2016 CAD/PAD Technology Roadmap

Overview

Mr. John Burchett, CAD/PAD Division, Principal for Safety

2016 CAD/PAD Technology Exchange Workshop

CADPAD@navy.mil
Agenda

• Purpose: to provide a brief overview of the CAD/PAD Technology Roadmap and to familiarize the audience with its key elements

• Team
• Description/Objectives
• History
• Approach
 – Benefits
 – Roadmap Process
 – Roadmap Product
• Highlights
• Schedule
• Conclusion
CAD/PAD Technology Roadmap

Objectives of the CAD/PAD Technology Roadmap

• **Tool** to facilitate CAD/PAD Joint Program Office strategic decision making and investment direction in support of the implementation of appropriate new technologies:
 - Investment into Technology Projects
 - Development of workforce expertise and training
 - Supporting equipment facilities and/or capabilities

• The CAD/PAD Technology Roadmap is an ongoing **plan and process** aligning new technologies and associated development efforts with near term and long term product area program objectives
• CAD/PAD Program has generated Technology Roadmaps for over 25 years

• In late 2000s CAD/PAD JPO formalized and revised roadmap efforts
 Structured process
 Inward/outward looking process
 Continuous/on-going
 Report published bi-annually

• Most recent roadmap efforts followed streamlined version of prior year efforts due to funding, travel limitations

• The FY 16 roadmap team has returned to fully established process
 - Interviews
 - Review/Synthesize
 - Publish

Renewed efforts on broad partner coverage
More focus on education within workforce
Benefits of the Technology Roadmap

- Demonstrates to sponsors and other stakeholders that the CAD/PAD Program is proactive and actively forward looking in pursuit and introduction of appropriate new technologies

- Assists to align the CAD/PAD technology with our vendor partners with a shared vision of the future CAD/PAD Program

- Directly involved with planned changes in the products and processes as legacy platforms are retired from service and new generations of aircraft and weapon systems enter service use with their new CAD/PAD requirements

- Provides CAD/PAD senior leadership a basis to make technology investment decisions given limited resources
 - Hiring/training people with appropriate skill sets
 - Planning new facilities
 - Establishing new capabilities and supporting infrastructure improvements
Technology Roadmap Approach

- Roadmap serves as a baseline for future technology development and integration

Drivers

- Safety
- Life cycle cost
- Energetic
- Sustainment
- Enhanced performance

Objectives

- SAFETY
- Affordability
- Producibility
- Monitor Health
- Environmental Compliance
- Continued Availability
- Controllable Thrust
- Erosive Resistance
- Thermally Stabile
- BIT Capable
- IM Compliance
Technology Roadmap Approach

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Initiatives</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>2 year</td>
<td>SAFETY</td>
</tr>
<tr>
<td>Life cycle cost</td>
<td>5 year</td>
<td>Affordability</td>
</tr>
<tr>
<td>Energetic</td>
<td>10 year</td>
<td>Productibility</td>
</tr>
<tr>
<td>Sustainment</td>
<td></td>
<td>Monitor Health</td>
</tr>
<tr>
<td>Enhanced performance</td>
<td></td>
<td>Environmental Compliance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continued</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Availability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controllable Thrust</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erosive Resistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermally Stable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIT Capable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IM Compliance</td>
</tr>
</tbody>
</table>
CAD/PAD Technology Roadmap

Drivers

- **Life Cycle Cost**
 - TOC Reduction
 - Dual Supply
 - Longer Lifetimes
 - Transportation Red.

- **Energetics Sustainment**
 - Availability of Raw Materials
 - Green Energetics
 - Replacement of Obsolescent Materials
 - Enhanced Manufacturing Processes

- **Enhanced Performance**
 - New Elect. Interfaces
 - Enh. NDT Technology
 - Safety Improvements

Initiatives

- **Reducing # of Energetics Tracking Exp. Levels**
- **ID of Specific Threats Predictive Lifetimes**
- **Prop. Sensing Systems Exp. Vs. Threat Analysis “Lab on a Chip”**
- **Thermally Stable Propellants**
- **Env. Friendly Propellants Enhanced Demilitarization**
- **Reduced Environmental Footprint**
- **Use of Nanotubes**
- **Reduced Sensitivity**
- **Networked Firing Systems which include Thrust Control based on platform input**

