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Revolutionizing
Smart Fiber Optic Sensors
for Applications Where
Weight, Size, and Power are
Critical for Operation




FBG Sensor Applications




Fiber Bragg Grating Sensors

® Fiber Bragg Grating Sensors are the most widely used
fiber sensor technology today.

@—The oil and petrochemical industry routinely uses FBG
sensors for multipoint distributed measurements of
strain, temperature, pressure, vibration, acoustics,
shape, and flow.

A major disadvantage of FBG technology is that
onventional state-of-the-art fiber Bragg grating
mterrogat/on systems are costly, complex, and typically
bulky and heavy bench top instruments not suitable for
\ applications where cost, weight, size, and power are
N critical for operation.



f’botonlclntegrated Circuits (PIC)
Lo |croch|pTechnoIogy

* ROl uses its patented PIC microchip technology to
provide fiber optic sensor solutions for sensing
applications where Weight, Size, Power, and Cost

are critical for operation.

* Developed on contract for applications with
* NASA
* Department of Defense
* Department of Energy



ROI's Strategy

® Next Generation FBG SHM Systems
Must be:

e Cost Affordable

e Low Weight

e Small Size

o Self-Power

e Simple User Interface
* Wireless Network Connectivity

For Applications Where Weight, Size, Power, and Cost are

Critical for Operation.



Project Goals

@ This project seeks to develop an
demonstrate an innovative multi-
point fiber optic acousto-ultrasound
sensor (FAULT™) SHM crack
detection system suitable for the in-
situ, real-time, un-intrusive detection
of hidden damage associated with
cracks in  propellant actuated
devices (PADs) and cartridge
actuated devices (CADs) such as
those used in aircraft (F-18) canopy
rocket motors.

REDONDO OPTICS




Navy’'s Need for SHM Inspection of
Propellant Actuated Devices

® The Navy is seeking to developed new sensor technologies for
use on the F/A-18 canopy remover rocket motor (MK 109)
Super Hornet and other propellant actuated devices.

® The solid-state propellants used in Propellant Actuated Devices
(PADs) and Cartridge Actuated Devices (CADs) can develop
cracks while'installed onboard an aircraft. the cracks would
result in @n increase of the burning surface area of the
propellant; ¢ausing an increase in the gas production that may
result in nupture of the device.

This program Is'seeking to demonstrate a new sensor system
capable of detecting the presence of cracks greater than 2-mm
arJ'yWh'ére within the propellant grain

When developed, the FAULT SHM system can provide an early warning

inspection of the presence of cracks within the CAD/PAD propellant grain and
provide alarms via a visual and/or auditory to maintenance personnel.




F-18 Canopy Ejection
MK-109 CAD/PAD
Rocket




Acoustic-Ultrasound for Detection of Hidden
Structural Damage in Large Structures

® Acoustic-ultrasound (AU)
sensing is an effective, and
powerful tool for the
nondestructive testing and
evaluation of composite and
metallic material structures.

@ Analysis of the detected
acoustic-ultrasound waveform
characteristics provides a clear
representation of structural
changes in mechanical state of
a structure.




Acousto Ultrasonic Sensing

Receiver

4+ The AU technology consists of sending
low frequency acoustic pulses at a
predetermined angle of incidence into a

Composite material under inspection.
Structure

| Delaminaton : + These acoustic energy pulses travel
through the material and are reflected by
the different interfaces inside the sample.

+ If a discontinuity (fracture, crack,
delamination, void, debonding etc.) is
present inside the material, the reflected
acoustic energy changes, revealing the
presence of the discontinuity.

Acoustic-ultrasonics wave measurements include time-of-flight, path

length, frequency, phase angle, amplitude, acoustic impedance, and angle
of wave deflection.




Acoustic Ultrasound Neural Networks and
Wavelets For Signal Extraction
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Acoustic-ultrasonics wave measurements include time-of-flight, path
length, frequency, phase angle, amplitude, acoustic impedance, and angle
\ of wave deflection.



Neural networks and Wavelets For Signal
Extraction

Laboratory Test

Time Domain
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Trained Neural Network for CAD/PAD Feature Extraction and

Propellant-Grain Cracks Signal Prognostics Projections for Crack
Recognition Damage Detection



Neural networks and Wavelets For Crack
Detection, Localization and Damage Prognostics
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Neural networks and Wavelets For User
Friendly Process Signal Visualization
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Fiber Optic acousto-ultrasound (FAULT™) crack
detection SHM system

Miniature,
Lightweight, Ultra-
Low Power
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System

Distributed Fiber
Optic Acoustic-
Ultrasound Sensor
Network

Miniature, Lightweight, Self-Power, Wireless Fiber Optic Acousto-
Ultrasound (FAULT ™) Crack Detection System



Fiber Optic Acousto-Ultrasound FAULT™ Crack Detection
SHM System

Three-Dimensional Acousto-
Ultrasound Fiber Optic
Sensor Network

Integrated Pulsed Laser
Acousto-Ultrasonics Exciter
PIC Microchip Technology
Using TWM Interferometer
FBG Sensor Signa
Demodulator

Integrated 1 x n MEMS
Optical Switch for Global
Monitoring

Battery Power and Wireless
Communication.




