 working days after completion of availability.

4. NOTES:

4.1 The ship's Commanding Officer will provide personnel for recording data during Ship's Force/Government responsible total ship testing.

4.2 GFI required to develop the Test Plan may include: Integrated Test Package (ITP), Total Ship's Test Requirements Index (TSTR), Test Index, Test Summary, and known AIT test requirements.

4.3 Stage 5 testing is that testing normally conducted between 2 or more sub-elements within the combat, mobility, support, or containment areas of the ship.
ATTACHMENT A

TEST PERFORMANCE, RESPONSIBILITY/WITNESS RECORD

TEST PROCEDURE:

TITLE:

SHIP’S NAME:

HULL NO.:

TEST PERFORMANCE

TEST RESULTS / STATUS (Check all that apply)

[] Complete [] Failed
[] Complete w/Discrepancies [] Not attempted
[] Incomplete [] Aborted

If TPR issued TPR #:

Comments:

__

__

__

__

TEST RESPONSIBILITY / WITNESS

Test performed by: [] Contractor [] Ship’s Force [] Government

Print and Sign Name:

Position and Responsibility:

If SF/GOV: Ship/Agency Name:

Dept/Code:

Tel/Fax Number:

Test witnessed by: [] Contractor [] Ship’s Force [] Government

Print and Sign Name:

Position and Responsibility:

If SF/GOV: Ship/Agency Name:

Dept/Code:

Tel/Fax Number:

Test record received by: [] SUPERVISOR (Only)

Print and Sign Name:

Position and Responsibility:

Tel/Fax Number:

__

__

__

__

4 of 4
ITEM NO: 009-67
PY-06
1. SCOPE:

1.1 Title: Bolted Bonnet Valve; repair

2. REFERENCES:

2.1 S9253-AD-MMM-010, Maintenance for Valves, Traps, and Orifices (Non-Nuclear), User's Guide and General Information

3. REQUIREMENTS:

3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean free of foreign matter (including paint), and inspect parts for defects.

3.3 Repair valve as follows:

3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish in way of packing surface and remove raised edges and foreign matter.

3.3.2 Chase and tap exposed threaded areas.

3.3.3 Clean and spot-in bonnet to body gasket mating surfaces.

3.3.4 Machine, grind, or lap and spot-in gate or discs to seats (including back seat) to obtain a 360-degree continuous contact.

(V) "INSPECT CONTACT"

3.3.4.1 Inspect contact using blueing method.

(I)(G) "VERIFY LEVEL I PARTS" (See 4.3)

3.4 Assemble valve, installing new gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.
3.4.1 Pack feedwater, condensate, and steam valves with valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.1.

3.4.2 Pack valves of systems other than feedwater, condensate, or steam with valve stem packing conforming to MIL-P-24396, Type B.

4. **NOTES:**

4.1 Operational test of valve will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.
<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/ Alloy Steel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/ Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>2/ Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>2/ Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.
TABLE 2

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th>1/</th>
<th>2/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
<td>Grade 2H or 4 steel</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
</tr>
<tr>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td>For services to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>Nickel Copper - Class A or Class B</td>
</tr>
<tr>
<td></td>
<td>4/ 5/</td>
</tr>
</tbody>
</table>
TABLE 2 (CON'T)

<table>
<thead>
<tr>
<th>1/ Alloy Steel/Carbon Steel</th>
<th>2/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
1. **SCOPE:**

 1.1 Title: Bolted Bonnet Valve; repair

2. **REFERENCES:**

 2.1 S9253-AD-MMM-010, Maintenance for Valves, Traps, and Orifices (Non-Nuclear), User’s Guide and General Information

3. **REQUIREMENTS:**

 3.1 Matchmark valve parts.

 (V) "INSPECT PARTS FOR DEFECTS"

 3.2 Disassemble, clean free of foreign matter (including paint), and inspect parts for defects.

 3.3 Repair valve as follows:

 3.3.1 Straighten stem to within 0.002 inch total indicator reading. Polish stem to a 32 Root-Mean-Square finish in way of packing surface and remove raised edges and foreign matter.

 3.3.2 Chase and tap exposed threaded areas.

 3.3.3 Clean and spot-in bonnet to body gasket mating surfaces.

 3.3.4 Machine, grind, or lap and spot-in gate or discs to seats (including back seat) to obtain a 360-degree continuous contact.

 (V) "INSPECT CONTACT"

 3.3.4.1 Inspect contact using blueing method.

 (I)(G) "VERIFY LEVEL I PARTS" (See 4.3)

 3.4 Assemble valve, installing new gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.
3.4.1 Pack feedwater, condensate, and steam valves with valve stem packing conforming to MIL-P-24503/24583 combination in accordance with Chapter 6 of 2.1.

3.4.2 Pack valves of systems other than feedwater, condensate, or steam with valve stem packing conforming to MIL-P-24396, Type B.

4. **NOTES:**

4.1 Operational test of valve will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.

4.3 The paragraph referencing this note is considered an (I)(G) if the valve is Level I.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>1/ Alloy Steel</th>
<th>2/ Carbon Steel</th>
<th>Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies and</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>Bolts to MIL-DTL-1222</td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Class B</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
<td></td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud and, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.
<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALVE BODY MATERIAL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1/</th>
<th>2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy Steel/Carbon Steel</td>
<td>Nonferrous</td>
</tr>
<tr>
<td>3/ Studs and Bolts to MIL-DTL-1222</td>
<td>4/</td>
</tr>
<tr>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
<td>5/</td>
</tr>
<tr>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Nickel Copper - Class A or Class B</td>
</tr>
<tr>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>5/</td>
</tr>
<tr>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>Nickel Copper - Class A</td>
<td></td>
</tr>
</tbody>
</table>

ITEM NO: 009-68
FY-06 (CH-1)
TABLE 2 (CON’T)

<table>
<thead>
<tr>
<th>1/ Alloy Steel/Carbon Steel</th>
<th>2/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2 1/4 percent Chromium, one percent Molybdenum, Composition B - 1 1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
1. **SCOPE:**

 1.1 Title: Heavy Weather Plan; provide

2. **REFERENCES:**

 2.1 MIL-HDBK-1026/4, Mooring Design

 2.2 TR-6012-OCN, U. S. Navy Heavy Weather Mooring Safety Requirements

 2.3 DDS 582-1, Design Data Sheet, Calculations for Mooring Systems

 2.4 S9086-TW-STM-010/CH-582, Mooring and Towing

3. **REQUIREMENTS:**

 3.1 Provide a written plan that shall be implemented during gales, storms, hurricanes, and destructive weather, using 2.1 through 2.4 for guidance.

 3.1.1 Submit one legible copy, in hard copy or electronic media, of the plan to the SUPERVISOR no later than 15 days prior to the start of the contract availability period.

 3.1.2 Submit updated or changed plans to the SUPERVISOR as they occur.

 3.2 Ensure that the heavy weather plan designates responsibility and implements procedures for prevention of damage to naval ships, craft, barges, and lighters. This includes periods when ships, craft, barges, and lighters are physically located in private contractors’ plants; during times when work on ships, craft, barges, and lighters at naval facilities requires openings to hulls or decks; and when contractor owned/furnished floating equipment is tied alongside ships, craft, barges, and lighters.

 3.2.1 The plan shall contain specific responsibilities and detailed actions to be taken during the weather conditions listed below.

 3.2.2 Conditions where there is substantial advance warning for approaching adverse weather are addressed by the following 4 categories:
3.2.2.1 Gale/Storm/Hurricane Condition IV: Trend indicates a possible threat of destructive winds of force indicated within 72 hours.

3.2.2.2 Gale/Storm/Hurricane Condition III: Destructive winds of force indicated are possible within 48 hours.

3.2.2.3 Gale/Storm/Hurricane Condition II: Destructive winds of force indicated are anticipated within 24 hours.

3.2.2.4 Gale/Storm/Hurricane Condition I: Destructive winds of force indicated are anticipated within 12 hours or less.

3.2.3 Conditions where there is little or no advance warning for approaching adverse weather are addressed by the following 2 categories:

3.2.3.1 Thunderstorm/Tornado Condition II: Destructive winds accompanying the phenomenon indicated are reported or expected in the general area within 6 hours. Lightning and thunder are also anticipated.

3.2.3.2 Thunderstorm/Tornado Condition I: Destructive winds accompanying the phenomenon are imminent. Lightning and thunder are also anticipated.

3.3 Ensure that the plan contains, as a minimum, the following information as dictated by conditions listed in 3.2:

3.3.1 Steps to be taken to remove or secure staging items or equipment on decks of ships, craft, barges, and lighters, pier or dry dock, including cranes, that could become wind-borne.

3.3.2 Protection of ships, craft, barges, and lighters from damage from other floating equipment, such as barges, doughnuts, work floats, and other ships, craft, barges, and lighters.

3.3.3 Provisions for protection of government equipment and material in custody of the contractor from damage by pierside flooding.

3.3.4 Provisions for removal of temporary hoses, welding lines, air lines, oxygen/acetylene lines, etc., extending through watertight closures.

3.3.5 Provisions for security, emergency fire and flooding protection, emergency shipboard dewatering and fire main capability, emergency shipboard electrical generation, and emergency shipboard communications.

3.3.5.1 Specific requirements for emergency shipboard dewatering and fire main capability are shown on Attachment A.

3.3.5.2 The minimum requirements for emergency shipboard electrical generation equipment are shown on Attachment B.
3.3.6 Provisions for access to the ship for personnel and emergency equipment during and immediately following the storm consistent with prudent safety precautions.

3.3.7 Assurance that all hull/deck openings are made watertight.

3.3.8 Steps to be taken to secure floating piers during high winds/high tides.

3.3.9 Provisions for messing contractor, Ship's Force, and SUPSHIP duty personnel for 3 days (minimum). The maximum number of Navy personnel will be 15.

3.3.10 The name and telephone number (business and residential) of the private contractor's single point of contact. This person shall have the authority to commit the contractor to take necessary actions as requested by the SUPERVISOR.

3.3.11 Provision for operation and manning of a Hurricane Control Center, with capabilities of telephone and portable radio communications with the ship and SUPSHIP duty personnel.

3.4 Ensure that the plan contains the following mooring related information:

3.4.1 Specify steps to be taken to secure ships, craft, barges, and lighters to contractor's pier, dry dock, graving dock, marine railway, or other facility. Information must define specific precautions to be taken and supporting calculations, to include limits of docking blocks and dock stability for both normal and heavy weather conditions. Calculations for heavy weather configurations shall include wind and tidal considerations.

3.4.1.1 Provide the heavy weather state at which the ship must be undocked.

3.4.2 Submit mooring calculations for the worst anticipated loading condition during the availability. For ships with a self-compensating fuel system, the loading condition shall show the self-compensation fuel system full of water, fuel, or some combination of fuel and water, projecting the worse possible condition as shown in calculations for maintaining ship’s stability. Determine the combined loading due to wind load from each direction and both peak flood and ebb current loads at low and high tides. Calculations may require re-submittal if significant changes occur from the original estimate on which the calculations were based.

3.4.3 For ships in dry dock, provide limits and supporting calculations for listed conditions. Analyze both the "normal" dock configuration and the "heavy weather" configuration.

3.4.3.1 Maximum safe wind speed and surge for side block strength and stability. Include maximum loading of the side blocks on ship.
3.4.3.2 Maximum safe wind speed and surge for dry dock strength and stability.

3.4.3.3 Surge required to float ship.

3.4.3.4 Table or graph showing safe combinations of wind speed and surge.

3.4.4 For ships pierside, provide limits and supporting calculations for ship loading conditions specified in 3.4.2. Analyze the "heavy weather" mooring configuration that would be used during the conditions specified in 3.2. Analyze worst-case wind directions including frontal, broadside, and quartering.

3.4.4.1 Maximum safe wind speed for mooring strength. Include strength of pier, pier fittings, mooring lines, and shipboard fittings. Maximum applied load on any mooring line shall be the breaking strength of the mooring line divided by 2.5 (factor of safety of 2.5).

3.4.4.2 Maximum safe surge for mooring.

3.4.4.3 Maximum safe elongation of mooring lines. Include the following information:

- Size and type of mooring line;
- Percent elongation of mooring line at failure;
- Tattletale free length and length between attachments.

3.4.4.4 Sketch, showing size, type, and location (vertical and horizontal angles) of all securing devices including fenders, bumpers, and camels.

3.4.5 Include the following statement, providing the necessary data:

USS _________ can be safely moored to withstand a maximum of ___ mph winds with a ___ knot current and a ___ foot storm surge.

4. NOTES:

4.1 The SUPERVISOR will set Conditions of Readiness consistent with the forecasts and advisories of the local Weather Service Office of National Oceanic and Atmospheric Administration (NOAA).
4.2 NOAA defines the 5 categories of hurricanes as follows:

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>WIND SPEED</th>
<th>STORM SURGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74 - 95 MPH</td>
<td>OR 4 - 5 FT ABOVE NORMAL</td>
</tr>
<tr>
<td>2</td>
<td>96 - 110 MPH</td>
<td>OR 6 - 8 FT ABOVE NORMAL</td>
</tr>
<tr>
<td>3</td>
<td>111 - 130 MPH</td>
<td>OR 9 - 12 FT ABOVE NORMAL</td>
</tr>
<tr>
<td>4</td>
<td>131 - 155 MPH</td>
<td>OR 13 - 18 FT ABOVE NORMAL</td>
</tr>
<tr>
<td>5</td>
<td>GREATER THAN 155 MPH</td>
<td>GREATER THAN 18 FT ABOVE NORMAL</td>
</tr>
</tbody>
</table>

4.3 Attachment C contains regional heavy weather conditions based on historical data and is provided as information only; the historical data is not intended to place limitations/restrictions on other values appropriate and/or previously authorized by a Naval Supervising Activity for their cognizant contractor(s) sites.
ATTACHMENT A

<table>
<thead>
<tr>
<th>SHIP TYPE</th>
<th>Emergency Dewatering Capacity GPM</th>
<th>Emergency Fire Main Flow - GPM at 100 PSI as Measured at Connection Point to Ship’s Fire Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Destroyer Tender</td>
<td>1000</td>
</tr>
<tr>
<td>AE</td>
<td>Ammunition Ship</td>
<td>1000</td>
</tr>
<tr>
<td>AFS</td>
<td>Combat Stores Ship</td>
<td>1000</td>
</tr>
<tr>
<td>AGDS</td>
<td>Miscellaneous Auxiliary Ship</td>
<td>1000</td>
</tr>
<tr>
<td>AGF</td>
<td>Miscellaneous Flagship</td>
<td>1000</td>
</tr>
<tr>
<td>AGM</td>
<td>Missile Range Instrumentation Ship</td>
<td>1000</td>
</tr>
<tr>
<td>AGOR</td>
<td>Oceanographic Research Ship</td>
<td>500</td>
</tr>
<tr>
<td>AGS</td>
<td>Surveying Ship</td>
<td>1000</td>
</tr>
<tr>
<td>AH</td>
<td>Hospital Ship</td>
<td>1000</td>
</tr>
<tr>
<td>AK</td>
<td>Cargo Ship</td>
<td>1000</td>
</tr>
<tr>
<td>AKR</td>
<td>Vehicle Cargo Ship</td>
<td>1000</td>
</tr>
<tr>
<td>A0</td>
<td>Oiler</td>
<td>1000</td>
</tr>
<tr>
<td>AOE</td>
<td>Fast Combat Support Ship</td>
<td>1000</td>
</tr>
<tr>
<td>AOG</td>
<td>Gasoline Tanker</td>
<td>1000</td>
</tr>
<tr>
<td>AOR</td>
<td>Fleet Replenishment Oiler</td>
<td>1000</td>
</tr>
<tr>
<td>AOT</td>
<td>Transport Oiler</td>
<td>1000</td>
</tr>
<tr>
<td>AP</td>
<td>Transport Ship</td>
<td>1000</td>
</tr>
<tr>
<td>APL</td>
<td>Berthing and Messing Barge</td>
<td>500</td>
</tr>
<tr>
<td>AR</td>
<td>Repair Ship</td>
<td>1000</td>
</tr>
<tr>
<td>ARC</td>
<td>Cable Repair & Laying Ship</td>
<td>1000</td>
</tr>
<tr>
<td>ARS</td>
<td>Salvage Ship</td>
<td>500</td>
</tr>
<tr>
<td>AS</td>
<td>Submarine Tender</td>
<td>1000</td>
</tr>
<tr>
<td>ASR</td>
<td>Submarine Rescue</td>
<td>500</td>
</tr>
<tr>
<td>ATF</td>
<td>Ocean Tug Fleet</td>
<td>500</td>
</tr>
<tr>
<td>ATS</td>
<td>Salvage & Rescue Tug</td>
<td>500</td>
</tr>
<tr>
<td>BB</td>
<td>Battleship</td>
<td>1500</td>
</tr>
<tr>
<td>CG</td>
<td>Guided Missile Cruiser</td>
<td>1000</td>
</tr>
<tr>
<td>CGN</td>
<td>Guided Missile Cruiser (Nuclear)</td>
<td>1000</td>
</tr>
<tr>
<td>CV</td>
<td>Aircraft Carrier</td>
<td>1500</td>
</tr>
<tr>
<td>CVN</td>
<td>Aircraft Carrier (Nuclear)</td>
<td>1500</td>
</tr>
<tr>
<td>DD</td>
<td>Destroyer</td>
<td>1000</td>
</tr>
<tr>
<td>DDG</td>
<td>Guided Missile Destroyer</td>
<td>1000</td>
</tr>
<tr>
<td>FF</td>
<td>Frigate</td>
<td>1000</td>
</tr>
<tr>
<td>FFG</td>
<td>Guided Missile Frigate</td>
<td>1000</td>
</tr>
<tr>
<td>FFT</td>
<td>Frigate (Reserve Training)</td>
<td>1000</td>
</tr>
<tr>
<td>SHIP TYPE</td>
<td>Emergency Fire Main</td>
<td>Emergency Fire Main</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Dewatering</td>
<td>Capacity</td>
</tr>
<tr>
<td></td>
<td>Flow - GPM at 100 PSI</td>
<td>as Measured at Connection</td>
</tr>
<tr>
<td></td>
<td>GPM</td>
<td>Point to Ship's Fire Main</td>
</tr>
<tr>
<td>IX</td>
<td>Unclassified Miscellaneous</td>
<td>1000</td>
</tr>
<tr>
<td>LCC</td>
<td>Amphibious Command Ship</td>
<td>1000</td>
</tr>
<tr>
<td>LCU</td>
<td>Landing Craft Utility</td>
<td>500</td>
</tr>
<tr>
<td>LHA/LHD</td>
<td>Amphibious Assault Ship</td>
<td>1500</td>
</tr>
<tr>
<td>LKA</td>
<td>Attack Cargo Ship</td>
<td>1000</td>
</tr>
<tr>
<td>LPD</td>
<td>Amphibious Transport Dock</td>
<td>1000</td>
</tr>
<tr>
<td>LPH</td>
<td>Amphibious Assault Ship</td>
<td>1500</td>
</tr>
<tr>
<td>LSD</td>
<td>Landing Ship Dock</td>
<td>1500</td>
</tr>
<tr>
<td>LST</td>
<td>Landing Ship Tank</td>
<td>100</td>
</tr>
<tr>
<td>MCM</td>
<td>Mine Countermeasures Ship</td>
<td>500</td>
</tr>
<tr>
<td>MHC</td>
<td>Minesweeping Coastal Ship</td>
<td>500</td>
</tr>
<tr>
<td>MSO</td>
<td>Minesweeper-Ocean</td>
<td>500</td>
</tr>
<tr>
<td>PC</td>
<td>Patrol Coastal</td>
<td>500</td>
</tr>
<tr>
<td>PHM</td>
<td>Hydrofoil Missile</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Patrol Combatants</td>
<td>500</td>
</tr>
<tr>
<td>YRB</td>
<td>Repair & Berthing Barge</td>
<td>500</td>
</tr>
<tr>
<td>YRBM</td>
<td>Repair, Berthing & Messing Barge</td>
<td>500</td>
</tr>
<tr>
<td>YTB</td>
<td>Harbor Tug (Large)</td>
<td>500</td>
</tr>
<tr>
<td>YTM</td>
<td>Harbor Tug (Medium)</td>
<td>500</td>
</tr>
</tbody>
</table>

* Classification includes ASDV, YFU, YFB

** Includes supply to operate 2 hangar sprinkler groups and 2, 2-1/2 inch hose lines.

*** Includes supply to operate one sprinkler group and 2, 2-1/2 inch hoses.
ATTACHMENT B

HEAVY WEATHER

EMERGENCY POWER REQUIREMENT

<table>
<thead>
<tr>
<th>SHIP TYPE (NOTE 3)</th>
<th>MINIMUM POWER REQUIREMENT (KILOWATTS) EXCEPT AS NOTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD 15, 18, 19</td>
<td>Destroyer Tender 358</td>
</tr>
<tr>
<td>AD 37, 38</td>
<td>529</td>
</tr>
<tr>
<td>AD 41, 42, 43, 44</td>
<td>809</td>
</tr>
<tr>
<td>AE 21CL</td>
<td>Ammunition Ship 202</td>
</tr>
<tr>
<td>AE 26CL</td>
<td>264</td>
</tr>
<tr>
<td>AFS 1CL</td>
<td>Combat Stores Ship 342</td>
</tr>
<tr>
<td>AFS 2CL</td>
<td>Deep Submergence Support Ship 186</td>
</tr>
<tr>
<td>AGF 3, 11</td>
<td>Miscellaneous Flagship 498</td>
</tr>
<tr>
<td>AGM</td>
<td>Missile Range Instrumentation Ship</td>
</tr>
<tr>
<td>AGOR 11, 23</td>
<td>Oceanographic Research Ship 109</td>
</tr>
<tr>
<td>AGOR 19</td>
<td>Ocean Surveillance Ship 246</td>
</tr>
<tr>
<td>AGS</td>
<td>Survey Ship 221</td>
</tr>
<tr>
<td>AH</td>
<td>Hospital Ship 628</td>
</tr>
<tr>
<td>AK</td>
<td>Cargo Ship</td>
</tr>
<tr>
<td>AKR</td>
<td>Vehicle Cargo Ship</td>
</tr>
<tr>
<td>AO(J) 51, 98, 99</td>
<td>Oiler 186</td>
</tr>
<tr>
<td>AO 105, 143, 187</td>
<td>Oiler 373</td>
</tr>
<tr>
<td>AO 177CL</td>
<td>Oiler 451</td>
</tr>
<tr>
<td>AO 177 (JUMBO)</td>
<td>Oiler 451</td>
</tr>
<tr>
<td>AOE 1CL</td>
<td>Fast Combat Support Ship 436</td>
</tr>
<tr>
<td>AOE 6</td>
<td>Fast Combat Support Ship 1090</td>
</tr>
<tr>
<td>AOR 1-6</td>
<td>Fleet Replenishment Oiler 264</td>
</tr>
<tr>
<td>AOR 7</td>
<td>295</td>
</tr>
<tr>
<td>AOT 168</td>
<td>Transport Oiler</td>
</tr>
<tr>
<td>AP 122</td>
<td>Transport Ship</td>
</tr>
<tr>
<td>APL</td>
<td>Berthing and Messing Barge 373</td>
</tr>
<tr>
<td>AR 5, 6, 7, 8</td>
<td>Repair Ship 373</td>
</tr>
<tr>
<td>ARC</td>
<td>Cable Repair and Laying Ship 264</td>
</tr>
<tr>
<td>ARD</td>
<td>Auxiliary Repair Dock</td>
</tr>
<tr>
<td>ARDM</td>
<td>Medium Auxiliary Repair Dock</td>
</tr>
</tbody>
</table>
HEAVY WEATHER

