Sub-Miniature Laser Igniters

2016 CAD/PAD Technical Exchange Workshop
John Hirlinger

25 May 2016
Summary of the Problem

- Electrically fired ignition devices are inherently susceptible to some form of inadvertent ignition, i.e. RF, ESD, etc.

- There are current and future concerns relative to Electromagnetic Environmental Effects (E³) and energetic devices.

- Firing circuits on existing systems are designed for resistive heating ignition (relatively low electrical power)
Summary of the Technology

- Remove/isolate electrically sensitive ignition materials from all electrical stimuli (designed or secondary)
- Utilize a Commercial-Off-The-Shelf (COTS) laser diode to initiate the ignition materials
- Place electrical assembly (to include the laser diode) in the current igniter volume to protect against inadvertent electrical ignition
- Utilize the remainder of the existing ignition system to complete the firing of the system
Electrical Ignition Example

- Case
- Booster Charge
- Igniter Material
Sub-Miniature Electrical Igniter

- Case
- Booster tube
- Ignition Material
- Laser Assy w/Electronics
- Sub-Miniature Laser Diode
Typical Firing Sequence

1. Standard electrical firing pulse delivered from firing pin
2. Sufficient amperage delivered to activate laser diode
3. Laser diode fires laser beam across small gap to energetics
4. Energetics ignite and function the remainder of the output charge
Status:

- Initial prototype component fixture for HERO & ESD testing designed and assembled
- RF exposure of individual components mounted within the test case successfully completed with diode functionality confirmed and no output from the diode during stimulation
- ESD exposure of laser diode mounted within the test case successfully completed with diode functionality confirmed
- Diodes with “unprotected” electronics have been successfully test fired as bare devices and assembled within the existing igniter cup volume
- Ignition train (laser diode → ignition material → energetics pellets) has been successfully tested
- U.S. Patent issued for basic technology
- Electronic design and assembly process compatible with high speed manufacturing nearing completion
Upcoming Activities - FY16

- Complete electronic design and assembly process compatible with high speed manufacturing
- Initiate “stand-off” tolerance study for end item assembly process
- End item testing with “full” laser diode electronics package
Upcoming Activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp HERO & ESD Tests</td>
<td></td>
</tr>
<tr>
<td>End Item Testing</td>
<td></td>
</tr>
<tr>
<td>Initial System Application Testing</td>
<td></td>
</tr>
<tr>
<td>Technology Maturation Contracts</td>
<td></td>
</tr>
<tr>
<td>System Integration & Test</td>
<td></td>
</tr>
<tr>
<td>Mature Supplier Base</td>
<td></td>
</tr>
<tr>
<td>Adapt Assembly Facilities</td>
<td></td>
</tr>
<tr>
<td>Build Qualification Hardware</td>
<td></td>
</tr>
<tr>
<td>Conduct Qualification Testing</td>
<td></td>
</tr>
<tr>
<td>Incorporate into Technical Data</td>
<td></td>
</tr>
</tbody>
</table>