Phase | Demonstration FAULT™ SHM Crack
Detection System

18-kHz; 8-Pulsed Burst; 100-Hz Rep-Rate - 2-mm Defect

Pristine Before Damage

FAULT SHM Interrogation Frequency Modulation
Transceiver System Pulse Excitation

FAULT SHM crack detection sensor interrogation system
packaged within a 2-in x 2-in x 4-in; 300-gr; 4-W Enclosure




FAULT™ SHM System
Performance Specifications

Monitoring Mode Adaptive Two-Wave-Mixing Interferometry

Sensing Elements 12-FBG sensors in one fiber

Sensing Fibers MEMS Switch - 2, 4, 8, 12, 16, and 32-Fiber Channels
Strain Sensitivity < 10 femto-strains

Strain Dynamic Range + 2500-micro-strains

Frequency Range 7.5-MHz Total Bandwidth (625-kHz/FBG Sensor)
Frequency Sensitivity 0.1-micro-strain/Hz

noise-equivalent pressure NEP < 25

Signal Processor TI Digital Signal Processor (DSP-TMS320F2812PGF)
Data Communication USB, Ethernet, Wi-Fi

Power Consumption 4-W @ 5-VDC

Poser Supply 5-V/6-A

Operating Temperature (-)60°F to (+) 160°F

FAULT Crack Detection SHM System based on Innovative 3D fiber optic Acousto-Ultrasound
sensor network and Silicon Phonics PIC microchip technology for applications were Weight, Size,
\ Power, Performance, and Cost. are critical for operation



Key Engineering Components of Intelligent Wireless
Fiber Optic Sensor (FAULT™) Network System

@ Instrumentation of platform relevant MK-109
rocket motor test samples — inert and live - for
unintrusive detection of propellant cracks and
structural damage.

® Development and production of acousto-
ultrasound fiber optic sensor networks.

® Development and production of miniature, battery
power, wireless communication FAULT SHM
Crack Detection System.

® Development and production of damage detection
signal processing software



MK-109 Test Article Instrumented with Acousto-
Ultrasound Fiber Optic Sensor Network

® ROI with the support of
Nammo-Talley engineering
group acquire several test
samples of the MK-109 rocket
motor shell for use in testing of
the FAULT SHM crack
detection system.

® The MK-109 rocket motor
sample has been instrumented
with an array of FBG sensors
and currently used for testing
and evaluation of the
performance of the AU sensors
for the detection of cracks and
damage using a simulant
propellant cartridge.




MK-109 Test Article Instrumented with Acousto-
Ultrasound Fiber Optic Sensor Network

Parts by Weight

Ingredient Function T.LM.S.
Nominal Min. Max.

*R-45M Binder Constituent 15.01.10 67.565 66.00
AO-2246 Antioxidant 13.03.05 1.00 0.90
DHE Bonding Agent 4.00 0.23 0.22
PDDP ] | _Antiozonant 15.00 050 | 045

FeAA Cure Catalyst 6.001 0.015 0.010
Filler (hydrated . I
C-330 alumina) 8.80 | 19.40 19.00

*TMXDI B ___| _Curative 1 1.002 7.29 7.00
Carbon Black Filler 3.02 4.00 0.00




MK-109 Inert Propellant Test Specimens




MK-109 Live Propellant Test Specimens
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Production of Distributed Fiber Optic Acoustic-

Ultrasound Sensor Network

Laser Ultrasound
Excitation

Defected
Area

Carbon
Coated Fiber

[l[l;_:._'

