Energetic Material Additive Manufacturing

Dr. Samuel Emery, NSWC-IHEODTD
REVIEW: TRADITIONAL MANUFACTURING OF EXPLOSIVES

The current “state-of-the-art”
Cast-Cure Process

- Cast-Cure
 - Composite materials
 - Polymeric Binders
 - Explosives
 - Metal Fuels
 - Oxidizers
 - Curatives, Catalysts, Bonding Agents…
 - Plasticizers, Antioxidants, Stabilizers…
 - Processing Aids, Ballistic Modifiers
Melt-Cast Process

- Melt-Cast
 - Purse explosive melted in steam jacketed kettle
 - Charges are loaded by one of three main techniques:
 - Straight pour
 - Pellet Load
 - Riser Load
Pressed Powder Process

- Pressed Powders
 - Produce a “molding” powder
 - Explosive Molecules
 - Wax or Plastic Binder
 - Solvent
 - Press the powder into require shape or into case
Problems with Traditional Manufacturing of Explosives

- **Cast-Cure**
 - Settling of ingredients
 - Poor bonding of cast material to casing
 - Shrinkage and cracking

- **Melt-Cast**
 - Shrinkage and cracking
 - Irreversible growth
 - TNT based explosives are poor in cook-off scenarios

- **Pressed**
 - Not suitable for very large munitions
 - Not suitable for munitions with limited access, internal plumbing, unusual shapes
Need for Disruptive Technologies

- Traditional explosive manufacturing
 - Formulations limited to production via:
 - Cast-Cure
 - Melt-Cast
 - Pressed Powders
 - Limited set of ingredients.
 - Feedstock sources limited, often single vendor or foreign sourced
- Improvements to existing technologies
 - Often incremental only, difficult/costly to update large scale manufacturing plants
 - Limited impact on performance or munition safety

5”/58 Projectile Showing Incremental Pressing of Explosive Fill
Need for Disruptive Technologies

- After 100 years of explosive molecule synthesis efforts...
 - We have 2x TNT with a significant cost increase per pound
 - CL-20, the top molecule, is qualified in only one DoD formulation
 - CL-20 adoption is held back by
 - Money/Time to redevelop formulations for existing systems
 - Lack of production of the molecule (economy of scale).
 - The one formulation...? An explosive ink used in 3D printing of fuzes.
Introducing Additive Manufacturing (AM)

- Additive Manufacturing, a working definition
 - A general term that encompasses several technologies that can create 3D objects by adding material layer by layer

- General Benefits
 - Cost Savings
 - Material Control
 - Rapid Prototyping
Why Energetic Material AM?

• Cost Savings
 – AM cost per part insensitive to number of parts produced

![Cost per Part Comparison Graph]

Figure 7 - Comparison of several AM methods to Injection Molding - Rapid Manufacturing Research Group at Loughborough University (UK) Study

Distribution A: Approved For Public Release, Distribution unlimited. (IHEODTD 16-061)
Why Energetic Material AM?

- Precision Placement of Materials
 - Unique structures not obtainable by traditional means
 - Reduced waste

http://www.nanoscribe.de/en/technology/additive-manufacturing/
Why Energetic Material AM?

- Composition/Density Control
 - Gradients can produce unique explosive effects
 - Detonation Merging, multi-point initiation “baked in”, insensitivity, etc.

Radially Density Graded Energetic

Lower Density

Higher Density

Compositional Gradients

Fig. 5. A finite element model showing elastic mismatch in two dissimilar metal automobile valve stems at 1000 K. The figure on the left shows a valve with a 304L stainless steel stem connected to an Inconel 625 valve via a 2.5 cm long gradient of composition. On the right, the gradient is replaced with a friction weld. The stress at the joint of the friction welded part has an approximately ten times higher stress than the compositionally graded alloy.

Why Energetic Material AM?

• Rapid Prototyping
 – Reduce time between design and a working prototype
 – Can incorporate cost savings and material controls

http://www.bresslergroup.com/blog/rapid-prototyping-for-user-research/
Technology Gap: Polymer Solutions

• Gap
 – Compatibility of existing energetics with current feedstock for material extruded systems
• Need to develop AM compatible melt-castable and cast-curable energetic binders for usage in Extruder 3D printers

We need to expand upon the very limited list of thermal plastics/polymers to produce energetic materials
Near Term R&D Efforts at IHEODTD

• AM compatible binders
 – Leverage existing programs to acquire COTS material extruder style printer
 – Survey existing melt/cure-castable binders for use in energetic formulations
 – Demonstrate AM compatibility with promising binders with and without inert simulant
 – Develop Safe handling procedures
 – Produce small-scale explosive test samples with down-selected binder in 3-D printer
 – Identified academic partners already making good progress in these areas

• Functional Graded Materials
 – Leverage existing programs to acquire COTS, multi-nozzle, material (ink) jet printer
 • select promising formulations that would be applicable to density and compositional grading – ex. Lakehurst fire suppression
 – Demonstrate Successful FGM characteristics and microstructural control
AM printed PBX Simulants

- AM Produced PBX Simulant
 - R45M Binder (HTPB based)
 - 88% bi-modal sized solids loading
 - Produced in collaboration with SDSMT
QUESTIONS?
Back-up Slides
AM Technologies

• **Material Extrusion**

 – Material selectively dispensed through a nozzle

 – Inexpensive, most common AM technology

 – Resolution limited by nozzle radius

Most Common Form:

– Fused Deposition Modeling (FDM)

 • Plastic or metal filaments as feedstock.

 • Many commercial vendors

 – Stratsys, 3DSystems, etc.

 • Used at the CRIP

 • Requires post processing
AM Technologies

• Material Jetting
 – Photopolymer droplets selectively deposited and UV cured
 – Multiple print heads can simultaneously produces multiple materials in final product
 • PolyJet Connex3 system has 82 Heads for 82 different materials.
 – High accuracy and resolution
 – Limited to photopolymers and some waxes

Source: Loughborough Univ. AM Research Group
AM Technologies

- **Binder Jetting**
 - Liquid binder is selectively deposited to bind powder/granular materials into a structure.
 - Wide range of materials: metals, powders, and ceramics
 - High speed, but not good for structural parts
 - Post-processing required for hardening

- [Example of Binder Jetting](#)
AM Technologies

• Powder Bed Fusion
 – Thermal energy selectively fuses regions of a powder bed
 – Uses a laser or electron beam
 – Can use metals or polymer powders
 – Inexpensive, but slow

 – Examples
 • Direct Metal Laser Sintering (DMLS)
 • Electron Beam Melting (EBM)
 • Selective Heat Sintering (SHS)
 • Selective Laser Melting (SLM)
 • Selective Laser Sintering (SLS)

Source: Loughborough Univ. AM Research Group
AM Technologies

• Vat Photopolymerization
 – Liquid Photopolymer in a vat is selectively cured by light
 – High print accuracy
 – Fast
 – Limited material range (photo-resins)

 – Novel: Continuous Liquid Interface Production (CLIP)
 • CLIP Video

Source: Loughborough Univ. AM Research Group

Continuous Liquid Interface Production

Source: Carbon3D
Other AM Technologies

- Directed Energy Deposition
 - Thermal energy fuses materials by melting as they are being deposited
 - Limited to metals

- Sheet Lamination
 - Sheets of material bonded to form an object.
 - Limited to Paper, Plastics, some sheet metals

Source: Loughborough Univ. AM Research Group