EMERGENCY POWER REQUIREMENT

<table>
<thead>
<tr>
<th>SHIP TYPE (NOTE 3)</th>
<th>MINIMUM POWER REQUIREMENT (KILOWATTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARS 8, 38CL</td>
<td>Salvage Ship</td>
</tr>
<tr>
<td>ARS 50CL</td>
<td>Salvage Ship</td>
</tr>
<tr>
<td>AS 11</td>
<td>Submarine Tender</td>
</tr>
<tr>
<td>AS 18</td>
<td></td>
</tr>
<tr>
<td>AS 19</td>
<td></td>
</tr>
<tr>
<td>AS 31, 32</td>
<td></td>
</tr>
<tr>
<td>AS 33, 34</td>
<td></td>
</tr>
<tr>
<td>AS 36, 37</td>
<td></td>
</tr>
<tr>
<td>AS 39, 40, 41</td>
<td>Submarine Rescue</td>
</tr>
<tr>
<td>ASR 9, 13, 14, 15</td>
<td></td>
</tr>
<tr>
<td>ASR 21CL</td>
<td></td>
</tr>
<tr>
<td>ATF 91, 113</td>
<td>Ocean Tug Fleet</td>
</tr>
<tr>
<td>ATS 1CL</td>
<td>Salvage and Rescue Tug</td>
</tr>
<tr>
<td>BB</td>
<td>Battleship</td>
</tr>
<tr>
<td>CG 16-24</td>
<td>Guided Missile Cruiser</td>
</tr>
<tr>
<td>CG 26CL</td>
<td></td>
</tr>
<tr>
<td>CG 47CL</td>
<td></td>
</tr>
<tr>
<td>CG 52CL</td>
<td></td>
</tr>
<tr>
<td>CGN 9</td>
<td>Guided Missile Cruiser (Nuclear)</td>
</tr>
<tr>
<td>CGN 25</td>
<td></td>
</tr>
<tr>
<td>CGN 35</td>
<td></td>
</tr>
<tr>
<td>CGN 36CL, 38CL</td>
<td></td>
</tr>
<tr>
<td>CV 60-62, 66</td>
<td>Aircraft Carrier</td>
</tr>
<tr>
<td>CV 63, 64, 67</td>
<td></td>
</tr>
<tr>
<td>CVN 65</td>
<td>Aircraft Carrier (Nuclear)</td>
</tr>
<tr>
<td>CVN 68-70</td>
<td></td>
</tr>
<tr>
<td>CVN 71</td>
<td></td>
</tr>
<tr>
<td>CVN 72</td>
<td></td>
</tr>
</tbody>
</table>
HEAVY WEATHER
EMERGENCY POWER REQUIREMENT

<table>
<thead>
<tr>
<th>SHIP TYPE (NOTE 3)</th>
<th>MINIMUM POWER REQUIREMENT (KILOWATTS EXCEPT AS NOTED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD 963-992, 997</td>
<td>Destroyer 498</td>
</tr>
<tr>
<td>DDG 2CL</td>
<td>Guided Missile Destroyer 280</td>
</tr>
<tr>
<td>DDG 37CL</td>
<td>358</td>
</tr>
<tr>
<td>DDG 51CL</td>
<td>1121</td>
</tr>
<tr>
<td>DDG 993CL</td>
<td>662</td>
</tr>
<tr>
<td>FF 1052CL</td>
<td>202</td>
</tr>
<tr>
<td>FFT 1052CL</td>
<td>202</td>
</tr>
<tr>
<td>FFG 7CL</td>
<td>436</td>
</tr>
<tr>
<td>LCC 19, 20</td>
<td>Amphibious Command Ship 436</td>
</tr>
<tr>
<td>LCU</td>
<td>Landing Craft</td>
</tr>
<tr>
<td>LHA 1CL</td>
<td>Amphibious Assault Ship 840</td>
</tr>
<tr>
<td>LHD 1CL</td>
<td></td>
</tr>
<tr>
<td>LKA 113CL</td>
<td>Attack Cargo Ship 218</td>
</tr>
<tr>
<td>LPD 1, 2, 4CL, 7CL, 14CL</td>
<td>Amphibious Transport 218</td>
</tr>
<tr>
<td>LPH 2, 3, 7, 9-12</td>
<td>Amphibious Assault Ship 280</td>
</tr>
<tr>
<td>LSD 36CL</td>
<td>Landing Ship Dock 295</td>
</tr>
<tr>
<td>LSD 41CL</td>
<td>334</td>
</tr>
<tr>
<td>LST 1179CL</td>
<td>Landing Ship Tank 280</td>
</tr>
<tr>
<td>MCM 1</td>
<td>Mine Countermeasures 80</td>
</tr>
<tr>
<td>MHC 1</td>
<td>Minehunter Coastal 35</td>
</tr>
<tr>
<td>MSO 443, 448, 490</td>
<td>Minesweep Ocean 35</td>
</tr>
<tr>
<td>PC</td>
<td>Patrol Coastal 50</td>
</tr>
<tr>
<td>PHM 1-6</td>
<td>Guided Missile Patrol Combatants 35 (NOTE 2)</td>
</tr>
<tr>
<td>YD</td>
<td>Floating Crane</td>
</tr>
</tbody>
</table>

* Type includes ASDV, YFU, YFB
HEAVY WEATHER
EMERGENCY POWER REQUIREMENT

<table>
<thead>
<tr>
<th>SHIP TYPE (NOTE 3)</th>
<th>MINIMUM POWER REQUIREMENT (KILOWATTS EXCEPT AS NOTED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YRB</td>
<td>Repair & Berthing Barge</td>
</tr>
<tr>
<td>YRBM</td>
<td>Repair, Berthing and Messing Barge</td>
</tr>
<tr>
<td>YTB</td>
<td>Harbor Tug (Large)</td>
</tr>
<tr>
<td></td>
<td>Yard Craft (Misc.)</td>
</tr>
</tbody>
</table>

GENERAL NOTES: The power requirement listed is the minimum considered necessary for emergency power if the main source of shore power is lost during heavy weather situations. Each contractor's heavy weather plan shall specify the individual power capacity for each ship connected to the ship's shore power distribution system. Electrical information referenced from MIL-HDBK-1025/2.

NOTES:

1 - CAPACITY IS GIVEN IN KW. UNLESS OTHERWISE INDICATED. INPUT VOLTAGE IS 450 VOLTS, 3 PHASE, 3 WIRE, 60 HERTZ, UNGROUNDED. POWER FACTOR IS APPROXIMATELY 0.8.

2 - REQUIREMENT IS TO SUPPORT AN EXISTING PORTABLE MOTOR GENERATOR SET WHICH CONVERTS THE 60 HERTZ POWER TO 400 HERTZ POWER. THE MOTOR GENERATOR SET NORMALLY ACCOMPANIES THE SHIP SUPPORT FACILITIES.

3 - POWER REQUIREMENTS FOR ANY SHIP TYPE NOT LISTED SHALL BE DETERMINED BY COMPARISON WITH A SHIP(S) OF SIMILAR DESIGN LOAD AND APPROPRIATE SHIP'S INFORMATION BOOK.
HEAVY WEATHER CONDITIONS

<table>
<thead>
<tr>
<th>SITE</th>
<th>WIND (Knots)</th>
<th>CURRENT (Knots)</th>
<th>SURGE (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bath, ME</td>
<td>83</td>
<td>2.5</td>
<td>8.7</td>
</tr>
<tr>
<td>Portsmouth NSY, NH</td>
<td>84</td>
<td>3.8</td>
<td>12.8</td>
</tr>
<tr>
<td>SUBBASE New London, CT</td>
<td>87</td>
<td>0.2</td>
<td>10.8</td>
</tr>
<tr>
<td>Norfolk NSY, VA</td>
<td>82</td>
<td>0.4</td>
<td>8.9</td>
</tr>
<tr>
<td>NAVSTA Norfolk, VA</td>
<td>87</td>
<td>0.8</td>
<td>8.4</td>
</tr>
<tr>
<td>NAB Little Creek, VA</td>
<td>91</td>
<td>0.3</td>
<td>7.1</td>
</tr>
<tr>
<td>Newport News Ship Building, VA</td>
<td>87</td>
<td>1.3</td>
<td>8.4</td>
</tr>
<tr>
<td>SUBBASE Kings Bay, GA</td>
<td>96</td>
<td>0.3</td>
<td>9.1</td>
</tr>
<tr>
<td>NAVSTA Mayport, FL</td>
<td>96</td>
<td>3.1</td>
<td>7.5</td>
</tr>
<tr>
<td>NAVSTA Pascagoula, MS</td>
<td>104</td>
<td>Negligible</td>
<td>6.1</td>
</tr>
<tr>
<td>NAVSTA Ingleside, TX</td>
<td>109</td>
<td>2</td>
<td>16.2</td>
</tr>
<tr>
<td>NAVSTA Everett, WA</td>
<td>74</td>
<td>0.6</td>
<td>14.4</td>
</tr>
<tr>
<td>SUBBASE Bangor, WA</td>
<td>64</td>
<td>1.1</td>
<td>14.7</td>
</tr>
<tr>
<td>Puget Sound NSY, WA</td>
<td>64</td>
<td>0.5</td>
<td>15.4</td>
</tr>
<tr>
<td>NAS North Island, CA</td>
<td>52</td>
<td>0.6</td>
<td>8.4</td>
</tr>
<tr>
<td>Pearl Harbor NSY, HI</td>
<td>87</td>
<td>Negligible</td>
<td>3.5</td>
</tr>
<tr>
<td>Guam</td>
<td>122</td>
<td>2</td>
<td>4.7</td>
</tr>
<tr>
<td>La Maddelana, Italy</td>
<td>89</td>
<td>Negligible</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
1. SCOPE:

1.1 Title: Confined Space Entry, Certification, Fire Prevention and Housekeeping for Unmanned Craft; accomplish

2. REFERENCES:

2.1 Standard Items

2.2 29 CFR Part 1915, Occupational Safety and Health Standards for Shipyard Employment

2.3 29 CFR Part 1910.134, Occupational Safety and Health Standards, Respiratory Protection

2.4 NFPA Standard 51B, Standard for Fire Prevention During Welding, Cutting, and Other Hot Work

2.5 NFPA Standard 312, Standard for Fire Protection of Vessels During Construction, Repair, and Lay-up

3. REQUIREMENTS:

3.1 Comply with the requirements of 2.2 through 2.5 and this item to determine whether or not an explosive or other dangerous atmosphere exists in tanks, spaces, and associated piping, including adjacent tanks, spaces, and piping, aboard the craft and control hot work and entry to those spaces to preclude damage to the craft or injury to personnel during the performance of this Job Order.

3.1.1 Submit one legible copy, in hard copy or electronic media, of a list of tanks or spaces to be opened or certified to the SUPERVISOR at least 24 hours prior to commencement of work.

3.1.1.1 Comply with additional requirements of 009-88 of 2.1 when accomplishing work in Collection, Holding and Transfer (CHT) and Mogas tanks, spaces, or associated piping.

3.1.2 Provide initial and annual update training for Competent Persons by utilizing a National Fire Protection Association (NFPA) Certified
Marine Chemist or NFPA training program meeting the requirements of Section 1915.7 of 2.2. The length of the initial training class shall be at least 24 hours. Annual update training shall be at least 8 hours.

3.1.3 Post a copy of the Marine Chemist's certificate, Certified Industrial Hygienist's test/inspection record, or Competent Person's test/inspection record at each access to the affected space while work in the space is in progress. A copy of the certificate or test/inspection record shall also be delivered to a location designated by the SUPERVISOR. In the event that the space is found to be NOT SAFE FOR WORKERS/NOT SAFE FOR HOT WORK, the space shall be posted accordingly and the SUPERVISOR and the craft shall be notified immediately. The posted copy shall be clearly visible and legible.

3.1.3.1 Initial certification of spaces that require a Certified Marine Chemist's certificate or Certified Industrial Hygienist's test/inspection in support of work operations shall be effective until conditions change which would void the certificate/record of test/inspection.

3.1.3.2 For those certified spaces which employees will enter, a Competent Person shall visually inspect and test each space certified as ENTER WITH RESTRICTIONS or SAFE FOR WORKERS as often as necessary, and, as a minimum, prior to entry by employees on a daily basis.

3.1.3.3 For those certified spaces affected by hot work, a Competent Person shall visually inspect and test each space certified as SAFE FOR HOT WORK as often as necessary and, as a minimum, daily prior to commencement of hot work to ensure that conditions established by the certificate are maintained. When hot work is conducted continuously, the affected spaces shall be visually inspected, tested, and recorded on a daily basis to maintain the SAFE FOR HOT WORK certification.

3.1.3.4 If a Competent Person finds that the conditions within a certified space fail to meet the applicable requirements for which it was certified, work in the space shall be stopped and may not be resumed until the space has been recertified by a Marine Chemist.

3.1.3.5 For those spaces where only Competent Person tests and inspections are required in accordance with 2.2, a Competent Person shall visually inspect and test each space as often as necessary and, as a minimum, daily prior to entry or commencement of hot work to ensure that conditions are safe.

3.1.3.6 After the Competent Person has determined initially that a space is safe for entry and finds subsequently that the conditions within the tested space fail to meet the requirements of 2.2, work shall be stopped until the conditions in the tested space are corrected, the space is retested, and a new record of tests/inspections is recorded and posted.
3.1.4 Tank cleaning personnel shall be trained annually on safety practices to include a discussion of safety information found in Subparts A, B, and Section 1915.152 of Subpart I of 2.2.

3.1.5 Submit one legible copy, in hard copy or electronic media, of each of the following documents to the SUPERVISOR prior to the accomplishment of work requiring the services identified below.

3.1.5.1 A roster of designated Competent Persons, along with contractor certification that the training in 3.1.2 has been completed within the past year. Updates to the roster each time Competent Persons are added, deleted, or retrained.

3.1.5.2 A list of Competent Person(s) and tank cleaning personnel who will enter or work in confined spaces, including company name, badge number, and date training was provided in accordance with 3.1.2 and 3.1.4.

3.1.5.3 A list of the names of the Shipyard/Plant Rescue Team Members, along with contractor certification that training requirements of Subpart B of 2.2 have been accomplished and are current for each Rescue Team Member, or documentation of arrangements made for an outside rescue team to respond promptly to a request for rescue service.

3.1.5.4 A copy of the program to be utilized to train fire watches in the areas identified in 2.2 and 2.4, including steps to be taken by the fire watch and hot work operator prior to accomplishment of hot work, proper selection and use of fire extinguishing equipment and other safety equipment, relationship between the fire watch and hot work operator, proper fire reporting procedures and other sounding of fire alarms, and reporting of fires to the craft's quarterdeck. This training should also include theory and practical (hands-on) fire suppression techniques. This training shall be provided to all newly assigned fire watches, with annual updates provided to personnel. Provide visible means of identifying trained fire watches, i.e., badge, sticker, vest, etc.

3.1.6 Spaces which are determined to contain Immediately Dangerous to Life or Health (IDLH) atmospheres shall never be entered except for emergency rescue or for short duration for installation of ventilation equipment in accordance with 2.2 and 2.3. When entering IDLH spaces for the purpose of installing ventilation, notify the SUPERVISOR prior to entry. Notifications of rescue shall be made as soon as possible.

3.1.7 Confirm that all personnel have exited the space prior to closure of tanks, voids, and cofferdams. Designate one person to account for all personnel who may have entered the space.

3.2 Provide a written notice for each job or separate area of hot work aboard the craft.
3.2.1 The notice shall state a description of the work to be done, the specific location of the hot work and compartments adjacent to decks, bulkheads, and similar structures upon which hot work is to be accomplished, the time hot work will commence, and current gas-free status of the area (if required), the absence or existence of combustible material in the vicinity of the operation, and if combustible material exists, what action shall be taken to protect the material from fire, the provision and assignment of a fire watch, and the affirmation that conditions at the work site (ventilation, temporary lighting, accesses) permit the fire watch to observe all areas where the hot work constitutes a fire hazard.

3.2.2 The notice shall affirm that a suitable, fully-charged fire extinguisher shall be available at the job site and provide for an inspection of the area 30 minutes after completion of the hot work or the cessation of hot work at the job site as the final action to complete the notice.

3.2.3 The notice shall be signed by a supervisor specifically designated as responsible for coordination of the hot work and the fire watch requirement.

3.2.4 One copy of each notice shall be given to the SUPERVISOR.

3.2.4.1 The notice to the SUPERVISOR shall precede the initiation of the actual hot work. A new notice is required if work is interrupted due to loss of gas-free status.

3.2.4.2 Notification of hot work planned Tuesday through Friday shall be delivered to the Commanding Officer's designated representative at least 30 minutes and not more than 24 hours preceding start of work.

3.2.4.3 Notification of hot work planned over a weekend or Monday following that weekend shall be delivered to the Commanding Officer's designated representative no later than 0900 on the Friday immediately preceding that weekend.

3.2.4.4 Notification of hot work planned on a federal holiday and on the day following the federal holiday shall be delivered to the Commanding Officer's designated representative no later than 0900 of the last working day preceding the federal holiday.

3.2.4.5 The notice shall be effective for 24 hours unless a shorter period is specified in the contract or the gas-free status of the work area or system requires stopping the work. A new notice is required if work is interrupted due to loss of gas-free status.

3.3 Provide fire watches, trained as outlined in 3.1.5.4, at all affected areas where hot work is being accomplished. Provide fire extinguishing equipment as described in 2.2, 2.4, and 2.5. Fire watches and equipment shall meet the following requirements, as a minimum:
3.3.1 A fire watch(es), other than the hot work operator, is required when:

3.3.1.1 Any flame cutting, welding, plasma cutting, arcning and gouging, electric arc welding, thermal spraying or any other hot work which produces sparks or slag that can be dropped or thrown or that causes heat to be transferred through a deck, bulkhead, or overhead to a location not visible to the hot work operator is being done.

3.3.1.2 Combustibles have not been removed or protected from heat conduction or ignition sources.

3.3.1.3 Equipment cannot be protected from falling sparks.

3.3.1.4 Openings in decks, bulkheads or overheads cannot be protected.

3.3.1.5 Ducts and conveyor systems cannot be blanked off, protected or shut down.

3.3.2 Each fire watch attending worker(s) performing hot work shall be equipped with a fully-charged and operable fire extinguisher, and shall remain at the job site for 30 minutes from the time the hot work is completed unless the contractor's Hot Work Supervisor surveys the affected work area and determines that there is no further fire hazard.

3.3.3 Where several workers are performing hot work at one site, the fire watch shall have a clear view of and immediate access to each worker performing hot work.

3.3.3.1 No more than 4 workers shall be attended by a single fire watch.

3.3.4 In cases in which hot material from hot work may involve more than one level, as in trunks and machinery spaces, a fire watch shall be stationed at each level unless positive means are available to prevent the spread or fall of hot material.

3.3.5 In cases where hot work is to be performed on a bulkhead or deck, combustible material shall be removed from the vicinity of the hot work on the opposite side of the bulkhead, overhead, or deck, and a fire watch shall be posted at each location.

3.3.5.1 If multiple blind compartments are involved in any hot work job, fire watches shall be posted simultaneously in each blind area.

3.4 Locate oxygen, acetylene, fuel gas, or gas supply systems off the craft. Manifolds connected to pierside supply systems may be placed on board as long as they are equipped with a shutoff valve located on the pier. The
pierside shutoff valve shall be in addition to the shutoff valve at the inlet to each portable outlet header required by 2.2.

3.4.1 Liquid oxygen (LOX) tanks used for fuel gas/oxygen operations shall be stored to prevent collisions by trucks, forklifts, falling objects, etc.

3.4.2 LOX tanks shall be staged in designated locations on the quay wall/pier to be determined jointly by the contractor/craft/SUPERVISOR.

3.4.3 When gas cylinders are in use on board the craft, they shall be located on the weather decks or in a location determined jointly by the contractor/craft/SUPERVISOR and shall be secured and in an upright position. The number of in-use cylinders shall be limited to those which are required for work in progress and which have pressure regulators connected to the cylinder valves. On-board reserve gas cylinders shall not exceed one-half the number of in-use cylinders and shall be located in a remote area of the weather decks or in a location determined jointly by the contractor/craft/SUPERVISOR. Reserve acetylene cylinders shall be secured in an upright position.

3.4.4 When not in use, gas cylinders and manifolds on board shall have valves closed, lines disconnected, protective cover (cap) in place, and shall be secured. Acetylene cylinders shall be secured in an upright position.

3.4.4.1 In order to eliminate the possibility of fire in confined and enclosed spaces as a result of gas escaping through leaking or improperly closed gas valves, the gas supply to the torch shall be shut off at the gas source whenever the torch is not to be used or whenever the torch is left unattended for a substantial period of time, such as during the lunch hour.

3.4.4.2 Overnight, at the change of shifts, or when the work operation is complete, the torch and hose shall be removed from confined spaces, including all tanks and voids.

3.4.4.3 Overnight, at the change of shifts, or when the work operation is complete, fuel gas and oxygen hoses shall be immediately removed from enclosed spaces unless alternate procedures are approved by the SUPERVISOR.

3.4.5 Upon completion of oxygen - fuel gas system hook-up, accomplish a pressure drop test to include the torch, hoses, and gages.

3.4.5.1 Apply pressure to the system. Back off pressure by turning off the valve supplying gases to the system. If the pressure on the gage drops, a leak on the system exists. If the pressure on the gage does not drop, the system is tight.
3.4.5.2 After applying pressure, wait two minutes to ensure pressure does not drop.

3.5 Use fire retarding materials aboard or adjacent to the craft for staging, screening, temporary covers, shelters, deck covering, and ventilation ducts. Proper documentation of fire retardancy shall be available for review upon request.