3D FBGs

Volume

3D Laser Tap 3D ring-Resonators 3D FBG-Sensor

The FAULT™ SHM sensor network uses ROI’s proprietary technology for the three-dimensional
fento-second laser inscription of a distributed three-dimensional array of laser ultrasound excitation
“hot-spot” tap points and an interleaved array (100’s) of acoustic-ultrasound sensing receiver

elements (FBGs and Ring-Resonators) produced within a single optical fiber



Fento-Second Laser Inscription Production of
Laser “Tap” Excitation Points




Fento-Second Laser Inscription Production of

Laser “Tap” Excitation Points

a /

# q v C {C\J "')—)\\ﬁ W ij V| d 1 a0 \ v ?
£ O“f)‘mj l*’hU) hhor = 259 JSou)w»?

fer L~ TR
f////—sgéco&
G [, Sl

»
-“'\
‘AL

Radiative Optical Power from Laser Beam Launched onto Optical Fiber for Acousto-
Ultrasonics Excitation of the Rocket Motor Test Structure



Fento-Second Laser Inscription for Production
of 3D-Surface FBG Strain Sensors

“/\
. Fiber Cladding

1540 1550 1560 1570 1580 1590
Wavelength (nm)

Single 3D FBG Array of 3D-FBGs



Femto-second laser inscription of three-
dimensional waveguide structures
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Fento-Second Laser Inscription for Production
of 3D-Surface FBG Strain Sensors

Cladding Region

Section 2

Section 1 - ‘ .
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Dual FBG Sensor for Enhance AU Signal
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Reflection

Fento-Second Laser Inscription for Production
of 3D-Surface FBG Strain Sensors
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Femto-Second Inscription of 3D-Waveguide

Mack-Zehnder Interferometers
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Transmission

Femto-Second Inscription of 3D-Waveguide
Mack-Zehnder Interferometers
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Fento-Second Laser Inscription for Production
of Ring-Resonator Strain Sensors
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Engineering Development of FAULT™ Crack
Detection SHM Transceiver System

FAULT™ SHM Transceiver

Integrates the pulsed AU excitation laser source, multi-channel TWM PIC
microchip demodulator; 12-ch WDM FBG sensor interrogation electronics;
MEMS 1xn optical switch, high-speed signal processing electronics with
wireless data communication



Block Diagram of FAULT™ SHM Transceiver
Opto-Electronics

SOA TIA 2nd Stage
Driver Amplifiers  Amplifier

An

Analog-Processing
=l |
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Analysing Broadband

Laser Source
To and From

alog Filters

ADC

TEC

Digital-Processing
, [ ]
DSP L

FBG/RIng-Resonator AU Sensors

Wireless Module

X Wireless Data Comm

H
USB/Ethernet Data Comm)|
(optional)

Reflection Signal from an Digital Filters  Ram  >64 Gb
B te Q-Switch HR 810-LD
FBG Sensors P:Je\:riszz: Ca‘c:t;: p:{: Mirror W/GRIN Lens Memory Flash Memory

LD Pump Signal
Generator

ower ignal

Output  Output Fiber Coupling
Lens Stop Lens

TEC

FAULT™ SHM Transceiver

Integrates the pulsed AU excitation laser source, multi-channel TWM PIC
microchip demodulator; 12-ch WDM FBG sensor interrogation electronics;

MEMS 1xn optical switch, high-speed signal processing
wireless data communication

electronics with



FAULT System Signal Processing
Electronics On-Board Signal Processing

« Receives high sample rate (MHz)
signals from analog/digital data logger
board and reduces data using wavelet
and neural network algorithms use for
signal feature extraction.

« Reduced feature data is store on-
board within high capacity (500-GHz)
SD Card and transmitted using
wireless (Wi-Fi or Bluetooth) data
transmission protocols

The FAULT System Uses a COTS High Performance Singe-Board

Mini-Computer for On-Board Signal Processing, Data
Discrimination, and Wireless Data Transmission




Design and Production of the FAULT SHM System
Two-Wave- Mlxrng Interferometer PIC Microchip.

Polyimmide
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JDSU SDLO-4000 1000mW, 915nm Pump

Pulsed Laser

® Semiconductor grating
stabilized pulsed (nsec)
pump lasers offers
flexible capability for use
with the FAULT SHM
system for the acousto-
ultrasound excitation of \
test structures.

