

The Role of a Systems Engineer at MBA

CAD/PAD Technical Exchange Workshop

12 - 14 July 2022

Contents

- Martin-Baker at a Glance
- Systems Engineering Process
 - ▼ V-Diagram
- Model Based Systems Engineering (MBSE)
 - Decomposition & Definition
 - ▼ Integration & Recomposition
- MBA Simulation Capability
 - ▼ SPARK
 - ▼ Seat6D

IN 2021 MARTIN-BAKER DELIVERED 534 SEATS TO 🛂 GLOBAL PRIMES FOR 16 AIRCRAFT TYPES THAT WERE SOLD TO **COUNTRIES**

AIRCRAFT

YEARS OF DESIGN. DEVELOPMENT AND MANUFACTURE OF AIRCRAFT **ESCAPE SYSTEMS**

LARGEST AEROSPACE COMPANY IN THE WORLD

11 **QUEEN'S AWARDS**

16.800+ 91.500+

SEATS IN SERVICE SEATS DELIVERED

866 COUNTRIES

ESCAPE SYSTEM AND CRASHWORTHY SEAT PROGRAMMES

95 OPERATORS

Systems Engineering Process

- ▼ MBA utilise traditional systems engineering 'V-Model'
 - ▼ Programme are tailored to ISO/IEC/IEEE 15288:2015

Model Based Systems Engineering

- ▼ MBSE allows us to capture decisions, justifications and provide traceability throughout the life cycle of a product in a centralised, logical way
- System models can be used to directly interface across functions and provide a single source of truth
- Customers, suppliers and regulators are accustomed to documents for decisions, justifications and evidence, not models
- ▼ MBA adopted a model based systems engineering approach around 10 years ago
 - ▼ We are currently a stage 3 organisation: Model-Enhanced
 - Practice MBSE in Sparx Systems Enterprise Architect (EA)

Decomposition & Definition I

- Model System stakeholders
- Model use-cases for System context and requirement derivation
- Can be extended to activity, sequence and states and modes

Decomposition & Definition II

Decomposition & Definition III

- Requirement derivation
- Requirements are documented, linked to functional/physical architecture and provide traceability to verification activities

Decomposition & Definition IV

- Verification Plan defines the objective, instrumentation, data reduction and procedure of the high-level verification activities that will be conducted
- Links verification activity to applicable design, relevant infrastructure, the responsible persons and verification outputs

Integration & Recomposition

 Links original requirement to verification evidence thus providing full traceability

MBA Simulation Capability

- Top level simulation capabilities
 - Pyrotechnic simulation (SPARK)
 - Escape System simulation and analysis (Seat6D)
 - Multi-body dynamic modelling
 - ▼ Bio-dynamics and crash analysis
 - Control analysis
 - Aerodynamics and computational fluid dynamics
 - Parachute simulation
 - ▼ Software development

SPARK Overview

- ▼ Systems engineering Pyrotechnic And Rigid body Kinematic simulation
- ▼ Object oriented C# code created and under constant development by MBA Systems Engineering
 - Undergoing upgrades to improve performance, accuracy, and overall capabilities.
- Used to simulate pyrotechnic Systems from a single cartridge in an isolated environment up to full seat representation including
 - ▼ Energy sources & sinks
 - Burning pyrotechnic charges
 - **▼** Losses
 - V Orifices
 - Volumes
 - V Nozzles
 - ▼ Sub & super sonic flow conditions
 - ▼ Simple quasi-1D flow
 - Pistons
 - V Kinetics
 - Activators
 - Atmosphere

SPARK Capability I

- Models use well defined chemical properties for each propellant used
 - ▼ Heat capacity ratio (Gamma)
 - Specific heat
 - Flame temperature
 - Density
 - Propellant burn rate
 - ▼ Empirical burn rate vs pressure
 - ▼ Vielle's Law
- Models typically built using engineering data
 - Catapult volume/stroke
 - Propellant slug dimensions/quantities
 - Cartridge orifice diameter
- Two types of loss object exist within SPARK
 - ▼ Thermal losses
 - ▼ Thermal flux based on temperature difference, area and material properties
 - No material thermal inertia
 - Friction losses
 - ▼ Friction losses apply a retarding force to the motion of an acceleration mass
 - ▼ Defined by a distance vs friction factor lookup up table
 - ▼ Can be varied continuously to match test data

SPARK Capability II

- Pyrotechnic properties
 - ▼ For commonly used propellants (Extruded Double Base Propellant) the required properties (and composition details) are provided by the manufacturer
 - For new propellants with a known composition the propellant properties are calculated using the NASA CEA code and/or PROPEP
- SPARK is able to burn and evolve the surface area of some hardcoded propellant geometries
 - Solid and hollow tubes (with or without antiresonant cross holes)
 - 7-hole perf
- Novel geometries can be input as a burn surface area vs burn depth lookup table
 - SPARK interpolates data at each time-step to generate new surface area

Model Validation

SPARK Uses

- Once a model has been matched, nominalised and validated, the model can be used to make predictions
- Predictions can be made of the same System under different conditions or in different configurations
- ▼ SPARK can be used to analyse Systems. Instead of performing a large number of (resourcedemanding) tests, SPARK may be used instead

Seat6D Overview

- The object-orientated approach was used to be able to model any type of ejection seat past, present and future
 - ▼ From Mk4 to Mk18 and experimental such as controllable propulsion (e.g. NACES P3I pintle motor)
- All phases of ejection
 - ▼ From pre-ejection aircraft motion through catapult, stabilisation and parachute phases to touchdown

Seat6D Capability

- Seat, manikin and parachutes modelled as 6 degree-offreedom bodies
- Components/effects modelled include
 - ▼ Aircraft, canopy, catapult, rocket(s), guiderails, occupant slump, limb restraint, parachute deployment mortars, tractor rockets and slugs, bridles, risers, strops, electronic and mechanical sequencers/timers, BSTS delays, survival kit release and suspension, parachute collapse, aerodynamics on seat/parachutes (including Mach effects), aerodynamics effects of cockpit, rocket plumes and seat wake, atmospheric data (with altitude), wind ...
- Types of simulation
 - ▼ Single run
 - ▼ Sensitivity stepping through values of multiple parameters
 - ▼ Monte-Carlo randomising (uniform, normal, user-defined) values of multiple parameters
 - ▼ Collection
- Seat6D reports various parameters and metrics back such as
 - ▼ DRI, MDRC, peak incidence/sideslip, chest gs, proximity between objects (e.g. fin clearance), terrain clearance (safe heights)

Seat6D Uses

- Seat6D calculates several key performance requirement metrics, such as:
 - **▼** MDRC
 - Seat stability (pitch and yaw angles)
 - Object trajectories
- Seat6D also calculates MBA in-house limits, that over years of extensive testing have shown to be indicative of optimal performance:
 - Maximum roll and pitch rates
 - Resultant acceleration during parachute inflation for a light crew
 - ▼ Angle of the parachute risers during lines taut
 - Minimum distances between objects

- ▼ Performance Predictions to support Seat requirement verification
 - ▼ MDRC, chest gs, fin clearance and terrain clearance etc
- Test prediction and analysis
 - Tests also validate models
- System design/trade studies
- Mishap investigations
- ▼ Derivation of sub-system design limits
- Crew Manual data

Seat6D Example