3.5.1 Lumber, except that used for pallets, shall be fire retarding in accordance with Category One, Type I, of MIL-L-19140. Plywood and staging boards shall be Category 2, Type II, of MIL-L-19140.

3.5.2 Storage of material aboard the craft shall be limited to that which is required for work in progress.

3.5.3 Prior to bringing equipment or working material aboard the craft, its crating and packing shall be removed. If the equipment or material may be damaged during handling, the crating and packing shall be removed immediately after the equipment or working material is brought aboard and taken ashore for disposal. A small quantity of pallets may be staged in a location determined jointly by the contractor/craft/SUPERVISOR aboard the craft for use in materials handling operations.

3.5.4 Temporary lights shall have 3-conductor cable, guard or shield, hook, and lamp holder. Exposed non-current-carrying metal parts of the fixture shall be grounded either through a third wire in the cable containing the current conductors, or through a separate wire which is grounded at the fixture's voltage source.

3.5.5 Flammable or combustible liquids with a flash point of 150 degrees Fahrenheit or less, including degreasers, solvents, and fuels shall be kept in safety cans when not in actual use or when left unattended and limited to one day's supply for on board use.

3.5.6 Rigging of hoses, welding leads, and temporary lights shall be kept clear of the decks on temporary trees or brackets and be arranged to minimize tripping and other safety hazards and to allow free access through doors, hatches, and passageways.

3.5.7 Ensure at least one unobstructed access to each main and auxiliary machinery space.

3.6 Accomplish a fire prevention and housekeeping inspection on a weekly basis whenever work is in progress. The inspection shall be made jointly with the SUPERVISOR. A written report of the discrepancies and corrective action to be taken shall be prepared by the contractor and copies distributed to the SUPERVISOR within 4 hours after completion of the inspection.
3.7 Report verbally each accident/fire occurring on the craft involving contractor/subcontractor personnel to the SUPERVISOR as soon as management becomes aware of such an event.

3.7.1 Submit a formal written report, in hard copy or electronic media, of the event to the SUPERVISOR within 24 hours of each accident requiring medical treatment, and each fire. The written report shall contain the name and ID number of each injured person, date and time of accident/fire, extent of each personal injury or property damage, contractor/subcontractor name, Job Order, type of accident/fire, location of event (craft name and hull number, space, compartment), and a brief description of the event including occurrences leading up to the accident/fire.

4. **NOTES:**

4.1 None.
1. **SCOPE:**

 1.1 Title: Testing Requirements for Piping Systems; accomplish

2. **REFERENCES:**

 2.1 S9086-RK-STM-010/CH-505, Piping Systems

 2.2 S9074-AR-GLB-010/278, Requirements for Fabrication Welding and Inspection, and Casting Inspection and Repair for Machinery, Piping, and Pressure Vessels

 2.3 T9074-AS-GLB-010/271, Requirements for Nondestructive Testing Methods

 2.4 MIL-STD-2035, Nondestructive Testing Acceptance Criteria

3. **REQUIREMENTS:**

 3.1 Accomplish testing of new and disturbed piping systems in accordance with 2.1.

 3.1.1 Master and backup test gage shall conform to gage range and graduation shown on Table One.

 (I) "LIQUID PENETRANT INSPECTION" or "MAGNETIC PARTICLE INSPECTION"

 3.1.2 Accomplish liquid penetrant or magnetic particle test on root layer of all P-1 and/or P-LT welded joints in accordance with Paragraph 505-11.1.2.6.a(1) of 2.1, and the requirements of 2.2 and 2.3. The accept or reject criteria shall be in accordance with Class One of 2.4.

 (I) "LIQUID PENETRANT INSPECTION"

 3.1.3 Accomplish liquid penetrant tests on final layer of all P-1 and/or P-LT welded joints in accordance with Paragraph 505-11.1.2.6.a(1) of 2.1, and P-2 welded joints in accordance with Paragraph 505-11.1.2.6.a(2) of 2.1 for operating conditions greater than 200 degrees Fahrenheit or 200 PSIG, and the requirements of 2.2 and 2.3. The accept or reject criteria shall be
in accordance with Class One of 2.4 for P-1 and/or P-LT, and Class 2 of 2.4 for P-2.

(V)(G) or (I)(G) "VISUAL INSPECTION - SHOP TEST" (See 4.2)

3.1.4 Accomplish a shop hydrostatic test of replacement piping, fittings, and components for evidence of external leakage and/or deformation. Allowable external leakage and/or deformation: None.

(V)(G) or (I)(G) "VISUAL INSPECTION - HYDROSTATIC OR OPERATING PRESSURE TEST" (See 4.2)

3.1.5 Visually inspect the pressurized system for evidence of external leakage and/or deformation. Allowable external leakage and/or deformation: None.

3.1.5.1 Joints requiring inspection shall remain uninsulated and unpainted until completion of successful inspection.

3.1.5.2 Provide a sketch of that portion of the system to be tested, showing the location of blanks, isolation valves, test connection, and the location of air vents to vent air. Sketch shall be on the test site during the accomplishment of the test.

(V)(G) "STATIC TEST"

3.1.6 Accomplish a static head pressure test of new and disturbed gravity drain piping (unpressurized piping), using clean, fresh water for a minimum of 30 minutes. Allowable leakage: None.

(V)(G) "OPERATIONAL TEST"

3.1.7 Accomplish an operational test of new and disturbed gravity drain piping for proper operation and unobstructed flow.

(V)(G) "OPERATIONAL TEST"

3.1.8 Accomplish an operational test of new and disturbed sounding tube piping by inserting a 16-inch theft sampler into sounding tube until it bottoms. Accomplish the test a minimum of 4 times for each sounding tube. There shall be no binding or sticking of sampler during this test.

4. NOTES:

4.1 Boiler pressure vessel piping is defined as, "The piping from the pressure vessel drum or header up to the first valve off the pressure vessel drum or header."
4.2 The paragraph referencing this note is considered an (I)(G) if the system is P-1, P-LT, or P-3A. If the system is P-2 or P-3B, then the paragraph is considered (V)(G).

4.3 Test pressure and test medium will be specified in invoking Work Item.
TABLE ONE - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From* To**</td>
<td>From To</td>
<td></td>
</tr>
<tr>
<td>5000 9500</td>
<td>0 10000</td>
<td>100</td>
</tr>
<tr>
<td>3000 5800</td>
<td>0 6000</td>
<td>30</td>
</tr>
<tr>
<td>2500 4800</td>
<td>0 5000</td>
<td>30</td>
</tr>
<tr>
<td>1500 2800</td>
<td>0 3000</td>
<td>20</td>
</tr>
<tr>
<td>1000 1800</td>
<td>0 2000</td>
<td>15</td>
</tr>
<tr>
<td>750 1300</td>
<td>0 1500</td>
<td>10</td>
</tr>
<tr>
<td>500 800</td>
<td>0 1000</td>
<td>10</td>
</tr>
<tr>
<td>250 500</td>
<td>0 600</td>
<td>5</td>
</tr>
<tr>
<td>150 250</td>
<td>0 300</td>
<td>2</td>
</tr>
<tr>
<td>100 175</td>
<td>0 200</td>
<td>2</td>
</tr>
<tr>
<td>75 125</td>
<td>0 160</td>
<td>1</td>
</tr>
<tr>
<td>50 80</td>
<td>0 100</td>
<td>1</td>
</tr>
<tr>
<td>20 50</td>
<td>0 60</td>
<td>0.5</td>
</tr>
<tr>
<td>10 25</td>
<td>0 30</td>
<td>0.2</td>
</tr>
<tr>
<td>7 10</td>
<td>0 15</td>
<td>0.1</td>
</tr>
<tr>
<td>5 7</td>
<td>0 10</td>
<td>0.1</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.

2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. **SCOPE:**

1.1 Title: Physical Security at Private Contractor's Facility; accomplish

2. **REFERENCES:**

2.1 33 CFR Part 165, Regulated Navigation Areas and Limited Access Areas

2.2 33 CFR Part 334, Danger Zone and Restricted Area Regulations

3. **REQUIREMENTS:**

3.1 The requirements of 3.2.5, 3.2.6, 3.2.7, 3.2.8, and 3.2.9 are Force Protection Conditions the Contractor shall be able to meet under Force Protection Conditions Normal, Alpha, Bravo, Charlie, and Delta, respectively. The solicitation shall define the Force Protection Condition. Implementation of any other Condition, when directed by the SUPERVISOR, will be the subject of an equitable adjustment.

3.2 Provide a written plan which shall be implemented for the protection of personnel, U.S. Naval vessels, work in process, the material and equipment to be installed therein, and GFM drydocks (as applicable) at the Contractor's facility, which addresses the requirements of this Standard Item. The written plan shall, as a minimum, be identified as "For Official Use Only (FOUO)".

 3.2.1 Provide written designation to the SUPERVISOR of the individual who will be in charge of the security effort.

 3.2.2 Conduct a security conference with federal, state, and local authorities, Ship's Force, and the SUPERVISOR within 5 calendar days prior to ship's arrival.

 3.2.3 Attend security coordination meeting with Ship's Force and the SUPERVISOR to brief the Contractor's security plan and procedures prior to security conference of 3.2.2.

 3.2.4 Coordinate the establishment of the land and water areas adjacent to U.S. Naval vessels as restricted areas or limited waterway areas
in accordance with 2.1 or 2.2, in cooperation with the Navy, U.S. Coast Guard, and Army Corps of Engineers.

3.2.5 Under Force Protection Condition NORMAL, establish and maintain physical security boundaries and other security measures to provide safeguards against hazards, including unauthorized entry, malicious mischief, theft, espionage, sabotage, and terrorism at Contractor's facility in accordance with Attachment A, to include the following:

3.2.5.1 Perimeter physical barriers
3.2.5.2 Perimeter openings control
3.2.5.3 Access and circulation control
3.2.5.4 Armed security force
3.2.5.5 Protective lighting
3.2.5.6 Signs and posting of boundaries
3.2.5.7 Security force communications
3.2.5.8 Random antiterrorism measures (RAM)

3.2.6 Under Force Protection Condition ALPHA, establish and maintain the following requirements in addition to 3.2.5:

3.2.6.1 Additional plant boundary protection
3.2.6.2 Assistance from state, local, and other law enforcement agencies
3.2.6.3 Increased personnel, property, and perimeter security checks
3.2.6.4 Increased security force manning commensurate with the additional actions directed under this section
3.2.6.5 Increased waterfront surveillance
3.2.6.6 Place vehicle barriers to reduce ease of vehicular access adjacent to the ship

3.2.7 Under Force Protection Condition BRAVO, establish and maintain the following requirements in addition to 3.2.5 through 3.2.6:
3.2.7.1 Request the Captain of the Port or U.S. Coast Guard District Commander to activate the Naval Vessel Protection Zones in accordance with 2.1.

3.2.7.2 Brief the security force and supervisory personnel concerning the threat, the security precautions being implemented, and what action is to be taken with respect to strangers, unidentified vehicles, abandoned parcels or suitcases, or unusual activity in or near the Contractor's facility.

3.2.7.3 Establish communications with state, local, and other law enforcement, fire, and emergency management agencies.

3.2.7.4 Inspect buildings, rooms, and storage areas not in regular use for unusual conditions or suspicious activity.

3.2.7.5 Increase security spot checks of vehicles, persons, and buildings near U.S. Naval vessels.

3.2.7.6 Limit access points for vehicles and personnel commensurate with performance of the Job Order.

3.2.7.7 Review requirements related to implementing additional security actions in the event of an increasing threat.

3.2.7.8 Identify paths for critical materials to maintain production.

3.2.8 Under Force Protection Condition CHARLIE, establish and maintain the following requirements in addition to 3.2.5 through 3.2.7:

3.2.8.1 Brief all employees working at the facility, including the ship's crew and subcontractor employees, concerning the threat, the security precautions being implemented, and what action is to be taken with respect to strangers, unidentified vehicles, abandoned parcels, containers or suitcases, and any other suspicious or unusual activity.

3.2.8.2 Clear the area within 100 feet (30.5 meters) of U.S. Naval vessels of all non-mission-essential materials.

3.2.8.3 Secure buildings, rooms, and storage areas not in regular use.

3.2.8.4 Inspect the interior and exterior of buildings in regular use for suspicious activity or objects at frequent intervals.

3.2.8.5 Increase protection for crew berthing to reduce vulnerability.
3.2.8.6 List work that would be required to permit safe relocation of the vessel and its crew to the nearest government facility as designated by the SUPERVISOR.

3.2.8.7 Determine work that will be stopped if the next higher Force Protection Condition is implemented. Determine a list of and inform mission-essential personnel, including Contractor work force. Communicate critical Work Items to the SUPERVISOR, ship's Commanding Officer, and/or Shipyard Commander.

3.2.8.8 Position floats, work boats, and barges along the sides of the U.S. Naval vessel and any occupied berthing barges to create a buffer zone.

3.2.8.9 Inspect 100 percent of vehicles entering the controlled industrial area and/or pier.

3.2.9 Under Force Protection Condition DELTA, establish and maintain the following requirements in addition to 3.2.5 through 3.2.8:

3.2.9.1 Immediately notify state and local law enforcement agencies and the U.S. Coast Guard of the incident or imminent threat.

3.2.9.2 Limit access points to the absolute minimum.

3.2.9.3 Strictly control all facility access points, ensure positive identification of all personnel, and search all vehicles, suitcases, briefcases, and packages entering the Contractor's facility.

3.2.9.4 Accomplish continuous security patrols of areas, to include the waterfront, occupied by U.S. Naval vessels and personnel.

3.2.9.5 Prepare U.S. Naval vessels for movement away from the Contractor's facility when directed by the SUPERVISOR.

3.2.9.6 Discontinue work except that directly related to the integrity of the vessel and as otherwise directed by the SUPERVISOR.

3.3 Submit one legible copy, in hard copy or electronic media, of the plan to the SUPERVISOR for review and approval no later than 15 days prior to the start of the availability.

3.3.1 Accomplish the requirements of the approved plan.

3.3.2 Any changes at the Contractor's facility affecting physical security or the approved plan shall be submitted to the SUPERVISOR for approval within 24 hours.
3.4 Provide procedures for coordinating the Contractor's security efforts with those of the SUPERVISOR and the Commanding Officer's designated representative.

3.5 Prepare an itemized statement of cost incurred for the work covered by this Standard Item. Submit one legible copy, in hard copy or electronic media, of the statement to the SUPERVISOR within 30 days of delivery or redelivery (as applicable) of the ship. The statement shall itemize the total direct labor hours with the applicable direct labor rates, overhead, General and Administrative (G&A) and/or other indirect rates, material, material handling charges, subcontractor costs, Other Direct Costs (ODC), and freight costs (as applicable). Where final overhead rates are not available, use the most current billing rate(s).

3.5.1 The Government may perform an audit of the Contractor's statement of cost incurred. The Contractor, upon request, shall make available to the SUPERVISOR all records, related correspondence, and the substantiating data upon which the statement of cost incurred is based.

4. NOTES:

4.1 U.S. Naval vessel means any vessel owned, operated, chartered, or leased by the U.S. Navy; any pre-commissioned vessel under construction for the U.S. Navy, once launched into the water; and any vessel under the operational control of the U.S. Navy or a Combatant Command.
ATTACHMENT A
OTHER SECURITY MEASURES

1. **Perimeter Physical Barriers**

a. Physical barriers, including both natural (e.g., mountains, swamps, thick vegetation, rivers, bays, cliffs) and structural (e.g., fences, walls, doors, gates, vehicle barriers) which control, delay, impede, and discourage access by unauthorized persons. To be effective, such barriers shall be augmented by armed security force personnel or other means of protection and assessment.

 b. Physical barriers shall be employed along Contractor facility perimeters. The barrier or combination of barriers used shall afford an equal degree of continuous protection along the entire perimeter.

 c. Structural barriers such as fences or walls shall be a minimum of 8 feet in height, and any uncontrolled opening shall be securable to afford protection against unauthorized entry.

2. **Perimeter Openings.** Openings in the perimeter barrier shall be kept to the minimum necessary for the safe and efficient operation of the Contractor facility. Access through such openings shall be controlled, or the openings shall be secured.

3. **Access and Circulation Control**

a. A system of personnel and vehicle movement control is required at Contractor facilities. The degree of control shall be in keeping with efficient operations yet afford defense-in-depth to provide graduated levels of protection.

 b. Establish positive access control measures at entry control points to the Contractor's facility to protect against unauthorized access.

 c. Establish procedures for inspecting persons, their property and vehicles at entry and exit points.

4. **Armed Security Force.** The Contractor security force shall consist of designated persons specifically organized, trained, armed, and equipped to provide physical security.

5. **Protective Lighting**

a. Protective lighting, to include work lighting, increases the effectiveness of security forces and has considerable deterrent value.
b. Contractors shall provide adequate illumination to discourage or detect attempts to enter facilities and reveal the presence of unauthorized persons within such areas.

c. Lighting shall support security force activities such as identification of badges and personnel at perimeter openings, surveillance of facility perimeter/avenues of approach, and inspection of unusual or suspicious circumstances.

6. **Signs and Posting of Boundaries**

 a. Trespass laws applicable to the jurisdiction in which the facility is located will govern signs and posting of perimeter boundaries at Contractor facilities.

 b. Size, placement, and use of any language in addition to English should be appropriate for the stated purpose. Signs will read essentially as follows:

 WARNING
 RESTRICTED AREA
 KEEP OUT

 Authorized Personnel Only

 c. Signs shall be posted at regularly-used points of entry and at intervals along the facility perimeter such that any reasonable person would conclude that everyone crossing the boundary into the facility would have been informed of the above.

7. **Security Force Communications.** The activity security force requires sufficient equipment to maintain continuous, secure 2-way voice communications between elements (fixed/mobile posts, and supervisory personnel) of the security force and U.S. Naval vessel's watch section. Establish communications between the Contractor's security force and the U.S. Naval vessel's watch section.

8. **Random Antiterrorism Measures (RAM).** As a deterrent, randomly apply the measures from higher Force Protection Conditions and other RAM including:

 a. Keep personnel involved in implementing increased security requirements on call.

 b. Inspect deliveries to protect against the introduction of unauthorized material.
c. Cars and other non-mission essential items shall be moved 100 feet from U.S. Naval Vessels and buildings where the crew is located or work is in progress.

d. Inspect mail for letter or parcel bombs.

e. On entry of visitors to the facility, physically inspect them and accompanying items.

f. Search vehicles entering the facility.

g. Erect barriers and obstacles to provide additional traffic controls to areas where U.S. Naval Vessels and crews are located.

h. Consult local authorities about closing public roads and facilities that might make sites more vulnerable.

i. Other site-specific RAM that shall be incorporated into the Contractor's physical security plan and/or company-specific implementation procedures.
1. SCOPE:

1.1 Title: Shipboard Electrical/Electronic/Fiber Optic Cable; remove, relocate, repair, and install

2. REFERENCES:

2.1 Standard Items

2.2 DOD-STD-2003, Electric Plant Installation Standard Methods for Surface Ships and Submarines

2.3 MIL-STD-2042, Fiber Optic Topology Installation Standard Methods for Naval Ships

2.4 S9300-A6-GYD-010, Electrical Workmanship Inspection Guide for Surface Ships and Submarines

2.5 SE000-01-IMB-010, Navy Installation and Maintenance Book (NIMB), Section IX, Installation Standards (Source CD: N0002400003)

2.6 MIL-STD-1310, Shipboard Bonding, Grounding, and Other Techniques for Electromagnetic Compatibility and Safety

2.7 SE000-01-IMB-010, Navy Installation and Maintenance Book (NIMB), Section VII, Industrial Electromagnetic Compatibility (IEMC) Work Process Instructions (Source CD: N0002400003)

2.8 IA PUB-5239/31, Information Assurance Shipboard Red/Black Installation Publication

2.9 NSTISSAM TEMPEST/2-95, Red/Black Installation Guidance (FOUO)

3. REQUIREMENTS:

3.1 Isolate and remove each cable designated for removal or replacement by the individual Work Items.

3.1.1 Remove each cable in its entirety.
3.1.1.1 Blank each bulkhead, deck penetration, and multi-cable transit device from which cable was removed and which will not be reused, in accordance with Section 3 of 2.2 and Part 3 of 2.3.

3.1.1.2 Blank each hole not required to be used in equipment from which cable was removed.

3.1.1.3 Remove unused hangers from which cable was removed and which will not be reused, and grind areas flush in way of removals.

3.1.1.4 Install new banding for cableways affected by cable removals, in accordance with Section 4 of 2.2 and Part 4 of 2.3.

3.2 Identify and isolate each cable to be pulled back, rerouted, relocated, or reused to support work required by the individual Work Items.

3.2.1 Inspect each cable end to be disconnected for correct identification sleeving, including size, type, and legible lettering in accordance with referenced drawings. Ensure lugs are secured to leads and are of correct size and type, and the insulation is not damaged. Ensure optical connectors are secured to the cable, the correct type, and the cable jacket is not damaged. Accept and reject criteria for lugs and sleeving for non-fiber optic cables shall be in accordance with Chapters 3 and 4 of 2.4.

3.2.1.1 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.2.1 to the SUPERVISOR.

3.2.2 Disconnect each cable. Record and retain electrical and optical hook-up data.

3.2.2.1 Accomplish the requirements of 009-22 of 2.1 for disconnected non-fiber optic cables.

3.2.2.2 Accomplish the requirements of Method 6D1 of Part 6 of 2.3 for fiber optic cable.

3.2.3 Remove each cable from equipment and pull back to predetermined locations. Coil each cable and secure to prevent damage.

3.2.3.1 Protect disconnected connectors and wiring from the environment.

3.2.4 Install each cable to equipment or component in accordance with 2.2 and 2.5 for non-fiber optic cable, and 2.3 for fiber optic cable.

3.2.5 Band disturbed cable in accordance with Section 4 of 2.2 for non-fiber optic cable, and Part 4 of 2.3 for fiber optic cable.
3.2.6 Bond and ground non-fiber optic cable in accordance with 2.6.

3.2.7 Accomplish the requirements of 009-22 of 2.1 for non-fiber optic cables upon completion of banding and prior to reconnecting.

3.2.8 Accomplish the requirements of Method 6D1 of Part 6 of 2.3 for fiber optic cables upon completion of banding and prior to reconnection.

3.2.9 Connect each cable, using referenced drawings or retained hook-up data.

3.2.10 Prepare each cable end and serve the lead bundles in accordance with 2.2 and 2.5 for non-fiber optic cable and 2.3 for fiber optic cable.

3.2.11 Install new cable identification tags in accordance with 2.2 and Part 4 of 2.3, using 2.5 for guidance.

3.3 Isolate and splice non-fiber optic cables in accordance with Section One, Group E of 2.2, to support work required by the individual Work Items. Fiber optic cables shall not be spliced.