—

Time ———m—m> Time —m—0o"o—m—mmmmm———P

Continuous CW Output Repetitive Pulse Output

Time ——————————

Single Pulse Output



FBG Stabilized DFB Laser Spectrum 3-dB
Linewidth ~ 2-nm

Table4  Electro-Optical Performance? 20 p - -
Parameter ‘Symbol ’TestConditions Minimum Maximum é 4 "l
[ -4() \
Spectrum ) '
Target wavelength? (in vacuum) ‘ 1420 nm 1510 nm -40 5 t 60 5
Powerin band ( +2 nm) Poons (100mW)s 1<, 80% 3 \
Spectral bandwidth, RMS . P RMS 20nm [ J, 4
. ‘ > E r <\ o _N()
Polarization extinctionratio R | Ty =25°C 13dB M 60 Y\ e v\ o) A
Laser Diode ) 1\ 4020 0 20 40
B - n AD o) ‘f'r‘ “'“‘., N/ y r
Threshold current 200mABOL | ™ Frequenu/l\lll
rie - | Q _wT' I "-‘.4‘;?. v
End-of-lifetime operating current : 1.12x1_BOL $ Anietr J' o> TV
- vy A ] Pebetpiaty iy
Monitor Photodiode o -30F ‘
~
Monitor current V., =5V 0.5uA/mW 5.0 pA/mW |
Monitor dark current ‘ V.=V 300nA
Monitor diode capacitance Co V _.=5V,1kHz 20pF 100
Front-to-rear tracking ratio R constant, 100mWto P, 0.85 115
Front-to-rear tracking error TE »constant, 100mWtoP,, -15% 15%
Thermoelectric Cooler Operation 120 . A
Power consumption P 12.5WEOL o R ] b 5 a
P ‘ . A5 -0 05 00 05 10 15
Thermistor resistance R 25°C 9.5k0 10.5k0
w /I VIM
Mean thermistor B constant B TC 3700K 4100K Fr equency IMHz




Laser Acoustic Ultrasound Excitation at Target
Frequency Excitation
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Fiber Optic Laser Acousto-
Ultrasound EXxcitation

\ )
1 ‘ ?II ‘ ‘
Max(1): 600V MAvg(1):-1.388mV  MFreq(1): 16TkHz |




Fiber Optic Laser Acousto-Ultrasound Excitation
(267-kHz Arbitrary Waveform)

/CS Volt




Fiber Optic Laser Acousto-Ultrasound Excitation
(267-kHz Arbitrary Waveform)

/CS Volt

| Awmmummm it g
ity




Integration of 1 x N MEMS Optical Switch to
FAULT™ SHM Interrogation System

ROI Uses a COTS 1 x n MEMS Optical Switch Integrated to the
FBG Sensor Interrogator for the High-Speed Multiplex
Interrogation of the Flex Circuit FBG Receivers



FAULT System Self-Power Using Long-Lived
Li-lon Battery Packs

SOA TIA 2nd Stage .
Driver Amplifiers  Amplifier Analog Filters

Analog-P(oéessing ;

EEgh

Digital-Processing Wireless Module

Jooooom

[ ] . Wireless Data Comm

psp| [ D JC < >
L] X USB/Ethernet Data Comm
FPGA [ ] (optional)

Digital Filters ' Ram  >64 Gb
Memory Flash Memory

LD Pump Signal

Generator -
ADC
owér igna
O r

The FAULT System Uses a COTS Long-Lived Li-lon Battery Pack, and Auxiliary
Battery Recharging Module Used to Maintain Constant Power to System Over
Prolonged Operating Periods of Time




Real Time Signal Processing for Crack Detection
Using Acoustic Ultrasound Signature Events.
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of Structure Damage Assessment




Acousto-Ultrasound Signal From Test

Specimen with Induced 2-mm Crack Damage

Axis Title

18-kHz; 8-Pulsed Burst; 100-Hz Rep-Rate - 2-mm Defect

FBG Sensor 2 - 6-in. from Exciter
* Crack Position 4-in from Exciter




FAULT Lab-View based Software for system
Initialization, control, and data process

Acousto-Ultrasound Frequency Modulation for Time-Domain/Frequency Domain
ructural Damage Detection Single trigger & Spectrogram
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Detected Acoustic Ultrasound Signal
Single Event Trigger Detection
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Captured AU Waveform
Single Event Trigger Detection
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Real Time Feature Extraction Measurements
from Acoustic Ultrasound Signals
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Trigger Waveform Data Extraction Measurements
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Wavelet and Neural Network Based Signal
Processing
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Real Time Visual Display of Time Sequence AU
Measurements and Their Relation to FBG Sensors
Location
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Acoustic Ultrasound Testing of Simulated Cartridge Actuated
Devices using FAULT™ SHM system

Detect and localized structural damage within the test articles, and
to classify the extent of damage (voids, fracture, cracks,
delaminations) incurred in the PAD or CAD Device




Summary of Current Progress

® The Covid-19 pandemic severely
affected ROI’s time schedule for
the development progress of the
FAULT SHM Crack detection

system.

® Currently we are proceeding with
the extensive testing of relevant
platform MK-109 test surrogates
that will lead to the training of the
signal processing software feature
extraction Neural Network
algorithms leading to the real time
detection, localization, and
classification of hidden cracks and
defects within the CAD/PAD
propellant structure.
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