Objectives

- **SAFETY**
 - Affordability
 - Producability
 - Monitor Health
 - Environmental Compliance
 - Continued Availability
 - Controllable Thrust Erosive Resistance
 - Thermally Stable BIT Capable IM Compliance

FY

- **2016**
 - Proposed Initiatives over time period
- **2021**
 - Development of Technology Injection Points
- **2026**
Roadmap Highlights:

• The CAD/PAD Technology Roadmap team is working with other teams established to support Energetic Sustainment
 - OSD “Critical Energetic Materials Team”
 - CAD/PAD Obsolescence Team

• Under the “Life Cycle Cost” Driver – the propellant sensing initiative is a technology that is rapidly evolving and could be introduced into CAD/PAD applications over the near- and mid-term. Advancements in this technology area could accelerate all the initiatives listed under the Far-term “Cost” Driver.

• Several CAD/PAD Technology Roadmap recommended projects are presenting at 2016 CAD/PAD Technology Exchange Workshop

• CAD/PAD funded project receives NAVSEA Commander’s Award for Innovation for work supporting electronic time delays
Roadmap Highlights (cont.):

- Additive Manufacturing technology is continuing to evolve at a very rapid rate

 Plastics – “3D Printing” or “Stereolithography” or “Additive Manufacturing” has become routine and the technology is readily available (desktop versions). This technology has proven beneficial to numerous industries for many differing applications.

 Metals – The science of creating metal components utilizing additive manufacturing technology has yet to be fully demonstrated when tightly controlled tolerances are required. The additive manufacturing industry continues to develop the capability to produce more tightly tolerated components and, within 5 years or less, this capability could be exhibited.

 Energetic Materials – The science of creating energetic materials, utilizing additive manufacturing technology, has achieved some initial successes. The U.S. DoD is supporting several initiatives to develop this capability beyond the laboratory stage. Availability of the energetic materials and their associated costs are the drivers for these on-going initiatives.
Technology Roadmap Project Funding

E24 Technology Development Roadmap related funding %

- Cost Savings: 15%
- Energetic Sus.: 50%
- Enhanced Perf: 25%
- Safety: 10%
The CAD/PAD Technology Roadmap team is active and is currently conducting interviews

- Interviews Completed: 1 JUL 2016
- Review Collected Data: JUL .. SEP 2016
- Publish Report: NOV 2016
Conclusions

• The CAD/PAD Technology Roadmap process continues in FY16 and maintains a similar overall approach as utilized in previous efforts AND reinvigorated several processes.

• The CAD/PAD JPO continues to support both the OSD and the CAD/PAD obsolescence teams in addition to supporting a variety of additive manufacturing programs, projects, and initiatives.

• Continues to present the CAD/PAD Technology Roadmap to all interested parties – NSWC IHEODTD activities and vendor partners. This presentation can be conducted either in person or by any other appropriate means (telecon, VTC, etc.). The primary objective of these discussions is to inform the community that the CAD/PAD Roadmap is an active project and all are encouraged to participate in future Roadmap efforts.

• Continue to support Conferences/Symposia as appropriate. At a minimum, review the new technical papers and presentations offered at Conferences/Symposia that the CAD/PAD team had previously attended. Support new initiatives, such as technical sessions on energetic materials and CAD/PAD components at future venues and forums.

 NDIA Insensitive Munitions and Energetic Material Symposium
 International Nitrocellulose Symposium
 AIAA Propulsion & Energy Symposium
 JANNAF (multiple)
Thank You for participating in CAD/PAD Technology Roadmap Project
BACKUP
Complete prior term roadmap

Distribute Roadmap at CAD/PAD Technical Exchange Workshop

Establish current FY CAD/PAD Roadmap Team

Seek updated input from Energetic Materials Community

External to DoD
- Commercial Users
- Vendor Partners
- Developers/Academia
- Nat’l. Laboratories

Internal to DoD
- NSWC CAD/PAD Division (E2)
- NSWC Systems Engineering Dept. (E)
- NSWC RDT&E Dept. (R)
- NSWC Customer Advocate Office (CA)
- All Service Users

Analyze Generated Data

Confirm submissions with Individual Contributors

Update prior term CAD/PAD Technology Roadmap

Publish Current CAD/PAD Technology Roadmap Report