3.3.1 Accomplish the requirements of 009-22 of 2.1 for each spliced non-fiber optic cable.

3.3.2 Accomplish the requirements of 3.2.5 through 3.2.11.

3.4 Isolate and repair **non-fiber optic cables** in accordance with Section One, Group **A through D** of 2.2, and **fiber optic cable in accordance with** Part One of 2.3, to support work required by the individual Work Items.

3.4.1 Accomplish the requirements of 009-22 of 2.1 for each non-fiber optic cable.

3.4.2 Accomplish the requirements of Method 6D1 of Part 6 of 2.3 for each fiber optic cable.

3.4.3 Accomplish the requirements of 3.2.5 through 3.2.11.

3.5 Install each new cable, cableway, penetration, lug, and connector in accordance with 2.2, 2.5, and 2.6 for non-fiber optic cable and 2.3 for fiber optic cable, and referenced drawings, to support work required by the individual Work Items.

3.5.1 New cable shall conform to MIL-DTL-24643 (low smoke), and MIL-DTL-24640 (lightweight) in lieu of MIL-C-915. New Radio Frequency (RF) cables shall conform to MIL-C-17 (Rev) low smoke. New fiber optic cable shall conform to MIL-PRF-85045.
3.5.1.1 Preserve the cable data package provided with new fiber optic cable. Retain the original cable data package with the unused portion of the cable.

3.5.1.2 Submit one legible copy, in hard copy or electronic media, of a report containing copies of the cable data packages obtained in 3.5.1.1 and cable number listings of the cables taken from each reel to the SUPERVISOR.

3.5.2 Accomplish a visual and continuity test of each fiber optic cable in accordance with Method 6A1 and Method 6D1 of 2.3.

3.5.2.1 Submit one legible copy, in hard copy or electronic media, of a report listing the results of the requirements of 3.5.2 to the SUPERVISOR.

3.5.3 Use existing cableways and penetrations wherever possible. Penetrations shall be correct size in accordance with 2.2 and 2.3.

3.5.4 For hard-wired cables, install new wire markers conforming to SAE-AMS-DTL-23053, Class One, white, marked with indelible ink.

3.5.4.1 Mark in accordance with the referenced drawings and/or equipment technical manual.

3.5.4.2 Install new lugs of correct size and shape conforming to MIL-T-16366 or SAE-AS7928. Do not cut off strands of copper to reduce size of lead to fit lug. Use correct barrel and hole size.

3.5.4.3 Install new fiber optic connectors of the correct size and type conforming to MIL-C-83522 or MIL-C-28876.

3.5.5 Accomplish the requirements of 009-22 of 2.1 upon completion of lugging, connector attachment, and banding of non-fiber optic cables.

3.5.6 Accomplish the requirements of Method 6C1 of Part 6 of 2.3 upon the completion of connector attachment, slack management, and banding for fiber optic cables.

3.5.6.1 Submit one legible copy, in hard copy or electronic media, of a report listing the requirements of 3.5.6 to the SUPERVISOR, using Attachment A.

3.5.7 Connect leads to terminal boards and connectors to equipment using referenced drawings.

3.6 Weatherproof and seal connectors exposed to the weather in accordance with 2.7.
3.7 Submit a written procedure to the SUPERVISOR for review and approval prior to the initiation of production work for the installation of multipin, coaxial, and fiber optic connectors, using 2.2, 2.3, and 2.5 for the minimum requirements.

3.7.1 This procedure only requires a one-time submittal/approval unless the Standard Items change and/or references change or are updated, and shall contain the following minimum information:

3.7.2 Reference the appropriate fabrication document for which the procedure is applicable.

3.7.3 Qualification requirements for the personnel performing the work.

3.7.4 Inspection and documentation forms.

3.7.5 Acceptance and rejection criteria.

3.8 Provide written designation of the Qualified Persons who will prepare electrical/fiber optic cable endings to receive connectors, assemble connector parts on the cable endings, and attach the connectors to the cable endings. Provide written designation of the Qualified Person or Persons who will supervise and inspect the execution of the process.

3.8.1 Provide written substantiation of the credentials of the Qualified Persons to the SUPERVISOR prior to the start of work.

3.8.2 Any additions or modifications of the information provided in 3.8 shall be provided in writing to the SUPERVISOR prior to the start or continuation of work.

3.9 Inspect existing cableways affected as a result of work required by the individual Work Items and interferences within the first 25 percent of contract completion. Ensure that cableways, penetrations, hangers, and associated hardware are in accordance with 2.2.

3.9.1 Submit one legible copy, in hard copy or electronic media, of a report of cableway conditions not in compliance with 2.2 to the SUPERVISOR, using Attachment B, within 72 hours of completion of inspections.

3.10 Install new fasteners conforming to MIL-DTL-1222, Type One, Grade 316, stainless steel, for areas exposed to weather and high moisture areas, and Type One, Grade 2 or 5, carbon steel, zinc plated, for other areas to support work required by the individual Work Items.

3.11 Remove, install, and relocate cables which are part of the secure electrical information processing systems or are located within a secure
processing space in accordance with 2.8 and 2.9 to support work required by
the individual Work Items.

3.12 Accomplish the requirements of 009-25 of 2.1 for the local air hose
test of each disturbed multi-cable transit device.

3.13 Accomplish the requirements of 009-32 of 2.1 for new and disturbed
surfaces.

4. **NOTES:**

4.1 Pulled-back cables are those which are disconnected and physically
removed from a wireway, conduit, or cableway to protect the cable from
industrial work.

4.2 Reused cables are those cables disconnected from the equipment to
facilitate equipment removal.

4.3 Electrical connector fabrication is the preparation of cable endings
to receive multipin connectors, coaxial connectors, fiber optic connectors,
assembly of connector parts on cables, and securing connectors to cables.

4.4 A Qualified Person is defined as a person who has successfully
completed connector fabrication training and meets the qualification
requirements stated below.

4.4.1 Emphasizes the importance of connector fabrication to the
performance and long-term reliability of shipboard combat systems.

4.4.2 Uses 2.2 through 2.5 for basic instructional material
supplemented by connector manufacturer's instructional material as desired.

4.4.3 Requires classroom lecture, study, and demonstration of each
topic in Group A of the Table of Contents of 2.2 and 2.3.

4.4.4 Requires individual student practice in the use of specified
tools and performance of connector fabrication techniques and procedures
described in Groups B through H of the Table of Contents of 2.2, Parts One
through 6 of 2.3, and Paragraph 2-20.2 of 2.5.

4.4.5 Requires a minimum of 32 hours of combined classroom lecture
and laboratory practice in the type of connectors to be fabricated, either
electrical/electronic or fiber optic.

4.5 Connector fabrication qualifications consist of:

4.5.1 Connector Fabricator Qualification requirement: Successful
completion of the training course required in 4.4.5 plus successful completion
of 40 hours on-the-job training under the tutelage of a qualified connector
fabricator or a qualified connector fabrication supervisor in the type of connectors to be fabricated, either electrical/electronic or fiber optic.

4.5.2 Connector Fabrication Supervisor Qualification requirement: Successful completion of the classroom training required in 4.4.5 plus be the incumbent of a supervisory electrical or electronic mechanic position.

4.5.3 Connector Fabrication Quality Assurance Inspector Qualification requirement: Successful completion of the classroom training required in 4.4.5 plus be the incumbent of a quality assurance specialist or inspector position.
ATTACHMENT A
OPTICAL MEASUREMENT RECORD

<table>
<thead>
<tr>
<th>DATE</th>
<th>HULL NUMBER</th>
</tr>
</thead>
</table>

INSPECTED BY: ______________ CODE: ______________ INSPECTING ORGANIZATION: ______________ TELEPHONE: ______________

ENDPOINT LOCATIONS OR EQUIPMENT NAME: SOURCE: ______________ DETECTOR: ______________

INSTALLATION/CONFIGURATION DRAWING: ______________ CABLE SERIAL NUMBER: ______________

CABLE TYPE: ______________ REFRACTIVE INDEX OF FIBER: ______________ ATTENUATION/KM: @1300 NM: ______________ @850 NM: ______________

CONNECTOR TYPE(S): ______________ TEST EQUIPMENT MANUFACTURER/MODEL NO.: ______________

SOURCE WAVELENGTH(S): ______________ CABLE/LINK LENGTH (M): ______________

<table>
<thead>
<tr>
<th>SOURCE CABLE NO.:</th>
<th>DETECTOR CABLE NO.:</th>
<th>1300NM/850NM WINDOW (CIRCLE ONE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIBER COLOR:</td>
<td>FIBER COLOR:</td>
<td>ACCEPTABLE LOSS (dB)</td>
</tr>
<tr>
<td>OR NUMBER</td>
<td>OR NUMBER</td>
<td>FORWARD REFERENCE POWER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FORWARD MEASURED POWER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FORWARD LOSS (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FORWARD RETURN LOSS (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REVERSE REFERENCE POWER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REVERSE MEASURED POWER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REVERSE LOSS (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REVERSE RETURN LOSS (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CABLE/LINK LENGTH (M)</td>
</tr>
</tbody>
</table>

NOTES:

1. RECORD MIL-SPEC NUMBER IF APPLICABLE.
2. RECORD VALUE FROM CABLE REEL DATA SHEET, IF UNAVAILABLE DEFAULT TO 1.490.
3. RECORD VALUES FROM CABLE REEL DATA SHEET.
4. FOR LINK MEASUREMENTS ONLY.
5. STANDARD COLORS: BLUE, ORANGE, GREEN, BROWN, SLATE, WHITE, RED, BLACK, YELLOW, VIOLET, PINK, TAN

CONNECTOR END FACE QUALITY: ________________________________

CONNECTION LIST: ________________________________

REMARKS: ________________________________

SIGNATURE: ________________________________
ELECTRICAL CABLEWAY INSPECTION FORM

DATE

HULL NUMBER

INSPECTED BY

INSPECTING ORGANIZATION

<table>
<thead>
<tr>
<th>SER #</th>
<th>COMPT</th>
<th>DECK</th>
<th>FRAME</th>
<th>P/S</th>
<th>POS</th>
<th>CABLE CIRCUIT</th>
<th>CABLE TYPE</th>
<th>*CAT</th>
<th>*NAVSEA DWG NO.</th>
<th>EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION

* TO BE FILLED IN BY THE SUPERVISOR.
1. SCOPE:

1.1 Title: Circuit Breaker; repair

2. REFERENCES:

2.1 Equipment Technical Manual

3. REQUIREMENTS:

3.1 Disconnect electrically and mechanically and remove each circuit breaker, using 2.1 for guidance.

3.1.1 Matchmark and retain mounting hardware and fasteners.

3.1.2 Protect exposed terminal connections and internal switchboard parts from dirt and damage.

3.1.2.1 Each phase shall be isolated and protected from other phases.

3.2 Disassemble each circuit breaker, using 2.1 for guidance.

3.2.1 Inspect and test electrical and mechanical components, assemblies, subassemblies, internal circuitry, and hardware to design characteristics and determine missing and defective components, circuitry, and hardware in accordance with 2.1.

3.2.1.1 Acceptance criteria for silver contacts is that wear shall be less than 50 percent of original thickness after dressing, contacts shall have no evidence of copper migration, and shall have no irregular, burnt, or pitted interface after dressing.

3.2.1.2 Acceptance criteria for non-silver contacts is that, after dressing, wear shall be less than 10 percent of original thickness and contacts shall have no irregular, burnt, or pitted interface after dressing.

3.2.2 Test internal wiring, coils, and transformers for open and short circuits and 500 volt megger insulation resistance to ground. Record readings. Minimum acceptable resistance to ground shall be one megohm.
3.2.3 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.2.1 and 3.2.2 to the SUPERVISOR.

3.3 Remove defective and install new electrical and mechanical components, assemblies, subassemblies, internal circuitry, and hardware. Install new electrical and mechanical components, assemblies, subassemblies, internal circuitry, and hardware where missing. New material shall conform to the requirements of 2.1 and shall be obtained from the Federal Stock System or the Original Equipment Manufacturer (OEM), except for non-restricted parts.

3.3.1 Clean each component free of dirt, lubricants, and other foreign matter.

3.3.1.1 Steam cleaning of circuit breakers is not authorized.

3.3.2 Resilver previously silver plated contacts in accordance with ASTM B700.

3.3.3 Dress, burnish, adjust, and align arcing and main contacts (contacts that experience arcing in functional duty) in accordance with 2.1.

3.3.4 Replate existing cadmium-plated parts with zinc in accordance with ASTM B633 after removal of cadmium plating. Replate zinc-plated parts in accordance with ASTM B633.

3.3.5 Dip and bake taped insulated coils and open transformers in varnish conforming to MIL-I-24092, Class 155.

3.3.5.1 Dip and bake insulated coils and open transformers in Dolph Varnish 1105, Epoxylite Esterlite 605, or Schenectady International Isolite 862M varnish in localities where MIL-I-24092 varnish does not meet state and local air pollution control district standards.

3.3.6 Remove existing and install new coil and transformer leads in place of those found to be missing or defective.

3.3.7 Repair defective connections.

3.3.8 Free-up and adjust moving parts and latching mechanisms.

3.3.9 Lubricate the current-carrying parts (except for interrupting contacts) and sliding joints with lubricant conforming to MIL-L-87177, Type I, Grade B. Lubricate mechanical pivots, excluding latch roller face components, with high performance multi-purpose grease conforming to DOD-G-24508.

3.3.9.1 Apply new lubricant sparingly and wipe off excess.
3.3.10 Test and inspect molded and insulation parts in accordance with the following criteria:

3.3.10.1 Phase-to-phase dielectric strength 2000 volts minimum.

3.3.10.2 Surface burn marks and hairline cracks are acceptable but shall not deteriorate the mold surface or impair physical strength. Cracks are not permitted in wall section between phase and a ground plane when there is a conducting part in contact with the wall section. Cracks should not exceed 0.75 inch in length, and in no case should be greater than 50 percent of the length of the surface in which the crack appears.

3.3.10.3 Surface cracks should not exceed 1.5 inches in length, and in no case should be greater than 50 percent of the length of the surface in which the crack appears.

3.3.10.4 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.3.10 to the SUPERVISOR.

(V) "SHOP TEST"

3.4 Shop test and inspect each motor operator and motor in accordance with 2.1.

3.4.1 Submit one legible copy, in hard copy or electronic media, of a report to the SUPERVISOR listing defects.

(V) "SETTINGS AND MILLIVOLT DROP TEST"

3.5 Reassemble each circuit breaker and accomplish adjustments and settings in accordance with 2.1.

3.5.1 Align and true each set of stationary and movable contacts to the manufacturer's specifications.

3.5.2 Accomplish millivolt drop test to each set of contacts in accordance with 2.1 or Original Equipment Manufacturer (OEM) requirements.

(V) "TEST, CALIBRATION, AND ADJUSTMENT"

3.6 Test, calibrate, adjust, and certify the trip units of each circuit breaker for time delay and instantaneous trip settings in accordance with 2.1.

3.6.1 Accomplish a heat run test for repaired type ACB and AQB circuit breakers.

3.6.1.1 Connect each ACB type circuit breaker to a test set and apply rated current to each individual phase of the circuit breaker for 30
minutes. After 5 minutes, measure the voltage across the line to load contacts of each pole and calculate the contact impedance. Satisfactory impedance for 1600-4000 ampere ACB's is below 225 microhms, and below 1050 microhms for 600-900 ampere ACB's.

3.6.1.2 Connect each AQB-type molded case circuit breaker to a test set and apply rated current to each phase simultaneously for one hour. The AQB shall not trip within that hour.

3.6.2 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.6.1 to the SUPERVISOR.

3.6.3 Attach a calibration label to the face of each circuit breaker denoting the name and location of the calibration facility and date of calibration. In the event there is insufficient room on the face of the circuit breaker, attach the calibration label to the right hand side of the breaker as viewed from the front.

3.7 Install and connect each circuit breaker.

3.7.1 Install new threaded fasteners, washers, and lockwashers to replace those found to be missing or defective.

(V)(G) "OPERATIONAL TEST"

3.8 Accomplish final adjustments and test operate each circuit breaker, including control and safety devices.

3.8.1 Close and trip each circuit breaker electrically from local and remote stations. Four consecutive successful times required.

3.8.1.1 Ensure generator heater interlock is de-energized by the generator circuit breaker.

3.8.2 Repeat the requirements of 3.8.1 manually.

4. NOTES:

4.1 Equipment technical manual will be listed in the invoking Work Item.

4.2 Repair and overhaul will be accomplished by the Navy Designated Overhaul Point (DOP) at Puget Sound Naval Shipyard, the OEM, or a commercial repair facility that has demonstrated to the SUPERVISOR the capability to perform the work. Capability to perform circuit breaker overhaul and repair work includes having the facilities, trained mechanics, and access to the OEM's qualified parts and repair procedures. Use of non-qualified restricted parts violates the integrity of the circuit breaker, nullifying the breaker's prior qualification under the QPL process. Restricted parts must be obtained from the OEM either directly or via (if available) the Federal stock system. If a restricted part is replaced with an unqualified part, the qualification
of the particular circuit breaker is revoked until the full set of QPL required tests are repeated and submitted to NAVSEA for approval.

4.2 Non-restricted parts are defined as nuts, bolts, screws, washers, lockwashers, cotter pins, O-rings, indicator lights, and indicator light globes (colored and clear) only.
1. SCOPE:

1.1 Title: Waveguide and Transmission Line Temporary Lay-Up, Pressurization, and Purging; accomplish

2. REFERENCES:

2.1 Equipment Technical Manual

2.2 SE000-01-IMB-010, Navy Installation and Maintenance Book (NIMB), Section IX, Installation Standards (Source CD: N0002400003)

3. REQUIREMENTS:

3.1 Disconnect each dry air pressure line at last mechanical joint prior to connection to ship's dry air panel, using 2.1 for guidance.

3.2 Accomplish uninterrupted nitrogen or dry air lay-up for waveguides and rigid coaxial cables in accordance with Paragraph 5-2.7 of 2.2 and lay-up procedures of 2.1.

3.2.1 Do not connect unregulated pressurized air to equipment sub-assemblies or components. Ensure that temporary dry air pressure source(s) are connected in accordance with lay-up procedures of 2.1 to prevent equipment damage due to over-pressurization. No pressurization shall be supplied to waveguide in excess of the normal operating pressures specified for that equipment.

3.2.2 Ensure temporary dry air meets the requirements of Paragraph 5-1.14 and 5-1.15 of 2.2, and the following:

3.2.2.1 Dew Point: Minus 40 degrees Fahrenheit at 80 PSIG.

3.2.2.2 Quality of Air: Filtered to remove all particulate matter greater than one micrometer and filtered for a total amount of contamination (including oil contaminants) not to exceed one part per million by weight.

3.2.3 Pressurize each line as specified in the lay-up procedures of 2.1.
3.2.3.1 Where specific lay-up instructions are not available, pressurize those lines to 3 PSIG.

3.2.3.2 Install relief valve downstream of temporary source, setting relief pressure at 5 PSIG.

3.2.4 Identify leaks in accordance with Paragraph 5-2.7.2 and 5-2.7.3 of 2.2.

3.2.4.1 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.2.4 to the SUPERVISOR.

3.3 Remove temporary pressurization when directed by the SUPERVISOR.

3.3.1 Connect ship's dry air system disconnected in 3.1.

3.3.2 Purge and pressurize in accordance with Paragraph 5-2.7 of 2.2.

4. **NOTES:**

4.1 Equipment technical manual will be listed in the invoking Work Item.

4.2 Where lay-up conditions permit, ensure equipment's dry air control/monitor panels are operational for continuous monitoring of temporary dry air in the equipment space(s).
1. SCOPE:

1.1 Title: Cofferdam Requirements; accomplish

2. REFERENCES:

2.1 Standard Items

2.2 S0600-AA-PRO-160/CH-16, Underwater Ship Husbandry Manual, Cofferdams

3. REQUIREMENTS:

3.1 Accomplish the requirements of 009-09 of 2.1 for the installation of each cofferdam (plug, patch, dry chamber, and stern tube seal) in accordance with 2.2 and the following.

3.1.1 Submit one legible copy, in hard copy or electronic media, of the design and maintenance records in accordance with Paragraph 16-5.2.7 (patches), or Paragraph 16-6.6.4 (dry chambers), or Paragraph 16-7.6.2 (stern tube seals) of 2.2, to the SUPERVISOR.

3.1.2 Prior to the start of the Process Control Procedure, submit one legible copy, in hard copy or electronic media, of Ship's Force notification in accordance with Paragraph 16-4.7.1.3 (plugs), or Paragraph 16-5.2.9 (patches), or Paragraph 16-6.6.10 (dry chambers), or Paragraphs 16-7.6.4 and 16-7.6.6 (stern tube seals) of 2.2, to the SUPERVISOR.

3.1.3 Include the Operational Checklist, Table 16-9 of 2.2, in the Process Control Procedure.

3.1.4 Prior to the start of the Process Control Procedure, any time the installed cofferdam will serve as the only barrier to the sea (single valve protection), ensure Ship's Commanding Officer sign-off via the SUPERVISOR, as required by Paragraph 16-4.7.1.4 (plugs), or Paragraph 16-5.2.10 (patches), or Paragraph 16-6.6.10 (dry chambers), or Paragraph 16-7.6.4 (stern tube seals) of 2.2.

3.2 Remove each cofferdam (plug, patch, dry chamber, or stern tube seal) and all associated components upon completion of repairs.
4. **NOTES:**

4.1 2.2 and associated forms are available at:

1. **SCOPE:**

 1.1 Title: Passive Countermeasures System (PCMS) Material Repair/Installation Requirements; accomplish

2. **REFERENCES:**

 2.1 Standard Items

 2.2 RIM 05T1-99, Passive Countermeasures System (PCMS) Repair/Installation Methods

 2.3 PHS&T 05T1-06, Passive Countermeasures System Packaging, Handling, Storage and Transportation Plan

3. **REQUIREMENTS:**

 3.1 Install new PCMS material in accordance with 2.2 and 2.3.

 3.1.1 Personnel involved in PCMS material installation, including surface preparation, material application, final painting, and quality assurance shall be trained and certified in accordance with Section B.3 of 2.2.

 3.1.2 Accomplish the requirements of Sections B.4 and B.5 of 2.2 for material control and material disposition.

 3.1.3 Accomplish additional PCMS material handling and storage requirements in accordance with 2.3.

 (V)(G) "ENVIRONMENTAL REQUIREMENTS"

 3.1.4 Verify the environmental requirements of Section C.1 of 2.2 are met prior to application of primers, tiles, caulking, and paint.

 3.1.5 Accomplish surface preparation of surfaces receiving new PCMS material in accordance with Section C.2 of 2.2.

 3.1.6 Preserve surfaces receiving PCMS material in accordance with Section C.2.3 of 2.2.
3.1.6.1 Accomplish the requirements of 009-32 of 2.1.

3.1.7 Accomplish preliminary cleaning, abrasion, and final cleaning of primed surfaces in accordance with Section C.4.4 of 2.2 for non-Pressure Sensitive Adhesive (PSA) tiles, or Section C.4.5 of 2.2 for PSA tiles.

(V)(G) "WELD FAIRING"

3.1.8 Verify the fairing of weld seams is in accordance with Section C.3 of 2.2.

3.1.9 Install new PCMS material in accordance with Section C.4 of 2.2.

3.1.9.1 Template from existing shipboard conditions.

3.1.10 Caulk all seams and exposed edges in accordance with Section C.5 of 2.2.

(V)(G) "FINAL INSPECTION"

3.1.11 Accomplish a final inspection of newly installed PCMS material to verify correct installation.

3.1.12 Accomplish surface preparation and preservation for topcoat of new PCMS material in accordance with Section C.6 of 2.2.

3.2 Accomplish the requirements of 009-32 of 2.1 for new and disturbed surfaces.

4. NOTES:

4.1 None.
1. **SCOPE:**

1.1 Title: Government Owned Material (GOM); status reporting

2. **REFERENCES:**

2.1 None.

3. **REQUIREMENTS:**

3.1 Provide an accurate accounting of Government Owned Material (GOM), traceable to the Lowest Replaceable Unit (LRU), in the custody of the contractor. For this tasking, GOM is defined as government furnished material (GFM) and contractor acquired material (CAM) which the Navy has either paid for or provided directly to the contractor.

3.2 Prepare GOM Status Reports by selecting one of the following methods:

3.2.1 Magnetic Tape

3.2.1.1 The EBCDIC Characteristics:

(1) Density: 9 Track, 1600BPI
(2) Mode: EBCDIC
(3) Parity: Odd
(4) Block Size: 10
(5) Record Size: 126
(6) Labeling: No internal labels; external labels are:
 (a) Activity Name
 (b) Date
 (c) GOM Status Report
 (d) 1600 BPI
 (e) EBCDIC
 (f) Internal Label: None
 (g) 10 X 126
 (h) GOMSTAT.TXT (File Name)
3.2.1.2 The ASCII Characteristics:

(1) Density: 9 Track, 1600BPI
(2) Mode: ASCII
(3) Parity: Odd
(4) Block Size: 10
(5) Record Size: 126
(6) Labeling: No internal labels; external labels are:
 (a) Activity Name
 (b) Date
 (c) GOM Status Report
 (d) 1600 BPI
 (e) ASCII
 (f) Internal Label: None
 (g) 10 X 126
 (h) GOMSTAT.TXT (File Name)

3.2.2 Floppy characteristics of the GOM Status Report shall be as follows:

(1) Density: High, 1.44 MB
(2) Mode: ASCII
(3) Compression: PKZIP (2.04 G or later)
(5) Record Size: 126
(6) Labeling: No internal labels; external labels are:
 (a) Activity Name
 (b) Date
 (c) GOM Status Report
 (d) PKZIP ver 2.04G (version of PKZIP)
 (e) ASCII
 (f) Internal Label: None
 (g) Record size: 126
 (h) GOMSTAT.TXT (File Name)

3.2.3 This report shall specify all the current inventory of GOM baseline, residual, and excess assets including COSAL material, installation and checkout (INCO) spares, GFM, and CAM. Specific content requirements shall be as specified in 3.2.4 and shall include the following:

3.2.3.1 Allowance Parts List/Allowance Equipage List (APL/AEL). An alphanumeric code, minimum of 8 characters and maximum of 11 characters, that identifies the unique characteristics of an equipment or system provisioned by the Naval Inventory Control Point, or the non-installed material collectively known as equipage.

3.2.3.2 Document GFM Requisition/CFM purchase order number.
3.2.3.3 National Item Identification Number. Represents the last 9 digits of the 13-digit Naval Stock Number and identifies a specific item catalogued in the Federal Supply System.

3.2.3.4 Part Number. Any number other than a government activity stock number, used to identify an item of production or supply; includes manufacturer’s part numbers, drawing numbers, and model, type, or source controlling numbers.

3.2.3.5 Commercial and Government Entity (CAGE). A 5-digit number assigned to an individual supplier, manufacturer, corporation, or government activity for identification purposes.

3.2.3.6 Unit of Issue. A 2-character abbreviation code used to identify the types of units under which material is issued. For example, shoes would be issued as a pair (PR), while hammers would be issued one at a time or each (EA).

3.2.3.7 Allowance/Required Quantity. The total number of a given item of replacement allowed onboard.

3.2.3.8 Quantity on Order. The number of a given item for which requisitions are in process.

3.2.3.9 Quantity Received. The number of a given item acquired as a result of a requisition.

3.2.3.10 Quantity on Hand. The number of a given replaceable item currently in the storeroom/storage location.

3.2.3.11 Unit Price. The cost of the unit of issue (i.e., gross, pair, each, quart, gallon, ton, ounce, etc.).

3.2.3.12 Extended Price. The cost calculated by multiplying the unit price by the quantity of items.

3.2.3.13 Material Accessibility Code (MAC). A 2-character alphabetic code that defines the material's intended use and disposition. Generally speaking, excess assets are available as free issue redistributions while baseline and residual assets are either non-available for redistribution or are negotiable at the program manager’s discretion. A single item may have multiple MACs assigned to it; some of its quantity on hand could be in each category. Valid MACs include IC (Inaccessible and contractually required), ID (Inaccessible and Deferred), and AR (Accessible and Residual).

3.2.3.14 Unit Identification Code. A 5-digit accounting number that identifies a ship, shore activity, operational unit, agency, contractor or other organized entity that may be involved in acquiring and/or managing material.
3.2.3.15 Type Number Code. A one-digit alphabetic code that identifies the data in position 12-28 as either a document number [R] or a contract number (P).

3.2.3.16 Condition Code. A one-digit alphabetic code that identifies the condition of the material, whether it is ready for issue or in need of some level of repair.

3.2.3.17 Cognizance Code. A 2-position code. The first position identifies the stores account to which the item belongs and the second position identifies the combined technical and inventory manager having jurisdiction over the item.

3.2.3.18 Federal Supply Classification. A 4-position code assigned to designate various groups of common use, commercial type items.

3.2.3.19 COAR/Material Group. A 6-position code locally assigned by the SUPSHIP to indicate the modernization program under which the work on the ship is being performed or the outfitting material group material is being purchased to support.

3.2.3.20 Item Name. A 48-position nomenclature assigned to an item to describe the item for allowance purposes.

3.2.3.21 Technical Characteristics. A 200-character field used to describe the technical characteristics of an item.

3.2.4 The GOM Report Format (character positions, data element numbers, and field lengths) shall use the following table as an illustration of the data elements with their respective character positions and field lengths:

<table>
<thead>
<tr>
<th>POSITION</th>
<th>DEN</th>
<th>PICTURE</th>
<th>REMARKS</th>
<th>DATA DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-11</td>
<td>D008G</td>
<td>APL/AEL</td>
<td>X (11)</td>
<td></td>
</tr>
<tr>
<td>12-28</td>
<td>K002/P699</td>
<td>Document/Contract Number</td>
<td>X (17)</td>
<td></td>
</tr>
<tr>
<td>29-37</td>
<td>D046D</td>
<td>NIIN</td>
<td>X (9)</td>
<td>N/R if no NSN assigned</td>
</tr>
<tr>
<td>38-67</td>
<td>D001W</td>
<td>Part Number</td>
<td>X (30)</td>
<td>N/R if NSN assigned</td>
</tr>
<tr>
<td>68-72</td>
<td>CO35</td>
<td>CAGE</td>
<td>X (5)</td>
<td>N/R if NSN assigned</td>
</tr>
<tr>
<td>73-74</td>
<td>C005</td>
<td>Unit of Issue</td>
<td>X (2)</td>
<td></td>
</tr>
<tr>
<td>75-79</td>
<td>E372</td>
<td>Allowance Quantity</td>
<td>9 (5)</td>
<td></td>
</tr>
<tr>
<td>80-84</td>
<td>F977C</td>
<td>Quantity on Order</td>
<td>9 (5)</td>
<td></td>
</tr>
<tr>
<td>85-89</td>
<td>F977D</td>
<td>Quantity Received</td>
<td>9 (5)</td>
<td></td>
</tr>
<tr>
<td>90-94</td>
<td>A012</td>
<td>Quantity on Hand</td>
<td>9 (5)</td>
<td></td>
</tr>
<tr>
<td>95-105</td>
<td>B053</td>
<td>Unit Price</td>
<td>9 (11)</td>
<td></td>
</tr>
<tr>
<td>106-116</td>
<td>G101A</td>
<td>Extended Price</td>
<td>9 (11)</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Submit the GOM Status Report to the SUPERVISOR 4 working days prior to the 50 percent conference and 5 working days after the end of the availability.

4. NOTES:

4.1 The GOM Status Report will be invoked in the solicitation for multi-ship/multi-year availabilities.
1. SCOPE:

1.1 Title: Ship's Facilities; provide

2. REFERENCES:

2.1 None.

3. REQUIREMENTS:

3.1 Accomplish the following requirements to keep the ship habitable and maintain the ship's facilities operational at times when spaces are inhabited by the crew.

 3.1.1 Maintain operational sanitary services.

 3.1.2 Identify span of time each CHT zone will be taken out of service.

 3.1.3 Install and maintain temporary, primary, and back-up CHT pumps during such time ship's CHT system is inoperative.

 3.1.4 Ensure that the ship's power, steam, fire main, sea water service system, flushing system, heating system, CHT system, potable water, air conditioning, and ventilation is maintained operational.

 3.1.5 Install temporary cables, jumpers, pumps, spool pieces, valves, hoses, and ducts when required to maintain systems operational.

3.2 Coordinate disruption of the facilities listed in 3.1 and systems listed in 3.1.4 with the ship via the SUPERVISOR.

3.3 Submit one legible copy, in hard copy or electronic media, of a detailed schedule showing when each facility/system will be disrupted to accomplish 3.1.5 and include the following:

 3.3.1 Original schedule is due 5 calendar days prior to start of availability.
3.3.2 Submit updated schedules weekly throughout the entire availability.

3.3.3 Include each compartment disrupted and specify the system(s) affected, with the scope of the disruption.

3.4 Remove the temporary installations and restore the systems to operational conditions when directed by the SUPERVISOR.

4. NOTES:

4.1 The contractor is only required to maintain those systems operational which he disturbs or disrupts in the performance of work in the Job Order, and only to the extent possible, using temporary methods consistent with 3.1.5.
1. SCOPE:

 1.1 Title: Compartment Closeout Schedule; provide

2. REFERENCES:

 2.1 None.

3. REQUIREMENTS:

 3.1 Submit one legible copy, in hard copy or electronic media, of a compartment closeout schedule to the SUPERVISOR no later than the 50 Percent Review Conference.

 3.1.1 The compartment closeout schedule shall contain the following minimum information:

 3.1.1.1 A list of compartments where work has been or remains to be accomplished. Include each compartment number and name. Work not completed shall be identified by the Work Item number.

 3.1.1.2 A brief of the work that remains to be accomplished by the contractor.

 3.1.1.3 Any impact that known Ship's Force work will have on the contractor.

 3.1.1.4 The date when the contractor expects to complete his work within each compartment. Highlight major trouble spots.

 3.1.1.5 Index the compartment closeout schedule by compartment number listing the page number of where the information about the compartment can be located.

 3.1.2 The compartment closeout schedule shall provide for completion of the following compartments prior to the crew move aboard milestone date:

 3.1.2.1 Messing, berthing, and living compartments, including galley, scullery, pantry, mess decks, walk-in freezer, chill and thaw boxes, dry provisions and breakout storerooms, wardroom, CPO mess, berthing
compartments, staterooms, lounges, wash rooms, water closets and showers, laundry, and associated passageways and access routes.

3.1.2.2 Refrigeration and air conditioning machinery rooms, including associated machinery, equipment, and piping and ventilation systems.

3.1.2.3 CHT machinery spaces and tanks, including associated alarm, control, and piping systems.

3.1.2.4 Medical and dental spaces.

(V)(G) "COMPARTMENT INSPECTION"

3.2 Accomplish a joint inspection with the SUPERVISOR and the Commanding Officer's designated representative upon completion, inspection, and acceptance, by the contractor, of work within each compartment.

3.2.1 Submit one legible copy, in hard copy or electronic media, of a report to the SUPERVISOR, after each compartment inspection, listing the discrepancies. Identify each discrepancy as Contractor responsibility or Government responsibility. The 3 parties will sign the above report as work being complete. Turn over each compartment to Ship's Force for maintenance and indicate on the updated compartment closeout schedule as complete.

3.3 Update the compartment closeout schedule at the weekly progress meeting after the first report is published.

3.3.1 Highlight changes from the previous compartment closeout schedule.

3.3.2 Highlight each discrepancy in the spaces in 3.1.2 that cannot be corrected prior to crew move aboard milestone date, providing the reason and expected completion date.

4. NOTES:

4.1 The ship's Commanding Officer will furnish the SUPERVISOR the work by compartment, including the schedule, that is planned for accomplishment by Ship's Force on a weekly basis.

4.2 For purposes of this item, the term compartment includes compartments, tanks, and voids.

4.3 The crew move aboard evolution is a difficult and complex one. Key areas of concern are: safety of the crew; sanitation and serviceability of food preparation, serving, and eating areas; livability of berthing and sanitary spaces; cleanliness.

4.4 Interface conflicts in the closeout schedule will be resolved as they occur.
4.5 For purposes of this item, the terms "space/spaces", "room/rooms", and "compartment/compartments" are synonymous.
1. **SCOPE:**

 1.1 Title: Data Requirements When Installing an Equal Component Vice Specified Component; provide

2. **REFERENCES:**

 2.1 None.

3. **REQUIREMENTS:**

 3.1 Submit one legible copy, in hard copy or electronic media, of the following data to the SUPERVISOR in each instance when the Work Item allows, and the contractor chooses, to install "an equal component" in lieu of the component specified by the Work Item. Provide data to compare the equal component to that specified including the following:

 3.1.1 Physical dimensions of each

 3.1.2 Bolting pattern required to install the component

 3.1.3 Power requirements

 3.1.4 Size, location, and type of miscellaneous service connections

 3.1.5 Modifications required for installation

 3.1.6 Comparison of the characteristics, i.e., gallons per minute, cubic feet per minute, and temperature ranges

 3.1.7 Submission of the reports shall be 20 days after award of CNO availabilities and 2 days after award for other availabilities.

4. **NOTES:**

 4.1 None.
1. **SCOPE:**

 1.1 Title: Wire Rope Fitting Verification; provide

2. **REFERENCES:**

 2.1 None.

3. **REQUIREMENTS:**

 3.1 Comply with the following specifications when procuring wire rope fittings.

 3.1.1 SOCKETS - RR-S-550
 3.1.2 FIEGE-TYPE - MIL-S-21433
 3.1.3 SWAGE SLEEVES - Commercial, supplied by the same manufacturer as the swaging machine
 3.1.4 THIMBLES - FF-T-276 Type 3 only
 3.1.5 SHACKLES - RR-C-271
 3.1.6 BLOCKS - MIL-B-24141

 3.2 Submit one legible copy, in hard copy or electronic media, to the SUPERVISOR of certification from the manufacturer that states wire rope rigging and fittings installed comply with the requirements of the specifications listed in 3.1.

 3.3 Verify each fitting is legibly marked with manufacturer's name or trademark and size.

 3.3.1 Shackles and blocks shall also be marked with safe working load.
 3.3.2 Thimbles are not required to be marked.

4. **NOTES:**

 4.1 None.
1. SCOPE:

1.1 Title: Accountability of Temporary Fasteners; provide

2. REFERENCES:

2.1 None.

3. REQUIREMENTS:

3.1 Submit one legible copy, in hard copy or electronic media, of a report upon installation of any temporary fasteners to the SUPERVISOR. The report is due one working day after start of installation and shall contain the following information:

3.1.1 System

3.1.2 Component (valves, flanges, foundations, brackets)

3.1.3 Location (deck, frame, port, starboard, tank, manhole)

3.2 Paint temporary fasteners blaze orange.

3.3 Maintain a log/file of installed/removed temporary fasteners with the information described in 3.1.

3.4 Remove temporary fasteners prior to any testing, lagging, and/or painting of systems or components.

3.4.1 Submit one legible copy, in hard copy or electronic media, of a report to the SUPERVISOR stating that temporary fasteners have been removed.

4. NOTES:

4.1 For purposes of this item, temporary fasteners are defined as those fasteners that are installed in lieu of the final fasteners that are specified for system installation. Examples would include temporary fasteners used to hold fittings, valves, or machinery in place.
1. SCOPE:

 1.1 Title: Government Sponsored Planning Yard/Configuration Data Manager (CDM) On-Site Representative Facility; provide

2. REFERENCES:

 2.1 None.

3. REQUIREMENTS:

 3.1 Provide a separate, lockable, and secure office space for use by the Government Sponsored Planning Yard/CDM On-Site Representative furnished with 2 desks with chairs, lights, heat, air conditioning, electrical outlets, sanitary facilities, filing cabinets, telephone service, janitorial service, and 2, 15-pound fire extinguishers and 24-hour service for the entire contract period.

 3.1.1 The facility shall have a minimum of 240 square feet of floor space.

 3.1.2 The facility shall be located within one-quarter mile of the ship.

 3.1.2.1 Provide a parking area adjacent to the facility. The area shall be lighted and accommodate 2 automobiles simultaneously.

 3.1.3 Lighting shall provide 28 foot candles of illumination measured at the desktop level.

 3.1.4 Heating and air conditioning shall be capable of maintaining the temperature between 65 and 78 degrees Fahrenheit.

 3.1.5 Provide 2 double-pedestal desks 30 inches wide by 60 inches long.

 3.1.5.1 Provide one telephone desk set and one 115-volt, shock resistant, double electrical receptacle for each desk. Each receptacle shall be a convenient height and located adjacent to each desk.
3.1.5.2 Provide one swivel chair and one straight-back chair for each desk.

3.1.6 Provide telephone communications with separate circuits for each desk set, between the facility, shipyard, ship, and the municipal telephone system. One telephone line shall be capable of digital transmission.

3.1.6.1 Telephone systems designated long distance shall be installed in such a manner that the only way long distance calls can be made will be with a long distance calling card (credit card) that shall be obtained by the On-Site Representative prior to start of availability.

3.1.7 Provide 4-drawer filing cabinets with lock and keys.

3.1.8 Provide sanitary facilities equipped with drains, hot and cold potable water, and the following:

3.1.8.1 Hot water shall be maintained at 120 to 140 degrees Fahrenheit.

3.1.8.2 One lavatory

3.1.8.3 One water closet

3.1.8.4 One soap dispenser

3.1.8.5 One towel dispenser

3.1.9 Facilities shall be provided 2 days prior to contract start date through 2 days after the contract completion date unless otherwise specified.

3.2 Provide janitorial services to include sweeping, mopping, buffing, and trash pickup on a daily basis.

3.3 The facility shall be in accordance with local building codes, sanitary and current fire regulations. The facility shall include smoke alarms, 2, 15-pound fire extinguishers, and sprinkler systems.

3.4 Furnishings and equipment in this item shall be maintained in a fully operable condition by the contractor.

3.5 The facility shall be delivered to the Government clean, sanitary, damage free, and vermin free.

4. NOTES:

4.1 The On-Site Representative will retain the keys during the entire contract period.
4.2 The SUPERVISOR will identify the Government Sponsored Planning Yard/CDM On-Site Representatives upon request of the contractor.

4.3 The Government Sponsored Planning Yard/CDM On-Site Representatives shall obtain the telephone credit card specified in 3.1.6.1 from their command.
1. **SCOPE:**

1.1 Title: Recovery of Chlorofluorocarbon (CFC) Refrigerants and Fire Suppressant Halon (H) Materials; accomplish

2. **REFERENCES:**

2.1 49 CFR Part 173, General Requirements for Shipments and Packagings

3. **REQUIREMENTS:**

3.1 Recover CFC refrigerants and halon materials listed in 4.2 that are not recycled back into the specific system's equipment from which they were removed as follows:

3.1.1 Fire suppression (halon) cylinders and canisters with electrical charges or initiators must be deactivated and safety caps must be used to cover exposed actuating mechanisms and discharge ports prior to shipping the intact cylinder.

3.1.2 Recover other halon and CFC materials for turn-in to the DoD ODS Reserve at the Defense Depot Richmond VA (DDRV). Empty cylinders shall be used to recover the materials. Empty recovery cylinders can be requisitioned through normal MILSTRIP stock ordering procedures from DDRV. The cylinders used to recover CFC shall be painted orange and cylinders used for halons shall be painted red. Both cylinders shall have yellow tops and shall also have dual port valves to ease the recovery process.

3.1.2.1 Do not mix new materials with used materials and do not mix different types of materials in the same cylinders.

3.1.3 Ensure the recovered materials cylinder is tagged. The tag should be placed beneath the cylinder protective cap or attached securely to the container. Do not stencil on cylinder. The tag shall contain the following information:

3.1.3.1 The shipper's DOD Activity Address Code (DODAAC). If the turned-in material originates from a ship or submarine, use the DODAAC of the ship/submarine on the tag.
3.1.3.2 The shipping activity with point of contact and telephone number.

3.1.3.3 The National Stock Number (NSN) that applies to the filled cylinder being returned.

3.1.3.4 The identity of the recovered material (Navy recovered R-XXX, CFC-XXX, or HALON-XXXX).

3.1.3.5 The amount, in pounds, of recovered materials in the cylinder. Do not fill more than 80 percent of its water weight capacity.

3.1.3.6 Apply a warning/hazardous label to the cylinder in compliance with 2.1.

3.1.3.7 The quantity of containers on the pallet or within the shipping crate. When multiple containers with the same NSN are shipped palletized or in a box/crate, apply only one tag/label to the shipment, not to each item.

3.2 Prior to shipping the reclaimed materials to DDRV, notify the SUPERVISOR so that a DD Form 1348-1 MILSTRIP can be prepared and transaction authorization procured.

3.3 Upon receipt of the completed DD Form 1348-1, and transaction authority from the SUPERVISOR, ship the reclaimed materials to:

Defense Depot Richmond Virginia (DDRV)
SWO400
Cylinder Operations
8000 Jefferson Davis Highway
Richmond, VA 23297-5000

4. NOTES:

4.1 If your activity is personally transporting ODS to the DoD ODS Reserve, be sure to schedule your delivery with the DDRV Dispatch Office at DSN 695-3834 or (804) 279-3834.

4.2 Recovery Material - CFC's and Halons:

<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>PRODUCT TYPE WEIGHT</th>
<th>CYLINDER WATER WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-11</td>
<td>59</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>1400</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>100 (drum)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>200 (drum)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>650 (drum)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

2 of 4 ITEM NO: 009-86 FY-06
<table>
<thead>
<tr>
<th>PRODUCT TYPE</th>
<th>PRODUCT TYPE WEIGHT</th>
<th>CYLINDER WATER WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-12</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>1190</td>
<td>1000</td>
</tr>
<tr>
<td>R-113</td>
<td>6 ounces</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>1 pint</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>1 quart</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>1 gallon</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>5 gallons (60 lbs)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>100 lbs (can)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>200 lbs (drum)</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>55 gallons (drum)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Only unused CFC-113 solvent contained in original drums or cans with unbroken seals shall be returned to DDRV. Used R-113 refrigerant can also be returned. Call (804) 279-5203 or DSN 695-5203 for specific turn-in guidance.

R-114	57	42
	165	122
	1350	1000
R-500	43	42
	127	122
	1045	1000
R-502	44	42
	125	122
	1050	1000
H-1202	160	122
H-1211	1-5	122
	6-10	122
	11-20	122
	21-60	122
	61-125	122
	126-200	122
	200	122
	201-340	1000
	341-1500	1000
	1500	1000
4.3 Current NSNs for cylinders are available from the SUPERVISOR.

4.4 Condition codes for cylinders are as follows:

4.4.1 Condition Code A: To be used for returning original cylinders whose seal was never broken or for recovery cylinders.

4.4.2 Condition Code B: To be used for returning full, original cylinders or for standard DOD refillable cylinders.

4.4.3 Condition Code F: To be used to return partially depleted cylinders whose purity cannot be guaranteed or for returning other (non-standard/commercial) cylinders.

4.5 Definition of Recover – To remove refrigerant in any condition from a system and store it in an external container without necessarily testing or processing it in any way.
1. SCOPE:

1.1 Title: Chlorination Procedures; accomplish

2. REFERENCES:

2.1 NAVMED P-5010-6, Manual of Naval Preventive Medicine, Chapter 6, Water Supply Afloat

3. REQUIREMENTS:

3.1 Accomplish chlorination of each affected potable water system in accordance with 2.1.

3.2 Accomplish a halogen (chlorine) residual test for each affected potable water tank and system. Acceptable free availability chlorine (FAC) shall meet minimum levels specified in 2.1.

3.2.1 Submit one legible copy, in hard copy or electronic media, of the chlorine residual test to the SUPERVISOR not later than 24 hours after the completion of the test, stating that minimum FAC level has been met in accordance with 2.1.

3.3 Secure and tag out each affected potable water system upon completion of the residual chlorine test.

3.4 Accomplish a bacteriological test for each affected potable water system.

3.4.1 Bacteriological testing must be accomplished at laboratories certified by state regulatory agencies in states having primacy, or by the Regional EPA Office in states not having primacy.

3.4.2 Submit one legible copy, in hard copy or electronic media, of completed report to the SUPERVISOR not later than 24 hours after the completion of the test, with certification that the water is safe for human consumption.

3.5 Remove each tag upon completion of satisfactory bacteriological test and release each potable water system for Ship’s Force use.
4. **NOTES:**

4.1 Do not take calcium hypochlorite in dry powder form aboard ship. Mixing is to be done ashore.

4.2 2.1 can be accessed at:

http://www.vnh.org/PreventiveMedicine/Chapter6/Chapter6.html
1. SCOPE:

1.1 Title: Collection, Holding and Transfer (CHT) and Mogas Tanks, Spaces, and Piping, including Sewage or Mogas-Contaminated Tanks, Spaces, and Piping; certify

2. REFERENCES:

2.1 Standard Items
2.2 29 CFR Part 1915, Occupational Safety and Health Standards for Shipyard Employment
2.3 NFPA Standard 312, Standard for Fire Protection of Vessels During Construction, Repair, and Lay-up
2.4 NFPA Standard 306, Standard for the Control of Gas Hazards on Vessels
2.5 S9086-T8-STM-010/CH-593, Pollution Control
2.7 29 CFR Part 1910.134, Occupational Safety and Health Standards, Respiratory Protection

3. REQUIREMENTS:

3.1 Certify ENTER WITH RESTRICTIONS, SAFE FOR WORKERS and/or SAFE FOR HOT WORK in accordance with 2.2 through 2.4, using 2.5 and 2.6 for guidance, Collection, Holding and Transfer (CHT) and Mogas tanks, spaces, and associated piping, and inspect and certify adjacent tanks, spaces, or piping, where the scope of repairs will result in a need for certification during the performance of this Job Order.

3.1.1 Submit one legible copy, in hard copy or electronic media, of a list of tanks or spaces to be certified to the SUPERVISOR at least 24 hours prior to commencement of work.
3.2 Accomplish the requirements of 009-09 of 2.1 for a step-by-step procedure of how the certification process will be accomplished for CHT systems and Mogas systems.

3.2.1 Procedures for CHT systems shall include, as a minimum, personnel requirements, notification of emergency response personnel, disinfecting of CHT tank and associated piping, removal of product, tag-out of affected piping, protective clothing, respiratory protection, and ventilation requirements.

3.2.2 Procedures for Mogas systems shall include, as a minimum, personnel requirements, notification of emergency response personnel, removal of product from the draw-off tank and Mogas tank and associated piping, removal of inert gas (carbon dioxide) from the cofferdam around the Mogas tank, tag-out of affected Mogas and inert gas (CO2) piping, fire protection/fire prevention, protective clothing, respiratory protection, ventilation requirements, and control of other hazards such as benzene and lead.

3.3 Deliver written notification to the SUPERVISOR and ship's Commanding Officer's designated representative at least 4 hours prior to the planned opening of CHT or Mogas tanks, spaces, and associated piping.

3.4 Deliver written notification to the SUPERVISOR and ship's Commanding Officer of opening of CHT or Mogas tanks, spaces, and associated piping planned over a weekend or Monday following that weekend no later than 0900 on the Friday immediately preceding that weekend.

3.5 Deliver written notification to the SUPERVISOR and ship's Commanding Officer's designated representative of opening of CHT or Mogas tanks, spaces, and associated piping planned on a federal holiday and on the day following the federal holiday no later than 0900 of the last working day preceding the federal holiday.

3.6 A National Fire Protection Association (NFPA) Certified Marine Chemist shall be present during the opening of CHT or Mogas tanks, spaces, or associated piping. The Marine Chemist shall personally certify all CHT or Mogas tanks, spaces, and associated piping for initial entry. Accomplish the requirements of 2.2 for tanks, spaces, or piping that have the potential to become Immediately Dangerous to Life or Health (IDLH).

3.6.1 Spaces which are determined to contain Immediately Dangerous to Life or Health (IDLH) atmospheres shall never be entered except for emergency rescue or for short duration for installation of ventilation equipment in accordance with 2.2 and 2.7, and the requirements of 3.6.3.1 and 3.6.3.2. When entering IDLH spaces for the purpose of installing ventilation, notify the SUPERVISOR prior to entry. Notifications of rescue shall be made as soon as possible.
3.6.2 National Institute for Occupational Safety and Health (NIOSH) approved atmosphere-supplying respirators shall be used by personnel entering CHT tanks, Mogas tanks or spaces, or opening associated piping. Atmosphere-supplying respirators may be either a combination, full facepiece, pressure demand, supplied-air respirator (SAR), or a full facepiece, pressure demand, self-contained breathing apparatus (SCBA). The source of breathing air for SARs shall be either a compressor capable of delivering an adequate quantity of breathing air at the pressure required by the respirators used and meeting the requirements of the specification for Grade D breathing air described in 2.6, or a bank of cylinders cascading to provide at least 4 to 6 hours of breathing air meeting the above specifications at the pressure needed by the respirators used. The source of breathing air for SCBAs shall meet the requirements of 2.6. Compressed and liquid oxygen shall meet the United States Pharmacopoeia requirements for medical or breathing oxygen. Compressed oxygen shall not be used in atmosphere-supplying respirators that have previously used compressed air. SCBA respirators shall have a minimum service life of 30 minutes.

3.6.3 Spaces which are determined to contain IDLH atmospheres shall never be entered except for emergency rescue or for short duration for installation of ventilation equipment in accordance with 2.2.

3.6.3.1 Provide a full facepiece, pressure demand SCBA certified by NIOSH for a minimum service life of 30 minutes, or a combination, full facepiece, pressure demand SAR with an auxiliary self-contained air supply. The size/volume of the auxiliary self-contained air supply shall be based on the contractor's assessment of the unique characteristics/hazards of the space being entered to allow employees to safely escape.

3.6.3.2 In the case of Mogas tanks and the associated cofferdams, the auxiliary self-contained air supply shall be a minimum of 15 minutes or more depending on the required assessment in 3.6.3.1.

3.6.4 All personnel required to use the respiratory equipment mentioned above shall receive training in accordance with 2.2 in the actual use of the respirator equipment including operation of all controls and breathing under pressure-demand conditions.

3.7 An adequate and attended life line shall be utilized for each employee who must enter the IDLH or potentially IDLH atmosphere.

3.8 An observer, whose only duty shall consist of oversight of the work area and spreading the alarm in the event of a casualty, shall be stationed at the access to the work site. The observer must be able to have visual contact or communication with persons in the space at all times.

3.8.1 The observer shall be provided with and trained to use the same personal protective equipment required for the personnel accomplishing
the work. In addition, the observer shall be knowledgeable in the work process being accomplished.

3.8.2 The observer shall establish communication between the ship's designated 24-hour manned casualty control location, e.g., Quarterdeck, Damage Control Central (DCC), Casualty Control Station (CCS), and the observer's location to facilitate notification of the ship in the event of a casualty. This communication may be in the form of 2-way radios, temporary portable-wired alarm system, or other effective devices. The communication devices shall be tested every 30 minutes, as a minimum, to ensure the observer's ability to sound the alarm in the event of a casualty.

3.9 Ventilation suckers, suction ducting, tools, flashlights, and other equipment shall be non-sparking type.

4. NOTES:

4.1 Booklet of General Plans and Tank Sounding Tables are available for review at the office of the SUPERVISOR.

4.2 Refer to 009-07, 009-35, or 009-70 of 2.1, as appropriate, for other requirements concerning confined space entry, certification, fire prevention, and housekeeping.
1. **SCOPE:**

 1.1 Title: Purchase and Inspection Requirements for Contractor-Furnished Zinc Anodes; accomplish

2. **REFERENCES:**

 2.1 None.

3. **REQUIREMENTS:**

 3.1 Purchase of zinc anodes shall meet the requirements of MIL-A-18001.

 3.2 Accomplish a visual inspection to ensure that each zinc anode displays the following information:

 3.2.1 MIL-SPEC revision letter
 3.2.2 Manufacturer name or logo
 3.2.3 Heat or melt number

 3.3 Submit one legible copy, in hard copy or electronic media, of a report prior to installation of zinc anodes, listing data requirements of 3.2 to the SUPERVISOR.

 3.4 Submit one legible copy, in hard copy or electronic media, of the chemical analysis of each heat or melt number for each zinc anode furnished.

 3.5 Maintain segregation of zinc anodes by lot numbers.

4. **NOTES:**

 4.1 None.
1. SCOPE:

1.1 Title: Technical Representative; provide

2. REFERENCES:

2.1 None.

3. REQUIREMENTS:

3.1 Provide the services of a qualified on-site Technical Representative to provide assistance in the process or processes, including NAVSEA pilot coating system application, and repair and testing of the equipment specified in the invoking Work Item. The Technical Representative shall meet the following minimum qualification requirements:

3.1.1 Have technical knowledge of the specified equipment or process and have a documented history of successful performance or repairs on similar equipment or processes.

3.1.2 Have demonstrated competency in analyzing repair requirements and process performance and making recommendations based on process or disassembly inspection results.

3.1.3 Have documented and verified access to OEM proprietary plans, specifications, procedures, material, and parts.

3.1.3.1 The Chief Engineer of the SUPERVISOR is the only representative who may waive specific requirements of 3.1.3.

3.1.4 Submit one legible copy, in hard copy or electronic media, of the name and qualifications of the Technical Representative to the SUPERVISOR for approval. Qualification documentation shall include information supporting the requirements of 3.1.1 through 3.1.3.

3.1.4.1 Written approval from the SUPERVISOR is required prior to substituting the Technical Representative.
3.2 The Technical Representative shall review all required reports, including Process Control Procedures, for technical adequacy prior to submittal to the SUPERVISOR for acceptance.

3.3 The Technical Representative shall meet periodically, weekly at a minimum, with the Chief Engineer of the SUPERVISOR or his/her designated representative to address problems and status of repairs.

3.4 The Technical Representative and contractor shall receive Technical Authority briefing by the Chief Engineer of the SUPERVISOR or his/her designated representative.

3.5 The Technical Representative does not have the authority to direct modifications to the equipment, processes, or items specified in the invoking Work Item without signed authorization from the Chief Engineer of the SUPERVISOR.

3.6 Minimum requirements for the services of the Technical Representative are as follows:

3.6.1 Witness pre-repair operational tests, adjustments, and inspections to determine equipment condition, when required by the Work Item.

3.6.2 Inspect equipment and component parts during disassembly, to include process material and process performance.

3.6.3 Verify process documents where as-found reports are required, to include clearances and conditions, and submit as-found report. Include in as-found report the information required by 3.6.3.1 through 3.6.3.4.

3.6.3.1 Provide dimensional measurements and comparisons to minimum/maximum design tolerances for equipment.

3.6.3.2 Provide sketches of suspect and defective areas with notations to describe defects.

3.6.3.3 Provide list of recommended repair parts or material in addition to those specified in the invoking Work Item.

3.6.3.4 Provide recommendations for future process improvements.

3.6.4 Inspect new and repaired areas and component parts of the equipment prior to re-assembly to ensure compliance with Navy technical manual requirements and Standard Items.

3.6.4.1 Any deviations or departure from the specifications and/or the requirements of 3.6.4 require an approval from the SUPERVISOR prior to equipment re-assembly.
3.6.5 Inspect and provide technical guidance and assistance during process performance, equipment re-assembly and adjustment, and when specified, coating application. Verify re-assembly procedures, sizes, and clearances comply with manufacturer's requirements, Navy technical manual requirements, and coating application procedures when specified.

3.6.5.1 Verify and document mechanical and electrical alignments, final closing sizes, and clearances.

3.6.6 Witness operational tests, make adjustments, and document test and process performance results, including, when required, final inspections of coating systems.

3.6.7 Submit one legible copy, in hard copy or electronic media, of an overall condition report to the SUPERVISOR within 5 days of completion of the requirements of the Work Item and/or coating system application or other process specified in the invoking Work Item.

3.6.7.1 The report shall provide a brief of the repairs accomplished and the Technical Representative's opinion of the post-overhaul equipment condition or process performance.

3.7 Notify the SUPERVISOR upon arrival and prior to departure of the Technical Representative.

4. NOTES:

4.1 The Technical Representative shall not "accept or reject" work for the SUPERVISOR.
1. SCOPE:

1.1 Title: Propeller In-Place Inspection; accomplish

2. REFERENCES:

2.1 S9086-HP-STM-010/CH-245, Propellers

3. REQUIREMENTS:

(I)(G) "VISUALLY INSPECT"

3.1 Clean and visually inspect each propeller and propeller cap in accordance with Section 3 of 2.1.

3.2 Record all inspection data taken in 3.1.

3.2.1 Submit one legible copy, in hard copy or electronic media, of completed Propeller Visual Technical Inspection Report Forms, NAVSEA 9245/3, listing results of the visual inspection and a sketch showing the size and location of any cracks or defects to the SUPERVISOR.

3.2.2 Cover the entire periphery of each propeller blade with metal edge guards and secure them with steel straps in accordance with 2.1.

3.3 Stake each screw and plug on the exterior of each propeller cap to prevent backing out.

(V) "INSPECT BLADE ALIGNMENT"

3.4 Inspect for the existence and accuracy of the word "BLADE" in line with each propeller blade on the coupling flange at the main reduction gears.

3.4.1 Modify and inscribe the word "BLADE" in line with each propeller blade.

3.5 Just prior to undocking, remove blade edge protection installed in 3.2.2.
(V) "INSPECT BLADE EDGE PROTECTION REMOVAL"

3.5.1 Inspect to ensure that blade edge protection has been removed.

4. NOTES:

4.1 Additional inspections or requirements will be specified in invoking Work Item.

4.2 NAVSEA Form 9245/3 is available on the Web at:

http://spt.dcmdw.dcma.mil/technical.html
1. SCOPE:

1.1 Title: Resilient Mount; install

2. REFERENCES:

2.1 Standard Items

2.2 Equipment Technical Manual

2.3 S9073-A2-HBK-010, U.S. Navy Resilient Mount Handbook

3. REQUIREMENTS:

3.1 Notify the SUPERVISOR of the presence of heavily misloaded or deformed mounts prior to mount removal.

3.2 Remove resilient mount assemblies, using 2.2 and 2.3 for guidance.

3.2.1 Inspect each equipment foundation for structural integrity, deterioration, pitting, cracks, and areas of damage or distortion.

3.2.1.1 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.2.1 to the SUPERVISOR within 5 working days after equipment removal.

3.2.2 Accomplish the requirements of 009-32 of 2.1 for each foundation of the removed assemblies.

3.3 Select, procure, assemble, install, load, and adjust new resilient mount assemblies including load bolts, foundation bolts, nuts, and snubbers in accordance with 2.3.

3.3.1 Stamp the installation date on each resilient mount flange adjacent to the identification date. The date shall be visible and legible when the mount is installed with 1/8-inch minimum lettering size.
3.3.2 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.3 and 3.3.1 to the SUPERVISOR. The report shall include the following:

3.3.2.1 Ship's name and hull number
3.3.2.2 Contractor and subcontractor
3.3.2.3 Job Order and Work Item number
3.3.2.4 Identity of equipment
3.3.2.5 Amount and designation of mounts installed

4. NOTES:

4.1 Equipment technical manual and drawings referenced in invoking Work Item may identify mount designation and loading requirements.

4.2 This item does not apply to turbine enclosure mounts.
1. SCOPE:

1.1 Title: Emergency Planning and Community Right-to-Know Act (EPCRA) and Pollution Prevention Act (PPA) Information; provide

2. REFERENCES:

2.1 42 U.S.C. 110001, et seq (1986) Emergency Planning and Community Right-to-Know (EPCRA)

2.2 Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), Section 102(a)

2.3 40 CFR Parts 300, 302, 355, 370, and 372, Protection of Environment

3. REQUIREMENTS:

3.1 Contractor facility availabilities:

3.1.1 Designate a primary and secondary point of contact to receive reports applicable under this item.

3.1.2 Submit the names of the primary and secondary point of contact to the SUPERVISOR in writing prior to the start of the availability.

3.2 Government facility availabilities:

3.2.1 Provide reports/notifications required in 3.2.2 through 3.2.6.2 to the SUPERVISOR regardless of threshold quantities delineated in 2.1 through 2.3.

3.2.2 EPCRA Section 302 requirements:

3.2.2.1 Submit one legible copy, in hard copy or electronic media, of Material Safety Data Sheet (MSDS) for each Extremely Hazardous Substances (EHS) listed in 2.3 brought aboard the Government facility.

3.2.2.2 Report quantities of all chemical products containing EHS brought aboard the Government facility.
3.2.3 EPCRA Section 304 requirements:

3.2.3.1 Provide verbal notification of the release of a reportable quantity of a EHS or Hazardous Substance (HS) released at the Government facility to the SUPERVISOR immediately after initial applicable notifications have been made in accordance with local regulations. This verbal notification shall be followed by a written notification to the SUPERVISOR within 24 hours.

3.2.4 EPCRA Section 311 requirements:

3.2.4.1 Provide MSDS and quantity (by weight) of each HS and EHS in accordance with 2.3, stored on the Government facility.

3.2.5 EPCRA Section 312 requirements:

3.2.5.1 Provide MSDS and Tier I and Tier II reports, including quantities processed or used, of all products or substances listed in accordance with 2.3.

3.2.6 EPCRA Section 313 requirements:

3.2.6.1 Provide MSDS and quantities processed or used of all products or substances listed in Section 313 lists in accordance with 2.3.

3.2.6.2 The Standard Industrial Classification (SIC) Code exception for reporting under Section 313 of 2.1 shall be disregarded when making the required reports.

3.3 All availabilities:

3.3.1 Submit one legible copy, in hard copy or electronic media, of non-emergency reports and copies of MSDS(s) to the SUPERVISOR prior to the start of the availability. These copies or reports shall be supplemented or updated when significant new data is available. Negative reports are required.

3.3.2 All emergency reports shall be made immediately upon becoming aware of the existence of the release.

3.3.3 Utilize individual contract numbers on all reports/notifications.

4. **NOTES:**

4.1 None.
1. **SCOPE:**

 1.1 Title: General Environmental Requirements for Work at Contractor's Facility; accomplish

2. **REFERENCES:**

 2.1 Standard Items

 2.2 40 CFR, Protection of Environment

 2.3 49 CFR, Transportation

 2.4 29 CFR 1910, Occupational Safety and Health Standards

3. **REQUIREMENTS:**

 3.1 Observe the following requirements, in addition to the specific requirements of the Job Order, for work accomplished on Naval ships and craft within the contractor's facility.

 3.2 Accomplish the requirements of 009-09 of 2.1 for an Environmental Management Procedure. This procedure shall address controls and operational actions which will be employed to ensure no adverse environmental impact and shall include the following:

 3.2.1 Spill *Prevention, Control, and Countermeasure (SPCC) Plan:*

 3.2.1.1 Provide name and telephone number for a 24-hour emergency coordinator with alternate.

 3.2.1.2 Describe the method and work practices to be employed to prevent discharges of any volume to the river or waters adjacent to the contractor's facility.

 3.2.1.3 Describe the contractor's spill clean-up capability (i.e., equipment such as oil skimmer, absorbent pads/booms, etc.).
3.2.1.4 Identify a standby subcontractor in case a discharge exceeds the prime contractor's clean-up capability. Provide name of proposed subcontractor, estimated response time, clean-up capabilities, and certify that the subcontractor will respond if called regardless of time/weather, etc.

3.2.1.5 Provisions for notification of the SUPERVISOR (after normal working hours) or Occupational Safety Health and Environmental Office (during normal working hours) immediately upon discovery of any improper discharge.

3.2.1.6 Provide documentation of successful accomplishment of spill training for all spill team members.

3.2.2 Pumping operations (liquid transfer to barge/tank or vice versa or in combination).

3.2.2.1 Describe the continuous communications between pump tender and barge/tank tender to allow immediate shutdown if a problem occurs during pumping/transfer operations.

3.2.2.2 Specific method for gaging compartment volume in barge/tank; maximum volume to be 90 percent of capacity in receiving barge/tank.

3.2.2.3 Describe provisions to tag pump lines to indicate where line is originating from (i.e., ship/craft tank/void pump number).

3.2.3 Waste Disposal:

3.2.3.1 Hazardous waste is defined by 2.2 and applicable state Hazardous Waste Management Regulations.

3.2.3.2 Indicate that the contractor is responsible for properly determining waste identification, including laboratory analysis if necessary under the requirements of 2.2, so that the proper Department of Transportation (DOT) shipping name can be determined for disposal of the hazardous waste in accordance with 2.3. Copies of all laboratory analyses shall be provided to the SUPERVISOR along with manifests.

3.2.3.3 Identify the proposed transporter and transporter EPA ID number who will deliver the hazardous waste to the disposal site. Certify in writing that the proposed transporter meets all Federal, state, and local laws/requirements for the services to be provided. This information shall be submitted to the SUPERVISOR.

3.2.3.4 Describe the segregated storage area that will be utilized by the contractor for storage of hazardous waste.

3.2.3.5 Develop and use a checklist to ensure that transporter's vehicles comply with all applicable DOT requirements of 2.3.
3.2.3.6 Provide certification that the disposal site is legally authorized to accept the identified hazardous waste.

3.2.3.7 Provide documentation of hazardous waste training for all required personnel in accordance with 2.2 through 2.4.

3.2.4 Hazardous Material:

3.2.4.1 Provide documentation of training for personnel using hazardous materials as required by 2.4.

3.2.4.2 Indicate that no hazardous material shall be stored on the ship or craft, except while the material is in daily use or while located in storage areas assigned by the SUPERVISOR.

4. NOTES:

4.1 The SUPERVISOR will:

4.1.1 Retain the right to inspect all hazardous waste/material management activities performed by the contractor as a result of this Job Order.

4.1.2 Retain the right to take any/all wastes/materials from the contractor is deemed necessary to protect the Government's interests. In this event, appropriate credit may be taken by the Navy for any and all work not performed.

4.1.3 Retain the right to stop contractor work/operations in the event of serious safety and environmental problems/violations.

4.1.4 Provide oversight (as necessary) to all spill clean-up operations.

4.1.5 Review all manifests (Navy and cogenerated waste) prior to shipment.

4.1.6 Review documentation of all contractor efforts to comply with Federal, state, and local environmental laws, codes, ordinances, and regulations. This review includes, but is not limited to, compliance with any minimization efforts chosen by the contractor.
1. **SCOPE:**

1.1 Title: Mechanically Attached Fittings (MAFs) for Piping Systems; install

2. **REFERENCES:**

2.1 S9086-RK-STM-010/CH-505, Piping Systems

3. **REQUIREMENTS:**

3.1 Provide control over the use of mechanically attached fittings (MAFs) as an alternative to the standard welding or brazing of fittings in shipboard systems. Select and install MAFs in accordance with Paragraph 505-6.8 of 2.1.

3.2 Prepare a written procedure for approval by the SUPERVISOR identifying the specific MAF process which may be utilized. The procedure requires a one-time submittal/acceptance unless Standard Items and/or references change or contractor's status changes.

3.2.1 The procedure shall be in accordance with 2.1 and shall include quality control requirements, safety requirements, installation criteria (procedures), responsibilities, and training program requirements.

3.2.2 Submit one legible copy, in hard copy or electronic media, of the procedure to the SUPERVISOR at least 7 working days prior to initial implementation of procedure.

3.2.2.1 Submit updated or changed procedures to the SUPERVISOR at least 3 working days prior to implementation.

3.3 Accomplish the requirements of the approved procedure.

3.3.1 Submit one legible copy, in hard copy or electronic media, of a report to the SUPERVISOR identifying the type of MAF, location (space), and system where the contractor has decided to substitute MAFs for weld fittings.

4. **NOTES:**

4.1 None.
1. **SCOPE:**

 1.1 Title: Ball Valve; repair

2. **REFERENCES:**

 2.1 None.

3. **REQUIREMENTS:**

 3.1 Matchmark valve parts.

 (V) **"INSPECT PARTS FOR DEFECTS"**

 3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

 3.3 Repair valve as follows:

 3.3.1 Polish the seating surface of the valve ball to a 32 Root-Mean-Square finish to remove high spots, nicks, and burrs.

 3.3.2 Remove existing and install new valve soft seats using those compatible with the system fluid, in accordance with manufacturers specifications.

 3.3.3 Chase and tap exposed threaded areas.

 3.3.4 Dress and true gasket mating surfaces.

 3.4 Assemble valve installing new O-rings, packing and gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

 3.4.1 Lubricate each MIL-V-24509 valve with grease conforming to SAE-AMS-G-6032.
"INSPECT ALIGNMENT"

3.5 Inspect alignment of ports in the ball valve and body with the ball fully seated. Ball misalignment shall not be of a degree that will restrict flow.

3.6 Hydrostatically test valve as follows:

3.6.1 Hydrostatic test equipment shall have the following capabilities:

3.6.1.1 Manual overpressure protection release valve.

3.6.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.6.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.6.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

"SEAT TIGHTNESS"

3.6.2 Test for seat tightness with valve in closed position with opposite side open for inspection.

3.6.2.1 Ball shall be seated by hand force.

3.6.2.2 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage or, in the event of visible leakage, until accurate determination of leakage can be made.

3.6.2.3 Allowable leakage for a soft-seated ball valve: None.

3.6.2.4 Maximum allowable leakage for a metal-to-metal seated valve: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour.

4. NOTES:

4.1 Test pressures of 3.6.2 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>1/ Alloy Steel</th>
<th>Carbon Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.
<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>VALVE BODY MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/</td>
<td>2/ Nonferrous</td>
</tr>
<tr>
<td>3/</td>
<td>4/ Nonferrous</td>
</tr>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td>5/</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td>Silicon Bronze - Any Grade</td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td>Nickel Copper - Class A</td>
<td>Nickel Copper - Class A</td>
</tr>
<tr>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
</tr>
<tr>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Nuts to MIL-DTL-1222</td>
</tr>
<tr>
<td>5/</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
</tr>
<tr>
<td>For services to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
</tr>
<tr>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
</tr>
</tbody>
</table>
TABLE 2 (CON'T)

<table>
<thead>
<tr>
<th>Item No: 009-96</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/ Alloy Steel/Carbon Steel</td>
</tr>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
</tr>
<tr>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A – 2-1/4 percent Chromium, one percent Molybdenum, Composition B – 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C – Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.

2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. **SCOPE:**
 1.1 Title: Ball Valve; repair

2. **REFERENCES:**
 2.1 None.

3. **REQUIREMENTS:**
 3.1 Matchmark valve parts.

(V) "INSPECT PARTS FOR DEFECTS"

3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.

3.3 Repair valve as follows:
 3.3.1 Polish the seating surface of the valve ball to a 32 Root-Mean-Square finish to remove high spots, nicks, and burrs.
 3.3.2 Remove existing and install new valve soft seats using those compatible with the system fluid, in accordance with manufacturers specifications.
 3.3.3 Chase and tap exposed threaded areas.
 3.3.4 Dress and true gasket mating surfaces.
 3.4 Assemble valve installing new O-rings, packing and gaskets in accordance with the manufacturer’s specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.
 3.4.1 Lubricate each MIL-V-24509 valve with grease conforming to SAE-AMS-G-6032.
3.5 Inspect alignment of ports in the ball valve and body with the ball fully seated. Ball misalignment shall not be of a degree that will restrict flow.

3.6 Hydrostatically test valve as follows:

3.6.1 Hydrostatic test equipment shall have the following capabilities:

3.6.1.1 Manual overpressure protection release valve.

3.6.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.

3.6.1.3 Master and backup test gages with gage range and graduation shown on Table 3.

3.6.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V) (G) "SEAT TIGHTNESS"

3.6.2 Test for seat tightness with valve in closed position with opposite side open for inspection.

3.6.2.1 Ball shall be seated by hand force.

3.6.2.2 Test shall be continued for a minimum of 3 minutes if there is no evidence of leakage or, in the event of visible leakage, until accurate determination of leakage can be made.

3.6.2.3 Allowable leakage for a soft-seated ball valve: None.

3.6.2.4 Maximum allowable leakage for a metal-to-metal seated valve: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes less than 1-1/2 inches is 10 cc maximum per hour.

4. NOTES:

4.1 Test pressures of 3.6.2 will be specified in Work Item.

4.2 Repair of valve operating gear will be specified in Work Item.
TABLE ONE

VALVE BODY MATERIAL

<table>
<thead>
<tr>
<th></th>
<th>Alloy Steel 1/</th>
<th>Carbon Steel 1/</th>
<th>Nonferrous 2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td>Grade B-16</td>
<td>Grade B-16</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A 4/</td>
</tr>
<tr>
<td>Nuts to MIL-DTL-1222</td>
<td>Grade 4 or 7</td>
<td>Grade 4 or 7</td>
<td>Phosphor Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Silicon Bronze - Any Grade</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nickel Copper - Class A or Class B 5/</td>
</tr>
<tr>
<td>Socket Head Cap Screws</td>
<td>FF-S-86</td>
<td>FF-S-86</td>
<td></td>
</tr>
</tbody>
</table>

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud and, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.
<table>
<thead>
<tr>
<th></th>
<th>VALVE BODY MATERIAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/</td>
<td>Alloy Steel/Carbon Steel</td>
<td>2/ Nonferrous</td>
</tr>
<tr>
<td>3/</td>
<td>Studs and Bolts to MIL-DTL-1222</td>
<td></td>
</tr>
<tr>
<td>5/</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td></td>
</tr>
<tr>
<td>4/</td>
<td>Phosphor Bronze - Any Grade</td>
<td></td>
</tr>
<tr>
<td>5/</td>
<td>Silicon Bronze - Any Grade</td>
<td></td>
</tr>
<tr>
<td>4/</td>
<td>Nickle Copper - Class A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For services to 775 degrees Fahrenheit; Grade B-7 or B-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For services to 1,000 degrees Fahrenheit; Grade B-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickle - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickle - Copper - Aluminum alloy QQ-N-286.</td>
<td></td>
</tr>
<tr>
<td>4/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/</td>
<td>For services up to and including 650 degrees Fahrenheit; Grade 5 steel</td>
<td></td>
</tr>
<tr>
<td>4/</td>
<td>Phosphor Bronze - Any Grade</td>
<td></td>
</tr>
<tr>
<td>5/</td>
<td>Silicon Bronze - Any Grade</td>
<td></td>
</tr>
<tr>
<td>4/</td>
<td>Nickle Copper - Class A or Class B</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For service to 775 degrees Fahrenheit; Grade 2H or 4 steel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For services to 1,000 degrees Fahrenheit; Grade 4 steel</td>
<td></td>
</tr>
</tbody>
</table>

4 of 6

ITEM NO: 009-96
FY-06 (CH-1)
TABLE 2 (CON'T)

<table>
<thead>
<tr>
<th>1/ Alloy Steel/Carbon Steel</th>
<th>2/ Nonferrous</th>
</tr>
</thead>
<tbody>
<tr>
<td>For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel</td>
<td>Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222</td>
</tr>
</tbody>
</table>

NOTES

1/ Alloy steel is of Composition A - 2-1/4 percent Chromium, one percent Molybdenum, Composition B - 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C - Carbon Molybdenum.

2/ Nonferrous Alloy except Aluminum.

3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to ASTM D5363. Check Class 3 fit stud ends in accordance with SAE-J2270.

4/ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.

5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.
<table>
<thead>
<tr>
<th>Maximum Test Pressure (lb/in²g)</th>
<th>Master Gage Range (lb/in²g)***</th>
<th>Master Gage Maximum Graduation Size (lb/in²g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From*</td>
<td>To**</td>
<td>From</td>
</tr>
<tr>
<td>5000</td>
<td>9500</td>
<td>0</td>
</tr>
<tr>
<td>3000</td>
<td>5800</td>
<td>0</td>
</tr>
<tr>
<td>2500</td>
<td>4800</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>2800</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>1800</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>1300</td>
<td>0</td>
</tr>
<tr>
<td>500</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTES:

1. Master gage and back-up gages shall track within 2 percent of each other.

2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.

* Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.

** Values allow for reading pressures up to relief valve setting.

*** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.
1. SCOPE:

1.1 Title: Shipbuilding and Ship Repair Operations National Emission Standard for Hazardous Air Pollutants (NESHAPS) for Surface Coating Information; provide

2. REFERENCES:

2.1 40 CFR Part 63, National Emission Standards for Hazardous Air Pollutants for Source Categories, Subpart II

3. REQUIREMENTS:

3.1 Contractor facility availabilities:

3.1.1 Designate a contractor primary and secondary point of contact to receive reports applicable under this item.

3.1.2 Submit one legible copy, in hard copy or electronic media, of the names of the primary and secondary point of contact to the SUPERVISOR prior to the start of the availability.

3.2 Government facility availabilities:

3.2.1 Provide certification to the SUPERVISOR, using Attachment A, for Volatile Organic Compounds (VOC), (for Option 1, 2, and 3 thinning requirement use only) or Attachment B, for Volatile Organic Hazardous Air Pollutants (VOHAP), (for Option 4 thinning requirement) on the as-supplied coating by the manufacturer, or similar form as authorized by the SUPERVISOR.

3.2.1.1 For coatings to which thinners must not be added, the coating container must have a label stating "NO THINNING".

3.2.1.2 For coatings to which thinners are to be added, designate a single thinner to be used and determine the maximum allowable thinning ratio using Equation One of 2.1, apply a label to the coating container stating that "THINNER MAY BE ADDED" and also supply the maximum allowable thinning ratio.
3.2.2 No later than the 15th of each month, or at the end of each job, whichever is earlier, submit one legible copy, in hard copy or electronic media, of a report listing the following to the SUPERVISOR:

3.2.2.1 Volume and type of each coating used the previous month.

3.2.2.2 Volume and type of thinner used the previous month.

3.2.2.3 Calculations used to determine the maximum allowable thinning ratio for each coating that was thinned the previous month.

3.2.3 All handling, thinning, and transfer of coatings, solvents, and related waste shall be done in a manner that minimizes spills.

3.2.3.1 All containers of coatings, solvents, and related waste shall be free of cracks, holes, defects, etc., and remain closed unless materials are being added or removed from the container.

3.2.3.2 All waste materials including rags, brushes, and rollers shall be kept in tightly closed containers that minimize evaporation.

4. NOTES:

4.1 None.
ATTACHMENT A (For Option 1, 2, & 3 Thinning Requirement Use Only)

VOC DATA SHEET

PROPERTIES OF THE COATING "AS SUPPLIED" BY THE MANUFACTURER

Coating Manufacturer:
Coating Identification: ____________________________
Batch Identification: ____________________________
Supplied To: __________________________________

Properties of the coating as supplied to the customer:

A. Coating Density: \((D_c)_2\) _____ g/L
 _____ ASTM D1475-90 _____ Other¹

B. Total Volatiles: \((m_v)_s\) _____ Mass Percent
 _____ ASTM D2369-93 _____ Other¹

C. Water Content:
 1. \((m_w)_s\) _____ Mass Percent
 _____ ASTM D3792-91 _____ ASTM D4017-90 _____ Other¹
 2. \((v_w)_s\) _____ Volume Percent
 ____ Calculated _____ Other¹

D. Organic Volatiles: \((m_o)_s\) _____ Mass Percent

E. Nonvolatiles: \((v_n)_s\) _____ Volume Percent
 ____ Calculated _____ Other¹

F. VOC Content \((VOC)_s\):
 1. _____ g/L solids (nonvolatiles)
 2. _____ g/L coating (less water and exempt compounds)

G. Thinner Density: \(D_{th}\) _____ g/L
 _____ ASTM _____ Other¹

Remarks: (use reverse side)

H. Certification:
 Signed: ____________________________ Date: ______________

¹ Explain the other method used under "Remarks"
ATTACHMENT B (For Option 4 Thinning Requirement Use Only)

VOHAP DATA SHEET

PROPERTIES OF THE COATING "AS SUPPLIED" BY THE MANUFACTURER

Coating Manufacturer:
Coating Identification:
Batch Identification:
Supplied To:

Properties of the coating as supplied to the customer:

A. Coating Density: \((D_c)_2 \) _____ g/L
 - ____ ASTM D1475-90
 - ____ Other\(^1\)

B. Total Volatiles: \((m_v)_s \) _____ Mass Percent
 - ____ ASTM D2369-93
 - ____ Other\(^1\)

C. Water Content:
 1. \((m_v)_s \) _____ Mass Percent
 - ____ ASTM D3792-91
 - ____ ASTM D4017-90
 - ____ Other\(^1\)
 2. \((v_w)_s \) _____ Volume Percent
 - ____ Calculated
 - ____ Other\(^1\)

D. HAP Volatiles: \((m_{hap})_s \) _____ Mass Percent

E. Nonvolatiles: \((v_n)_s \) _____ Volume Percent
 - ____ Calculated
 - ____ Other\(^1\)

F. VOHAP Content (VOHAP)\(_s\):
 1. _____ g/L solids (nonvolatiles)
 2. _____ g/L coating (less water and exempt compounds)

G. Thinner VOHAP Density: \(D_{ch(VOHAP)} \) _____ g/L
 - ____ ASTM
 - ____ Other\(^1\)

Remarks: (use reverse side)

H. Certification:
 - Signed: __________________________ Date: ________________

\(^1\) Explain the other method used under "Remarks"
1. SCOPE:
 1.1 Title: Monel Fasteners; inspect

2. REFERENCES:
 2.1 S9086-CJ-STM-010/CH-075, Fasteners

3. REQUIREMENTS:
 3.1 Maintain fastener accountability to ensure fasteners meeting the criteria of this item are reused in the same joint from which they came.

 3.2 Clean each fastener free of foreign matter (including paint).
 3.2.1 Chase and tap exposed threaded areas.

(V) "INSPECT FASTENER"

 3.3 Visually inspect each fastener in accordance with the following requirements:
 3.3.1 General inspection: Fasteners shall bear markings identifying material to be compatible with the system. Fasteners without markings are not acceptable. Joints with mixed material fasteners are not acceptable.
 3.3.2 Engaged Thread Area:
 3.3.2.1 Cracks are not acceptable.
 3.3.2.2 Broken, chipped, or missing threads or other indications of brittle material failure, are not acceptable.
 3.3.2.3 Galling, spalling, or pitting is not acceptable.
 3.3.2.4 Major defects are not acceptable. A major defect is a single defect (after removal of sharp edges and raised metal) that has a depth over one-half the thread depth.
3.3.2.5 Isolated minor defects are acceptable. A minor defect is a single nick, gouge, or flattened thread (after removal of sharp edges and raised metal) that has a depth greater than 1/64-inch, but less than one-half the thread height (depth), and a width less than the thread spacing (pitch). Defects less than 1/64-inch deep may be ignored.

3.3.2.6 An isolated minor defect that exceeds the width criteria for a minor defect is acceptable when the total length of the defect does not exceed 15 percent of one thread length in any one complete thread.

3.3.2.7 Any combination of minor defects are acceptable when the total combined length of the defects does not exceed 15 percent of one thread length in any one complete thread.

3.3.2.8 Repaired threads which engage with a non-self-locking Class 3-B fit nut, turned with fingers, are acceptable.

3.3.3 Non-Engaged Thread Area:

3.3.3.1 Cracks are not acceptable.

3.3.3.2 For externally threaded fasteners, no minimum thread form is required, except as needed to provide initial thread engagement and passing of the nut.

3.3.4 Self-locking nuts shall have positive reinstallation torque. Cuts, tears, or looseness in self-locking elements or the adjacent metal are not acceptable.

3.3.4.1 Determine adequate torque values (i.e., positive reinstallation, breakaway, running) in accordance with Table 075-5-1 of 2.1.

3.3.5 Deformed or damaged flats on fasteners are not acceptable.

3.4 Discard fasteners not meeting the acceptance requirements of this item.

4. NOTES:

4.1 None.
1. SCOPE:

1.1 Title: Ship Departure Report; provide

2. REFERENCES:

2.1 None.

3. REQUIREMENTS:

3.1 Submit one legible completed copy, in electronic format, of the Ship Departure Report to the SUPERVISOR showing actual distribution of final contract price among the Work Items accomplished no later than 30 days after the availability end date. The report shall be in an electronic format (spreadsheet), via 3.5-inch diskette or compact disk, in accordance with Attachments A and B.

3.1.1 The sum of all Work Items, including all growth costs and new work items, shall equal the final cost of the contract minus any award fees.

3.1.2 Costs provided should be accurate at the time of submission. However, when final costs are not available within the 30 day reporting timetable, submit a preliminary electronic copy of the Ship Departure Report to the SUPERVISOR showing any final costs for work items as well as predictions/estimates for any unsettled work items. Once all costs have been settled, submit a completed electronic copy of the Ship Departure Report to the SUPERVISOR.

3.1.3 After award, an electronic copy of Attachments A and B will be provided to the Contractor.

3.1.3.1 Attachment A will be provided with columns labeled SPEC, W/C, JSN, COAR, %, SUMMARY, CLASS "C" ESTIMATES information, GLM and APA, filled in (reflecting the awarded SSP Work Package). The Contractor will then complete the remainder of the information (columns labeled RCC, M/D, LABOR, CFM, SUBCONTRACTOR information, and TOTAL, to include all the information as applicable for new work items). Upon receipt, the SUPERVISOR will complete any additional GLM and APA information.
3.1.3.2 Attachment B, which represents a summary of the information required by Attachment A, shall be completed by the Contractor except for columns GLM and APA. Upon receipt, the SUPERVISOR will complete those columns.

4. NOTES:

4.1 Departure reports are not accounting documents; however, they will be handled as business sensitive material.

4.2 Attachment C defines terms used in Attachments A and B.
ATTACHMENT A

FOUO. FOR OFFICIAL USE ONLY. THIS REPORT CONTAINS BUSINESS SENSITIVE INFORMATION.

SHIP DEPARTURE REPORT

<table>
<thead>
<tr>
<th>ATTACHMENT A</th>
<th>3 of 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM NO: 009-99</td>
<td></td>
</tr>
<tr>
<td>FY-06</td>
<td></td>
</tr>
</tbody>
</table>

CLASS "C" ESTIMATES | ACTUAL EXPENSES

<table>
<thead>
<tr>
<th>WC</th>
<th>JSN</th>
<th>RCC</th>
<th>COM</th>
<th>%</th>
<th>SUMMARY</th>
<th>M/D</th>
<th>MATL</th>
<th>SUB/ TOTAL</th>
<th>M/D</th>
<th>LABOR</th>
<th>CFM</th>
<th>SUBCONTRACTOR</th>
<th>TOTAL</th>
<th>GLM</th>
<th>APA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>REP</th>
<th>COST</th>
<th>MD</th>
<th>MATL</th>
<th>TOTS</th>
</tr>
</thead>
</table>

3 of 6

ITEM NO: 009-99

FY-06
ATTACHMENT B

FOUO. FOR OFFICIAL USE ONLY. THIS REPORT CONTAINS BUSINESS SENSITIVE INFORMATION.

SHIP DEPARTURE REPORT

NAVSEAINST 4790.14 Series

<table>
<thead>
<tr>
<th>REPORT NO:</th>
<th>ISSUE DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SHIP/HULL</th>
<th>SSP NO.</th>
<th>UIC</th>
<th>FY/TYP</th>
<th>AVAIL.</th>
<th>AVAIL. START</th>
<th>AVAIL. COMPLETION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDUSTRIAL ACTIVITY</th>
<th>CONTRACTOR</th>
<th>JOB ORDER NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CUSTOMER/ TYPE OF WORK</th>
<th>COAR</th>
<th>M/D RATE</th>
<th>GLM</th>
<th>M/D</th>
<th>MAT'L</th>
<th>COST</th>
<th>APA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYCOM REPAIRS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYCOM ALTERATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVSEA ALTERATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAVSEA ORDALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADMINISTRATIVE SERVICES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DSA FUNDED)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 of 6

ITEM NO: 009-99

FY-06
ATTACHMENT C

GLOSSARY

ACTUAL EXPENSES:
- M/D Contractor manhours divided by 8
- LABOR Cost Dollar amount for mandays
- CFM Contractor dollar cost for material
- SUBCONTRACTOR M/D Subcontractor manhours divided by 8
- SUBCONTRACTOR MATL Subcontractor dollar cost for material
- SUBCONTRACTOR TOTS Subcontractor cost for labor & material
- Total Dollar cost for Contractor Labor, CFM & Subcontractor cost
- GLM Dollar cost for government furnished labor and material

APA: Dollar amount for Appropriation Purchase Account (APA) material utilized in connection with the Customer Order (not chargeable to the Job Order)

AVAIL COMPLETION: Date of actual availability completion (month/day/year)

AVAIL. NO.: A 3-digit number assigned by the SUPSHIP

AVAIL. START: Date of availability start (month/day/year)

CLASS "C" ESTIMATES:
- M/D Government estimated manhours divided by 8
- MATL Government estimate for dollar cost of contractor furnished material
- SUB/REP Government estimate for dollar cost for Subcontractor or other contractor provided representative
- Total Government estimate in dollars for M/D + CFM + SUB/REP

COAR: Code indicating cost category (First 2 digits for customer and last 3 for availability number)

CONTRACTOR: Name of contractor

FY: Fiscal year

Industrial Activity: Cognizant Supervisor of Shipbuilding administering the contract.

Issue Date: Date of Report (month/day/year)

JCN: The 4-character identifier for the Work Center followed by the Job Sequence Number for that Work Center.

JOB ORDER NO: Number assigned to the contract at award

JSN: Job Sequence Number (part of Job Control Number)

M/D RATE: Government approved rate representing the cost of one manday of labor for the named contractor

RCC: Number assigned for each request for contract change

Report No.: A sequential number assigned to report

Spec: Work Item Number
Summary: The Work Specification Title, or brief of growth/new work

TYPE AVAIL: The type of availability. Examples: ROH - Regular Overhaul; COH - Complex Overhaul; SRA - Selected Restricted Availability; DSRA - Docking Selected Restricted Availability; PMA - Phase Maintenance Availability; DPMA - Docking Phase Maintenance Availability; INA - Inactivation; ACT - Activation; CONV - Conversion; RAV - Restricted Availability; TAV - Technical Availability; PSA - Post Shakedown Availability

UIC: Ship's Unit Identification Code from NAVCOMPT Manual, Volume 2, Chapter 5

W/C: Work Center (part of Job Control Number which is the 4-character identifier for the WC followed by the JSN for that WC.)

% Prorated portion where more than one JCN is part of a Work Specification Number
1. **SCOPE:**

1.1 Title: Ship's Stability (PCP); maintain

2. **REFERENCES:**

2.1 Standard Items

2.2 541-6687001, Compensating Fuel Oil Tanks on CG-47, DD-963 and DDG-993 Class Ships, Guidance for PCP Preparation While Waterborne

2.3 541-6686789 Rev A, Compensating Fuel Oil Tanks on DDG-51 Class Ships, Guidance for PCP Preparation While Waterborne

3. **REQUIREMENTS:**

3.1 Accomplish the requirements of 009-09 of 2.1 for maintaining ship's stability during the accomplishment of modifications, repairs, removal of equipment, and gas free operations for the duration of the availability, using 2.2 (CG-47, DD-963, DDG-993) or 2.3 (DDG-51) and the following for criteria:

3.1.1 Provide engineering calculations to show the required amount and location of temporary ballast to maintain the ship's stability.

3.1.1.1 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.1.1 to the SUPERVISOR.

3.1.2 The ship's list shall not exceed 2 degrees.

3.1.2.1 If the ship's list exceeds 2 degrees, it shall be corrected within 4 hours.

3.1.2.2 Provide weights or water boxes at the locations and amounts as determined by the engineering calculations.

3.1.2.3 Add and remove weights or water to maintain the ship's stability.
3.1.3 Submit the PCP to the SUPERVISOR within 10 days after award for CNO scheduled availabilities.

4. **NOTES:**

4.1 None.
1. SCOPE:

1.1 Title: Requirements for Mooring, Entry to and Departure from Contractor's Facility; accomplish

2. REFERENCES:

2.1 845-6686999 Rev E, US Navy Vessel Water Depth, Mooring and Hull/Appendage Clearance Requirements for Transit and Berthing
2.2 DDS 582-1, Design Data Sheet, Calculations for Mooring Systems
2.3 S9086-TW-STM-010/CH-582, Mooring and Towing
2.4 MIL-HDBK-1026/4A, Mooring Design

3. REQUIREMENTS:

3.1 Channels, berth, turning basin and mooring shall comply with 2.1 and 2.2, using 2.3 and 2.4 for guidance.

3.1.1 Minimum water depth shall be maximum navigable draft plus 2 feet at mean low water.

3.1.1.1 The approach channel, vessel turning radius, and berth/pier shall be clearly marked with channel markers in areas where the 2 feet minimum does not extend beyond the minimum approach channel, vessel turning radius, and berth/pier requirements specified in 2.1.

3.1.1.2 Install temporary fixed reference points at each end of the approach channel and berth. The reference points shall mark the center of the approach channel and berth.

3.2 Maintain a minimum of 4 feet between the highest point on the ship and overhead projections at mean high water.

3.3 Maintain a minimum horizontal clearance of 17 feet 6 inches between each side of the ship's extreme beam (35 feet total) and any fixed structures such as bridges.
3.4 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.1 through 3.3 to the SUPERVISOR as pre-award information.

4. **NOTES:**

4.1 This item is for all ships over 100 feet in length entering contractor's facility.
1. SCOPE:
 1.1 Title: Alteration Verification; provide

2. REFERENCES:
 2.1 None.

3. REQUIREMENTS:
 3.1 Accomplish reporting of alterations in accordance with the following:

 3.1.1 Meet with the ship's Commanding Officer's designated representative and the SUPERVISOR within one day after start of the availability. Accomplish required reporting for each alteration in accordance with Attachments A through C.

 3.1.2 Meet with the Commanding Officer's designated representative to obtain necessary information and signatures as required throughout the availability.

 3.1.3 Submit one legible copy, in hard copy or electronic media, of completed Attachments A through C to the SUPERVISOR for each alteration within 3 days after alteration completion.

 3.2 Submit all copies of technical manuals, MIPs, and MRCs received with equipment (GFM and CFM) to the SUPERVISOR no later than 5 calendar days after receipt of equipment.

4. NOTES:
 4.1 Data received in 3.2 required for installation and testing will be issued to the Contractor.

 4.2 Alterations may include Ship Alterations (ShipAlts), Ordnance Alterations (ORDALTs), Engineering Changes (ECs), Field Changes (FCs), Machinery Alterations (MACHALTs), and other configuration changes authorized for accomplishment.
ATTACHMENT A
EXCEPTIONS TO ILS VERIFICATION

ALTERATION IDENT: __
(Type Hull-Class-Alteration Number)

SHIP: _________________ ALTERATION ACCOMP DATE: _______________________
(Hull No./Name) (From - To)

INSTALLING ACTIVITY: ___

1. The following ILS was not provided upon completion of this alteration:

a. Technical Manuals (listed by identification number and equipment application).

b. Spares Support that is without RIC/PAL No./Interim Repair Parts (listed by Equipment Nomenclature)

c. COSAL Updates (list documentation not onboard)

d. Test Equipment (listed by Equipment Nomenclature)

e. PMS Documentation (listed by Maintenance Index Pages (MIPs), Maintenance Requirements Card (MRC) Numbers)

f. SSRD Markups (list mark-ups not onboard)

g. Installation Drawings (list drawings not onboard)

2. The following information is provided for items indicated in paragraph (1):

a. Information on how and when this missing ILS was ordered (i.e. Requisition Number, Letter/Transmittal Number, etc.).

b. Information on the current status/estimated receipt date/reason for late arrival (if known) (i.e. out of stock, not developed, etc.).

c. Information on the anticipated method of transfer to the ship when received (i.e. transhipment, forwarding letter, to be accomplished by someone other than NSA/AIT, etc.).
ATTACHMENT B
PHYSICAL CONFIGURATION AUDIT REPORT

ALTERATION IDENT: __
(Type Hull-Class-Alteration Number)

SHIP: ____________________ ALTERATION ACCOMP DATE: ________________
(Hull No./Name) (From - To)

INSTALLING ACTIVITY: __

EQUIPMENT NOMENCLATURE __

SERIAL NO.: ________________________________

LOCATION: ___

EQUIPMENT DISPOSITION:
__ INSTALLED __ REMOVED __ MODIFIED

EIC NO.: __________________________

TECHNICAL MANUAL(S): __
(New/Revised/Copies)

APL/AEL/PAL: _______________________________

TEST EQUIPMENT: ___

PMS DOCUMENTATION: ________________ (MIP NO.)

REMARKS: ___

ATTACHMENT C

SHIP ALTERATION COMPLETION REPORT

<table>
<thead>
<tr>
<th>REPORT NO:</th>
<th>ISSUE DATE:</th>
</tr>
</thead>
</table>

SHIP/HULL
SSP NO.
UIC
FY/TYP AVAIL.

<table>
<thead>
<tr>
<th>NAVSEA SUMMARY</th>
<th>COMPLETE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIPALT NO.</td>
<td>BRIEF DESCRIPTION</td>
<td>(Yes/No)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYCOM SUMMARY</th>
<th>COMPLETE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIPALT NO.</td>
<td>BRIEF DESCRIPTION</td>
<td>(Yes/No)</td>
</tr>
</tbody>
</table>
1. **SCOPE:**

 1.1 Title: Weight and Moment Change Data; provide

2. **REFERENCES:**

 2.1 None.

3. **REQUIREMENTS:**

 3.1 Provide final weight and moment data in the format identified in Attachment A.

 3.1.1 Maintain an account of weight and moment changes resulting from work accomplished during the availability as follows:

 3.1.1.1 Weights removed and location of removal
 3.1.1.2 Weights added and location of addition
 3.1.1.3 Longitudinal, vertical, and transverse moment of removed weights
 3.1.1.4 Longitudinal, vertical, and transverse moment of added weights

 3.1.2 Submit one legible copy, in hard copy or electronic media, of a report listing results of the requirements of 3.1.1 to the SUPERVISOR.

 3.1.2.1 The data shall be a summation of total weight and moment (longitudinal, vertical, and transverse) changes resulting from weights added, removed, and relocated during the availability.

 3.1.2.2 Submit a separate data sheet for each applicable Work Item number.

 3.1.2.3 Submissions shall be progressive as Work Items are completed.
4. NOTES:

4.1 Weight and moment changes are to reflect alterations made as a result of ShipAlts and/or repair Work Items.

4.2 The technical point of contact for the requirements contained in this NAVSEA Standard Item is the local NSA Engineering and Planning Department representative.
ATTACHMENT A

SHIP NAME: __________________________ HULL () CONTRACT/JOB ORDER NO: ___ ___________________

REPORT DATE: ___________________ WORK ITEM NO: _______________________ TITLE: __________________________

<table>
<thead>
<tr>
<th>WT GROUP</th>
<th>ITEM DESCRIPTION</th>
<th>DWG NO.</th>
<th>REV</th>
<th>WT LBS</th>
<th>VCG FT</th>
<th>LCG FT</th>
<th>TCG FT</th>
<th>ABBREVIATED DWG TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:
WT - weight; DWG - drawing; REV - revision; VCG - vertical center of gravity; LCG - longitudinal center of gravity; TCG - transverse center of gravity; FT - feet; I - install; R - remove; F - forward; A - aft; P - port; S - starboard; O - centerline; LBS - pounds
1. **SCOPE:**

 1.1 **Title:** Vibration Testing and Analysis; accomplish

2. **REFERENCES:**

 2.1 S9073-AX-SPN-010/MVA, Vibration Analysis, Machinery

 2.2 Equipment Technical Manual

3. **REQUIREMENTS:**

 3.1 Minimum personnel qualifications:

 3.1.1 For vibration testing, personnel shall have the equivalent of 1,000 man hours of combined experience in: vibration concepts and terminology, the use of vibration equipment, performing equipment calibration, using electronic data collectors for monitoring and recording of vibration data, the attachment of transducer mounting disks and blocks, the selection and location of transducers, calculating machine frequencies, and have a qualified Vibration Category I certification from the Vibration Institute, or equivalent experience and training.

 3.1.2 For vibration analysis, personnel shall have the equivalent of 3,000 man hours experience in: the use of FFT analyzers and data collectors, identifying machinery faults, performing spectral analysis, performing vibration testing, and have a knowledge of the engineering units involved, have a qualified Vibration Category II certification from the Vibration Institute, or equivalent experience and training.

 3.1.3 Submit one legible copy, in hard copy or electronic media, of written substantiation of the credentials of the personnel to the SUPERVISOR seven working days prior to the start of vibration testing.

 3.1.3.1 Submit any change of this information as it occurs to the SUPERVISOR.

(V)(G) "TESTING AND ANALYSIS"

 3.2 Accomplish vibration testing and analysis of the equipment in accordance with 2.1, using the ship’s applicable Vibration Test and Analysis Guide (VTAG), and the following.
3.2.1 Test the equipment at normal operational speed and load, using 2.2 for guidance.

3.2.2 Vibration data shall be recorded after obtaining stabilized bearing temperatures for continuous duty equipment.

3.2.2.1 Prior to collecting any data, operate pumps with electric motor drivers a minimum of four hours.

3.2.2.2 Operate pumps with auxiliary turbine drivers a minimum of two hours.

3.2.2.3 Operate other equipment a minimum of one hour.

3.2.2.4 For auxiliary turbine drivers or other variable speed equipment, data shall be acquired within plus or minus 5 percent of the specified speed.

3.2.3 Intermittent or special duty equipment shall have vibration data collected during the normal operating cycle.

3.2.4 Acceptable vibration data results shall not exceed like unit average machine values (statistically averaged signatures maintained in the ship’s/Class program database). New or newly overhauled units shall be compared to the Mean plus one Standard Deviation of the statistically averaged machine data as criteria. If only one component, the driver or the driven component, was replaced or overhauled and no repair action was accomplished to the other, the unit vibration signature shall be compared to the Mean plus two Standard Deviations of the statistically averaged machine data as criteria.

3.2.5 If VTAG information is not available, collect and analyze vibration data in accordance with the following:

3.2.5.1 Record vibration data in accordance with Paragraph 3.1.2 and 3.3 of 2.1.

3.2.5.2 Vibration data shall not exceed the criteria of Paragraph 3.4.3 of 2.1.

3.2.5.3 Test equipment in accordance with 3.2.1 through 3.2.3.

3.2.5.4 For reciprocating machinery, take a minimum of 2 data points, one at each end of the crankshaft centerline, or as close to centerline as possible.

3.2.5.5 Number each vibration measurement location, starting on the driver end furthest from the driven unit. For 2 drivers on a single driven unit, the numbering shall be from one driver end to the other. For 2 driven units from a single driver, the numbering shall be from one driven unit to the other.
3.2.5.6 Provide a sketch of the unit with the following information:

Drive Unit(s)
Driven Unit(s)
Location of Bearings
Location and numbering of vibration measurement points

3.2.5.7 Scale vibration amplitudes on plot to show the best representation of the magnitudes.

3.2.5.8 For machinery consisting of a drive and driven unit, take vibration data on both pieces of equipment, even if only one piece of equipment was subject to overhaul, to allow a complete analysis of the vibration data, including vibration transmitted between the pieces of equipment.

3.2.6 Record results of vibration analysis on a test data sheet, Attachment A.

3.2.6.1 Submit one legible copy, in hard copy or electronic media, of the following to the SUPERVISOR within 48 hours of completion of vibration analysis:

Completed Attachment A
Machine's vibration data plots
VTAG applicable to the machine
Average machine values applicable to the machine

4. NOTES:

4.1 Equipment performance shall satisfy vibration requirements of specific average machine values if the machinery item is included in the ship's machinery vibration analysis (MVA) program. Such programs are in compliance with 2.1 and depend on the ship's applicable VTAG to identify machinery, provide pertinent measurement locations, numbering conventions, test conditions, manufacturer's configuration information, analysis ranges and major forcing frequencies.

4.2 For surface ships, other than aircraft carriers, VTAG and average machine values are available on a web site location. Go to URL http://aec-nt.navsses.navy.mil/production/login.cfm

Complete User Registration Form
Upon receipt of User name and Password approval, return to System Assessment Website (TPOCs for website 215-897-7467 or 215-897-8471).
Select "Vibration Tools" from menu on left side of introductory screen.
Select "VIBADS MVA Utility By HULL" or "VIBADS MVA Utility By APL" under Vibration Tools Menu
From the "VIBADS MVA Utility", or "VIBADS APL/MVA Utility" Screen, the user may retrieve available machinery pictures showing sensor locations, VTAG data, and averaged vibration data by using an interactive criteria such as:
1) Ship Class
2) Hull
3) Machine, or
4) APL

5) Select "Retrieve Criteria" - Available machinery pictures showing sensor locations, VTAG info, and averaged data will be displayed. For the CWP MVA site, you automatically get order-normalized low and high range spectral graphs of MEAN plus One STD. You can also select AVG and AVG plus 2 STD. If you wish to convert spectra to frequency format (i.e. 500 Hz and 5000 Hz) you need to fill in RPM (Machine fundamental) and Scale (500) and spectra data will be "stretched" accordingly. The "TEXT" option gives tabulated numeric values of each spectral line by sensor location.

4.3 For aircraft carriers, VTAG and average machine values are available from Supervisor of Shipbuilding Newport News, Aircraft Carrier Planning Office (757-688-5183).

4.4 Equipment Technical Manual will be listed in the invoking Work Item.

4.5 For new or newly overhauled equipment, start of vibration testing can only commence upon satisfactory completion of shipboard operational testing, which will be addressed in the invoking Work Item. Also consider any other adjacent work in the machinery space which may affect accomplishment of vibration testing.
ATTACHMENT A

MACHINERY VIBRATION ANALYSIS REPORT

DATE OF VIBRATION TEST: ____________________________

SHIP NAME__ HULL: __________________

CONTRACT/JOB ORDER NO.:_____________________ WORK ITEM NO.:__________________

IDENTIFY: DRIVER OVERHAULED []YES []NO
DRIVEN OVERHAULED []YES []NO

EQUIPMENT NAME: ________________________________ EQUIP. NO.: ______________

DRIVER MANUFACTURER: ___________________________ SERIAL NO.: ______________

DRIVEN MANUFACTURER: ___________________________ SERIAL NO.: ______________

VTAG USED: HULL APPLICABILITY: ______________, SWAB: ________, MID: __________

RECORD ACTUAL OPERATING CONDITIONS:
(SPEED, LOAD, PRESSURE, ETC., OR OTHER CONDITIONS AFFECTING THE TEST)
__
__
__

TEST RPM:___________

RECORD VIBRATION TEST EQUIPMENT USED:

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>MANUFACTURER</th>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALYZER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCELEROMETER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALIBRATOR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REPORTING CONTRACTOR: ___

PRINTED NAME: ___

TESTS RESULTS: SAT [] UNSAT [] (Provide recommendation for corrective action(s) if UNSAT)
__
__

SIGNATURE: _____________________________ PHONE ______________
SIGNATURE OF PERSON PERFORMING ANALYSIS (INDICATES VIBRATION TESTING IS COMPLETE INCLUDING RECORDING RESULTS/DATA)

ATTACH COPY OF VIBRATION SIGNATURES, APPLICABLE VTAG AND AVERAGE MACHINE DATA.
FOR NON-VTAG UNITS, PROVIDE BASIC SKETCH.
1. SCOPE:

1.1 Title: Thermal Sprayed Coatings for Machinery Component Repair; accomplish

2. REFERENCES:

2.1 Standard Items

2.2 MIL-STD-1687, Thermal Spray Processes for Naval Ship Machinery Applications

2.3 0948-LP-045-7010, Material Control Standard (Non-Nuclear)

3. REQUIREMENTS:

3.1 Accomplish the requirements of 2.2 for thermal spray coatings.

3.2 Maintain segregation and record identification markings of Material Identification and Control (MIC) LEVEL I material. Restore LEVEL I markings after coating process in accordance with 2.3.

3.2.1 Accomplish the requirements of 009-27 of 2.1.

4. NOTES:

4.1 None.
1. **SCOPE:**

 1.1 Title: Work Authorization and Control Process; accomplish

2. **REFERENCES:**

 2.1 Standard Items

 2.2 Joint Fleet Maintenance Manual (JFMM)

3. **REQUIREMENTS:**

 3.1 Accomplish the requirements of Paragraphs 10.1 through 10.4.4 of Volume IV, Chapter 10 of 2.2, for a Work Authorization and Control process.

 3.1.1 Submit one legible copy, in hard copy or electronic media, of the Work Authorization Form (WAF), Appendix A of 2.2, to the Commanding Officer's designated representative, for authorization to start work, for each Work Item in the Job Order.

 3.2 The WAF shall be used in conjunction with the requirements of 009-24 of 2.1.

4. **NOTES:**

 4.1 2.2 and associated forms are available on-line at: