

US 2014/0068570 A1

Mar. 6, 2014 Sheet 2 of 21

Patent Application Publication

m .| NOILYINIWNO0Qa
|| Fwvmudos ||
| nawsas | el |
i 1831 ! N
| ¥3LNdWoD mr|
g ! 3009
i NALSASIsAL 1531 dNOO3S
/fom f
¥S

dOLVISNVYL

¢S

SONILLIS
1NdNI
3002 85
1831 1SYI4
0g

Patent Application Publication Mar. 6, 2014 Sheet 3 of 21

50

'J

US 2014/0068570 A1

TEST 9; CHECKS VARIOUS SIGNALS
57\’ LO<125> ;THE FOLLOWING NETS:
LO<87> ; U89-011

HI<10> ; U90-002

LO<154> ; U90-006

Hl<149> ; U90-010

TOG 5<30> ; U91-011
XX<62,64,90,119> ;

LO<125>

LO<87>

HI<10>

LO<77>

LO<154>
LO<149>

TOG 5<30>
XX<62,64,90,119>
LO<115>

TPV

CALL INIT
LO<125>

LO<87>
HI<10,77>
LO<154>

Hl<149>

TOG 4<30>
XX<62,64,90,119>
Hl<115>

TPV

DISP "...TEST 9 COMPLETE";
DONE;

’

o 3K 3k sk ok sk sk sk sk sk sk sk skosk skosk sk sk sk sk sk sk sk ok
’

CALL INIT ;THIS TEST WILL CHECK THE WIRING OF

Hl<115> ;BY LOADING COUNTER U76 WITH 0100
TPV ;AND 1000 AND CHECKING FOR DIFFERENT
CALL INIT ;CONDITIONS AT OUTPUT I/O PIN IOB 48

59

FIG. 2A

Patent Application Publication Mar. 6, 2014 Sheet 4 of 21

54

'J

US 2014/0068570 A1

// TEST ROUTINE 9:

void Routine9(void)

{
inti=0;
intj=0;

61 fINIT();
LO(1,P125);
LO(1,P87);
HI(1,P10);
LO(1,P154);
HI(1,P149);
TOG(5,1,P30);
XX(4,P62,P64,P90,P119);
HI(1,P115);
TPV(0);
FINIT();
LO(1,P125);
LO(1,P87);
HI(1,P10);
LO(1,P77);
LO(1,P154);
LO(1,P149);
TOG(5,1,P30);
XX(4,P62,P64,P90,P119);
LO(1,P115);
TPV(0);
FINIT();
LO(1,P125);
LO(1,P87);
HI(2,P10,P77);
LO(1,P154);
HI(1,P149);
TOG(4,1,P30);
XX(4,P62,P64,P90,P119);
HI(1,P115);
TPV(0);
printf("...TEST 9 COMPLETE\n");

/ ok ok ok ok ok ok sk ok sk ok ok ok sk sk ok sk ok sk sk ok sk ok ok sk ok ok ok ok ok sk ok ok ok sk sk ok sk sk ok sk ok ok sk ok ok sk ok ok ok ok ok sk sk okok ok

/ ok ok ok ok ok ok sk ok sk ok ok ok ok sk ok sk ok sk sk ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok sk ok sk sk ok ok ok ok sk ok ok sk ok ok ok ok ok ok sk okok ok

63

FIG. 2B

Patent Application Publication Mar. 6, 2014 Sheet S of 21 US 2014/0068570 A1

%4

/

// HI function...

/’void HI(Vilnt32 size,...)

{

ViStatus returnvalue; // Returns the status of the terM9 function
inti=0;

Vilnt32 pin = 0;

va_list args;

va_start(args, size);

for(i=0;i<size; i++)

{ 65
62 < pin = va_arg(args, Vilnt32); /
if (IOReg[pin] =="i")
returnvalue = terM9 _setChannelPinOpcode(id, pin, MH});
else if (IOReg[pin] =='0')
returnvalue = terM9_setChannelPinOpcode(id, pin, OH);
else
returnvalue = terM9_setChannelPinOpcode(id, pin, 10X);
CheckStatus(returnvalue);
}
\ va_end(args);

)

// LO function...
/’void LO(Vilnt32 size,...)
{
ViStatus returnvalue; // Returns the status of the terM9 function
inti=0;
Vilnt32 pin = 0;
va_list args;
va_start(args, size);
for(i=0;i<size; i++)
{
pin = va_arg(args, Vilnt32);
64 < if (IOReg[pin] == '")
returnvalue = terM9_setChannelPinOpcode(id, pin, ML);
else if (IOReg[pin] == '0')
returnvalue = terM9_setChannelPinOpcode(id, pin, OL);
else
returnvalue = terM9_setChannelPinOpcode(id, pin, I0X);
CheckStatus(returnvalue);

}

va_end(args);

FIG. 2C

Patent Application Publication Mar. 6, 2014 Sheet 6 of 21 US 2014/0068570 A1

| START |

70

, J(

Receive First Test Code in a First Language

72

y Ve
Identify First Function (and Associated Data) in First
Test Code

/ Ve 74

Associate Second Function(s) in Test System
Software with the First Function

y 4f76

Create Hybrid Function Containing Function Call to
Second Function

y Ve 78

Place Hybrid Function in Program File

y 4f80

Generate Second Test Code in a Second Language
based on First Test Code

4 /82
Create Case Statement

Associate First Function with Hybrid |/
Function

| 84

|86
Provide Data Associated with First Function [/]

to Hybrid Function

y 4f88

Place Case Statement in Program File

\ 4

_ew |

FIG. 3

Patent Application Publication Mar. 6, 2014 Sheet 7 of 21 US 2014/0068570 A1

. START 1
~100
Receive Pin Configuration
y 102

Receive a First Test Code Referencing
Each Pin in a First Identification Format

~104

Generate a Second Test Code Referencing
Each Pin in a Natural Identification Format

~106

Create First Pinmap Associating Each Pin
Reference in the Natural Identification
Format with a Pin Reference in a Second
[dentification Format

~108

Interface the Second Test Code with the
Test System Software Using the First
Pinmap Document

110

Create Second Pinmap Associating Each
Channel of the Test SystemwithaPin [~~~
Reference in a Third Identification Format

~12

Display Pin References on the Graphical
Interface of the Test System in the Third
|dentification Format

~14

First
Pinmap
Document

116

Second
Pinmap
Document

Patent Application Publication Mar. 6, 2014 Sheet 8 of 21 US 2014/0068570 A1

114

90\ /

#ifndef PINMAP_H

#define PINMAP_H

// Default pin names and useages

#define TRIGGER TERM9_SCOPE_CHAN(O)

// Row A

//#define P1 TERM9_SCOPE_CHAN(1) // A1l: POWER

//#define P2 TERM9_SCOPE_CHAN(2) // A2: GND

#define P3 TERM9_SCOPE_CHAN(3)

#define P4 TERM9_SCOPE_CHAN(4) \91

#define P5 TERM9_SCOPE_CHAN(5)

#define P6 TERM9_SCOPE_CHAN(6)

#define P7 TERM9_SCOPE_CHAN(7)

#define P8 TERM9_SCOPE_CHAN(8)

#define P9 TERM9_SCOPE_CHAN(9)

92& /116
Bus

Channels of Test System 30 | Pin Names Displayed on User Interface 32 |names
Channel 0 TRIGGER (oscilloscope)
Channel 3 A3 P3 IDBO03
Channel 4 A4 P4 IDBO04
Channel 5 A5 P5 IDBO06
Channel 6 A6 _P6
Channel 7 A7 P7
Channel 67 C63 P197
Channel 68 C64 P198 XFRMSN2
Channel 69 C65 P199 XFRMISNO

FIG. 4B

Patent Application Publication

Mar. 6, 2014

Sheet 9 of 21

US 2014/0068570 A1

Test Code Generation Process - Main Flow

 START |
130
Receive
|nput __'>F|G 6
Settings
132
Remove Line
Numbers
134
Translate |---->FIG. 7
136 137
Create Project
Project FiIe File
138 ~139
Create Workspace
Workspace File
~140 141
Create s Main
main.c File
/
142 143
Main
Create
/ main.h /_ "2 H('e:iger
_/—
144 145
Create Patterns
patterns.c File

~146 147
Create "] Functions
functs.c File
\/—
114
148 L
<L First
/ .CI'eateh / --> Pinmap
pInmap. Document
Other No
Software
Used?
~152 ~153
Create Template
Main ===1> Main File
Template .
154 ~155
Create Template
Header == =1>| Header File
Template .
156 116
Create Second
pinmap.csv /. ____ Pinmap
Document
~158 159
Create /_ ____ N Readme
readme.txt File
N
END |

Patent Application Publication Mar. 6, 2014 Sheet 10 of 21 US 2014/0068570 A1

Input Settings
194
[START } >/12&N0
R — Pin?
180

Get Project Yes
/ Name / ~196
Get Power
182 Pins Setup
/ Storage /
Directory

184 SPpeC|aI Set Standard
ower s
Get Input Ping? Power Pins
File '
186 Yes
Get 202
Number of _ =
Pins Get Special
Power Pins
188
Get Clock
Pin Are Pins
Inverted?
~190

Yes

Get Tri-
State Pins ~206 v

Set In.verted 5' END ;

192 Pins

Get
Disabled
Pins

FIG. 6

Patent Application Publication Mar. 6, 2014 Sheet 11 of 21 US 2014/0068570 A1
Translation 250
{ START] 230 L
Yes Comma
220 (FIG. 8)
Retrleve 239 No 252
994 Paren+1
s
234 No 254
Get Line Yes Close
Paren
V2% a (FIG. 10)
/ Get ‘ No
Character 236 Yes Open |-256
Bracket
998 (FIG. 12)
No 258
Yes No 238 Ve
Yes Close
0 Bracket
(FIG. 14)
No
N 240 ~260
—> END Yes Set
l\ .
(FIG. 15)
242 No 262
Yes Set
(FIG. 15)
No
244 264
Yes Set
(FIG. 15)
No
246 266
Yes Start
New
Function
248 No 268
Yes | Space or
tab
(FIG. 16)

=
o

FIG. 7

Patent Application Publication Mar. 6, 2014 Sheet 12 of 21 US 2014/0068570 A1

Comma
| START |
Yes Add to
list
No
previous Check .| Close
character Function Function
o (FIG. 9)

FIG. 8

Patent Application Publication Mar. 6, 2014 Sheet 13 of 21 US 2014/0068570 A1

Check Function

294
Do previous 292 -
Return
characters Start S| “Retumn
maftch Function value”
keywords?

Return
Error

rn
pd
o
N

FIG. 9

Patent Application Publication Mar. 6, 2014 Sheet 14 of 21 US 2014/0068570 A1

-
§

| START ,
— Close Parenthesis

y _~300

Paren =
Paren-1

~304
Is Paren _
<0? Paren=0
Is 306 ~308 ~310 312
. Check Check
previous) .| Close -
character Funciion Function Pattemn
(FIG. 9) (FIG. 11)

‘V’?

FIG. 10

Patent Application Publication

START §

Not
within
parens?

No

y 328

Enable
Run(p [<€

Check Pattern

Not
running
high
speed?

No

Mar. 6, 2014 Sheet 15 of 21

p flag
enabled
?

No

US 2014/0068570 A1

324

Yes

v 326

Run
Pattern

rn
pd
o
N

FIG. 11

Patent Application Publication

Mar. 6, 2014 Sheet 16 of 21

Open Bracket

y 340

brak = true

) -342

Check
Function
(FIG.9)

y 344

Switch
(FIG. 13)

FIG. 12

US 2014/0068570 A1

Patent Application Publication

Mar. 6, 2014 Sheet 17 of 21

US 2014/0068570 A1

START -
350
Retumn Yes .
Error?
353
Retumn Adqut Character
' Pointer to Next N
Continue?
Character
- ~366
B \
Complete? .
Line
~368
Return Yes N .
Function? Funct = True
370
~369

Increment
Loop
Counter

Return
Loop?

To Block 360
of FIG. 13A

FIG. 13

Next

character
= l(l?

No

372 374

If Loop Ctr >
Max, Set Max
to Loop Cir

Paren
= True

—>)

\Z
To FIG. 13A

Patent Application Publication Mar. 6, 2014 Sheet 18 of 21 US 2014/0068570 A1

Switch (cont.)
From
From Block 358 of
FIG. 13 FIG. 13
_~360 375 376 ~378
End Current <] Testflag o Cr'?;rj:(\jtter N
Test Routine =True Pointer
380
Next
Return No
Character >
TPV? —
~381 ~382 384
Creale < rpflag .| Disable -
TPV N
. = true Run
Function
\
386 388
Return Test flag N Cﬁ:ﬂ:étter N
Done? = False Pointer
Mo,
(END }

FIG. 13A

Patent Application Publication Mar. 6, 2014 Sheet 19 of 21 US 2014/0068570 A1

Close Bracket

{ START
402 404 406 408 410
. _ Check
Print | 5| Close 1 of Clear L of funct= L o} pattern |-
List Function List false (FIG. 11)

414

s 416 418
Loop . Check
_ previous . Retum es
counter = character Function TPY'?
0? ' (FIG. 9)
No
422 420
Print Y Close
Bracket [Function
V424
Decrement
Loop
Counter

P

FIG. 14

Patent Application Publication Mar. 6, 2014 Sheet 20 of 21 US 2014/0068570 A1

Set

440

previous Set all output
characters pins

‘ALL?

444

Set pin

v 446

Check
pattern €
(FIG. 11)

FIG. 15

Patent Application Publication Mar. 6, 2014 Sheet 21 of 21 US 2014/0068570 A1

Space or Tab

y 460

Check
Function
(FIG.9)

y 462

Switch
(FIG. 13)

464 _~466

Additional Yes Skip
Spaces/ Spaces/
Tabs Tabs

FIG. 16

US 2014/0068570 Al

SYSTEM AND METHOD FOR TRANSLATING
SOFTWARE CODE

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0001] The invention described herein was made in the
performance of official duties by employees of the Depart-
ment ofthe Navy and may be manufactured, used, licensed by
or for the United States Government for any governmental
purpose without payment of any royalties thereon.

BACKGROUND AND SUMMARY

[0002] The present disclosure relates generally to a system
and method for translating software code from one language
to another language. More particularly, the present disclosure
relates to a system and method for generating test code soft-
ware utilized by a test machine for testing a circuit card
assembly.

[0003] In commercial and military industries, test systems
are often used to test various electrical equipment and elec-
tronics, such as circuit boards, hard drives, electrical compo-
nents, semiconductors, integrated circuits, and other electri-
cal hardware and devices. These test systems, also referred to
as automated test equipment, automatically perform tests on
a device based on instructions from test program software.
When a legacy test system is replaced by a new test system,
the test program run by the legacy test system must be con-
verted to a language and format that is compatible with the
new test system.

[0004] According to one illustrated embodiment of the
present disclosure, a software translation method comprises
receiving a first software code containing a first function
command and data associated with the first function com-
mand, the first function command being configured to pro-
duce a first result, and associating at least one second function
command in a second software code with the first function
command. The method further comprises generating a third
software code based on the first software code, the generating
step including creating a hybrid function command based on
the first function command, the hybrid function command
including an interface to the at least one second function
command of the second software code, and creating a case
statement configured to associate the first function command
of the first software code with the hybrid function command
and to provide the data associated with the first function
command to the hybrid function command, the hybrid func-
tion command being configured to produce the same first
result as the first function command upon execution of the
hybrid function command using the data associated with the
first function command of the first software code provided by
the case statement.

[0005] In one illustrated embodiment, the first software
code is a test code utilized by a first test system for performing
an operational test on a circuit card assembly and the second
and third software codes are test codes utilized by a second
test system for performing the operational test on the circuit
card assembly. In one illustrated embodiment, the first result
produced by the first function command and the hybrid func-
tion command includes at least one test operation of the
operational test on the circuit card assembly.

[0006] In one illustrated embodiment, the second software
code is an instrument code file configured to interact with
testing instruments of the second test system to execute the at

Mar. 6, 2014

least one test operation on the circuit card assembly. In one
illustrated embodiment, the associating step includes identi-
fying at least one second function command in the second
software code that is configured to cause the testing instru-
ments of the second test system to perform at least a portion
of'the at least one test operation on the circuit card assembly.
In another illustrated embodiment, the data associated with
the first function includes the identification of at least one pin
of the circuit card assembly, the at least one test operation
being performed on the at least one pin of the circuit card
assembly.

[0007] According to another illustrated embodiment of the
present disclosure, a method of generating test code software
utilized by a processor of a test machine for testing a circuit
card is provided, the circuit card including a plurality of pins
configured to connect to corresponding channels of the test
machine. The method comprises receiving at least one input
parameter, the at least one input parameter including a pin
configuration of a circuit card, receiving a first test code
referencing the pins of the circuit card in a first identification
format, translating the first test code to generate a second test
code, the second test code referencing the pins of the circuit
card in a natural identification format not recognizable by the
processor of the test machine, and associating each pin refer-
ence in the natural identification format with a pin reference
in a second identification format based on the pin configura-
tion of the circuit card, the second identification format being
readable by the processor of the test machine.

[0008] In one illustrated embodiment, the associating step
includes creating a first pinmap mapping each pin reference
in the natural identification format to a corresponding pin
reference in the second identification format. In one illus-
trated embodiment, the first pinmap maps the locations of an
input pin, an output pin, and a power pin of the circuit card to
the corresponding pin references in the second identification
format. In another illustrated embodiment, each correspond-
ing pin reference in the second identification format identifies
a channel of the test machine connected to the pin of the
circuit card identified by the corresponding pin reference in
the natural identification format.

[0009] In one illustrated embodiment, the method further
comprises generating a second pinmap based on the pin con-
figuration of the circuit card and the channel configuration of
the test machine, the second pinmap associating at least one
channel of the test machine with a pin reference in a third
identification format. In another illustrated embodiment, the
test machine includes a graphical display configured to dis-
play the pin references in the third identification format based
on the second pinmap.

[0010] According to yet another illustrated embodiment of
the present disclosure, a software translation system com-
prises a first software code containing a first function com-
mand and data associated with the first function command,
the first function command being configured to produce a first
result, a second software code containing at least one second
function command, and a translator configured to receive the
first software code and to generate a third software code based
on the first software code. The third software code includes a
hybrid function command including an interface to the at least
one second function command of the second software code.
The third software code further includes a case statement
associating the first function command of the first software
code with the hybrid function command and being configured
to provide the data associated with the first function command

US 2014/0068570 Al

to the hybrid function command. The hybrid function com-
mand is configured to produce the same first result as the first
function command upon execution of the hybrid function
command using the data associated with the first function
command of the first software code provided by the case
statement.

[0011] According to yet another illustrated embodiment of
the present disclosure, a test code generation system config-
ured to generate test code software utilized by a processor of
a test machine for testing a circuit card is provided, the circuit
card including a plurality of pins configured to connect to
corresponding channels of the test machine. The system com-
prises at least one input parameter identifying a pin configu-
ration of a circuit card, a first test code referencing the pins of
the circuit card in a first identification format, and a translator
configured to receive the first test code and the at least one
input parameter and to generate a second test code based on
the first test code. The second test code references the pins of
the circuit card in a natural identification format not recog-
nizable by the processor of the test machine. The system
further comprises a first pinmap mapping each pin reference
in the natural identification format with a pin reference in a
second identification format based on the pin configuration of
the circuit card, the second identification format being read-
able by the processor of the test machine.

[0012] Additional features and advantages of the present
invention will become apparent to those skilled in the art upon
consideration of the following detailed description of illus-
trative embodiments exemplifying the best mode of carrying
out the invention as presently perceived.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The foregoing aspects and many of the attendant
advantages of this invention will become more readily appre-
ciated as the same become better understood by reference to
the following detailed description when taken in conjunction
with the accompanying drawings.

[0014] FIG. 1 illustrates an exemplary circuit card assem-
bly configured to be tested by a test system;

[0015] FIG. 2 is a block diagram illustrating a software
translator receiving a first test code and outputting a second
test code;

[0016] FIG.2A illustrates an exemplary portion of the first
test code of FIG. 2;

[0017] FIGS. 2B and 2C illustrate exemplary portions of
the second test code of FIG. 2;

[0018] FIG. 3 is a flowchart illustrating an exemplary
method of translating a software code from a first language to
a second language;

[0019] FIG. 4 is a flowchart illustrating an exemplary
method of mapping the pins of the circuit card assembly of
FIG. 1,

[0020] FIG. 4A illustrates an exemplary portion of a first
pinmap document of FIG. 4;

[0021] FIG. 4B illustrates an exemplary portion ofa second
pinmap document of FIG. 4;

[0022] FIG. 5 is a flowchart illustrating an exemplary test
code generation process according to one embodiment;
[0023] FIG. 6 is a flowchart illustrating an exemplary
method for receiving input settings in the test code generation
process of FIG. 5;

[0024] FIG. 7 is a flowchart illustrating an exemplary soft-
ware translation method in the test code generation process of
FIG. 5;

Mar. 6, 2014

[0025] FIG. 8 is a flowchart illustrating a comma identifi-
cation routine of the software translation method of FIG. 7,
[0026] FIG. 9 is a flowchart illustrating a check function
routine of the software translation method of FIG. 7,

[0027] FIG.101s a flowchartillustrating a close parenthesis
routine of the software translation method of FIG. 7,

[0028] FIG. 11 is a flowchart illustrating a check pattern
routine of the software translation method of FIG. 7,

[0029] FIG. 12 is a flowchart illustrating an open bracket
routine of the software translation method of FIG. 7,

[0030] FIGS. 13 and 13A are flowcharts illustrating a
switch routine of the software translation method of FIG. 7;
[0031] FIG. 14 is a flowchart illustrating a close bracket
routine of the software translation method of FIG. 7,

[0032] FIG. 15 is aflowchart illustrating a set routine of the
software translation method of FIG. 7; and

[0033] FIG. 16 is a flowchart illustrating a space or tab
routine of the software translation method of FIG. 7.

[0034] Corresponding reference characters indicate corre-
sponding parts throughout the several views. Although the
drawings represent embodiments of various features and
components in the present disclosure, the drawings are not
necessarily to scale and certain features may be exaggerated
in order to better illustrate and explain the present disclosure.
The exemplification set out herein illustrates embodiments of
the disclosure, and such exemplifications are not to be con-
strued as limiting the scope of the invention in any manner.

DETAILED DESCRIPTION OF THE DRAWINGS

[0035] For the purposes of promoting an understanding of
the principles of the invention, reference will now be made to
the embodiments illustrated in the drawings, which are
described below. The embodiments disclosed below are not
intended to be exhaustive or limit the invention to the precise
form disclosed in the following detailed description. Rather,
the embodiments are chosen and described so that others
skilled in the art may utilize their teachings. It will be under-
stood that no limitation ofthe scope of the invention is thereby
intended. The invention includes any alterations and further
modifications in the illustrated devices and described meth-
ods and further applications of the principles of the invention
which would normally occur to one skilled in the art to which
the invention relates.

[0036] Referring initially to FIG. 1, an exemplary circuit
card assembly 20 of the present disclosure is shown. Circuit
card assembly 20 is configured to connect to electronic equip-
ment 10 and to perform various functions for electronic
equipment 10. Electronic equipment 10 illustratively
includes a backplane connector 12 having one or more slots
14, and each slot 14 is configured to receive a circuit card
assembly 20. Circuit card assembly 20 and electronic equip-
ment 10 may be used in a variety of applications, including
manufacturing, military, or aerospace applications. In one
embodiment, electronic equipment 10 is a radar system that
utilizes a plurality of circuit card assemblies 20, each circuit
card assembly 20 being configured to perform one or more
specific functions for the radar system. For example, circuit
card assembly 20 may read the memory of a computer on
electronic equipment 10, perform mathematical functions,
monitor faults, perform memory control functions, analyze
data, and send control and configuration signals to other
equipment.

[0037] Circuit card assembly 20 includes a plurality of
electrical components 22 mounted to a circuit board 24. Com-

US 2014/0068570 Al

ponents 22 include integrated circuits (IC’s), passive ele-
ments, and/or active elements. In the illustrated embodiment,
circuit card assembly 20 is a digital card used in a digital radar
system, although circuit card assembly 20 may alternatively
be an analog card.

[0038] Circuit card assembly 20 includes one or more con-
nectors 16 having a plurality of electrical pins 18. Pins 18
illustratively include input pins, output pins, power pins, and
a clock pin. Connector 16 may be any conventional male or
female connector configured to interconnect the circuitry
mounted to circuit card assembly 20 to a plug-in circuit card
assembly apparatus, such as backplane connector 12 of elec-
tronic equipment 10. Circuit board 24 of circuit card assem-
bly 20 further includes conductive paths (not shown) inter-
connecting components 22 to each other and to pins 18 of
connector 16. The conductive paths may be etched into a
non-conductive substrate to facilitate communication
between components 22. The conductive paths may also be
wire-wrapped. Circuit card assembly 20 may include any
number of circuit boards 24, and each circuit board 24 may
include any suitable number of layers to support the conduc-
tive paths.

[0039] A test system 30 illustratively includes a computer
34 and a user interface 32. In the illustrated embodiment, test
system 30 is a digital test system configured to perform opera-
tional tests on digital circuit cards 20 by running a series of
test patterns on the circuitry of the circuit cards 20. Test
system 30 may also be configured to perform analog, mixed-
signal, or serial bus testing on circuit cards 20. Each test
pattern may include several test operations. Test system 30
illustratively includes testing instruments 40 configured to
execute each test operation on the circuit card assembly 20.
For example, testing instruments 40 may include signal gen-
erators, output detectors, and other instruments suitable for
testing a circuit. Test system 30 is configured to test the
functionality of circuit card assembly 20 and to determine the
existence of any faults, errors, and other failures of circuit
card assembly 20. For example, test system 30 may be used to
test a circuit card assembly 20 that has failed in the field or that
has been newly manufactured prior to entering the field.
[0040] Computer 34 of test system 30 includes a processor
that executes software code, illustratively test system soft-
ware 60 of FIG. 2, stored in a memory to perform an opera-
tional test on circuit card assembly 20, as described herein.
User interface 32 allows an operator to provide input settings
to initiate the test program. User interface 32 may include a
graphical display to allow an operator to monitor the status
and results of the circuit card tests. A backplane connector 36
on test system 30 includes one or more adaptors 38 for receiv-
ing a circuit card assembly 20. Each adaptor 38 includes a
connector (not shown) configured to receive a plug-in con-
nector 16 of a circuit card assembly 20. Each adaptor 38
routes pins 18 of circuit card assembly 20 to the appropriate
pins of test system 30. In one embodiment, test system 30 is
a modular system configured to receive various components
for individualized applications. For example, test system 30
may further include one or more power supplies and an oscil-
loscope. An exemplary test system 30 is the Spectrum 9100
Series Model available from Teradyne, Inc.

[0041] Each circuit card assembly 20 has a corresponding
software test code that is loaded into test system 30 and
executed by test system 30 in conjunction with software 60 to
perform an operational test on each circuit card assembly 20.
When a legacy test system is replaced by a new test system,

Mar. 6, 2014

illustratively test system 30, the software code used by the
legacy test system to perform tests on each circuit card assem-
bly 20 is often not compatible with the processor of the new
test system. In many instances, the software code utilized by
the legacy test system is written in a computer language that
is not readable by the new test system. In such a case, the
software code must be translated into a computer language
readable by the new test system prior to executing the soft-
ware code and performing a test on the new test system.
[0042] As illustrated in FIG. 2, a translator 52 provides an
automatic translation of a first test code 50 to a second test
code 54. In the illustrated embodiment, first test code 50 is
utilized by a legacy test system, and second test code 54 is
utilized by a new test system, illustratively test system 30. An
exemplary portion of first test code 50 is illustrated in FIG.
2A, and exemplary portions of second test code 54 are illus-
trated in FIGS. 2B and 2C. In the illustrated embodiment, first
test code 50 is written in Raytheon Test Language (RTL) and
second test code 54 is written in C Programming Language.
However, the first and second languages may be other suitable
programming languages. In the illustrated embodiment,
translator 52 is an executable computer program stored on a
computer separate from test system 30. Alternatively, trans-
lator 52 may be stored on computer 34 of test system 30 to
allow a user to translate first test code 50 and to compile and
execute second test code 54 on a single computer 34.

[0043] Translator 52 illustratively receives input settings 58
prior to performing the software code translation, as illus-
trated in FIG. 2. Input settings 58 provide translator 52 with
necessary information regarding the translation to be per-
formed. In the illustrated embodiment, input settings 58
include information regarding the pin configuration of circuit
card assembly 20, as described herein with reference to FIGS.
5 and 6.

[0044] Second test code 54 may include one or more pro-
gram or code files. In the illustrated embodiment, test code 54
includes a project file, a workspace file, one or more header
files, and one or more main files, as described herein with
reference to FIG. 5. In one embodiment, test code 54 also
includes one or more template files, such as template files 153
and 155 of FIG. 5. Template files 153 and 155 are software
code templates configured to receive program code manually
input by a user or automatically input by another program or
system following the translation by translator 52. For
example, when first test code 50 includes additional program
files written in a language not recognized by translator 52, one
or more template files may be created and used as templates
for a subsequent translation of the unrecognized program
files. In one embodiment, template files 153 and 155 are
called by other program files of second test code 54 during the
execution of the test patterns on test system 30. In the illus-
trated embodiment, translator 52 also generates documenta-
tion 56 utilized by test system 30. Documentation 56 may
include one or more pinmap documents utilized by test sys-
tem 30, such as first pinmap document 114 and second pin-
map document 116 of FIGS. 4,4 A, 4B, and 5. Documentation
56 may also include a “readme file” containing information
regarding second test code 54 and the translation process,
such as readme file 159 of FIG. 5.

[0045] Each operational test performed by test system 30
detects faults, if any, in the circuitry of circuit card assembly
20 by running a series of test patterns on circuit card assembly
20. Each test pattern may include several test operations, such
as setting an input pin “high” and detecting the output of a

US 2014/0068570 Al

corresponding output pin, for example. In some instances,
thousands of'test patterns are run during a single test of circuit
card assembly 20. The test patterns provide an input signal to
one or more input pins of circuit card assembly 20 and verify
that a proper responsive output signal is detected at one or
more output pins of circuit card assembly 20. Test system 30
may isolate a fault on circuit card assembly 20 by monitoring
the output signals from the output pins over several executed
test patterns. The test patterns are illustratively contained in
second test code 54 and test system software 60 and run by
computer 34 of test system 30. In one embodiment, second
test code 54 includes several test routines, such as test routine
63 of FIG. 2B for example, and each test routine contains
several test patterns.

[0046] In the illustrated embodiment, upon loading test
code 54 into computer 34, test code 54 interfaces with an
instrument driver, i.e., an instrument code file, contained in
test system software 60 to execute the test patterns on circuit
card assembly 20. In particular, a set of functions contained in
an instrument file of software 60 and configured to control the
testing instruments 40 of test system 30 are called by test code
54. The functions contained in software 60 allow test code 54
to interact with the testing instruments 40 or hardware of test
system 30 that are used to physically run test patterns on
circuit card assembly 20. For example, the functions of soft-
ware 60 are used to set a pin of circuit card assembly 20 during
the execution of a designated test pattern, to create conditions
on each test pattern such as repeat, test, loop, halt, etc., to add
new test patterns to the operational test of circuit card assem-
bly 20, to fetch the state of an output pin of circuit card
assembly 20 (e.g. high, low, or neither), to create a test rou-
tine, and to run a test routine. Such a programming structure
allows test code 54 to use the pre-defined instrument driver
functions stored in an instrument file at test system 30 rather
than creating new instrument driver functions in test code 54.

[0047] Referring to FIG. 3, an exemplary method of trans-
lating a software code from a first language to a second
language using translator 52 is provided. While the following
describes FIG. 3 with reference to first test code 50, second
test code 54, and test system software 60 of FIG. 2, the
method illustrated in FIG. 3 may be used to translate software
code not utilized by a test system. In block 70, translator 52
receives first test code 50 written in a first language, such as
RTL for example. First test code 50 is loaded into translator
52 from a data storage medium or from a computer memory.
A first function in first test code 50 and the data associated
with the first function are identified, as represented by block
72. In the illustrated embodiment, the first functions in first
test code 50 are configured to execute a test operation or a test
pattern. An exemplary first function is “LO” function 57 of
first test code 50 illustrated in FIG. 2A. Other exemplary first
functions include the “HI”, “TOG”, and “XX” functions of
first test code 50. The data or argument value associated with
each first function is also identified at block 72. For example,
the value 125 associated with the “LO” function 57 in FIG.
2A is identified at block 72.

[0048] Atblock 74 of FIG. 3, one or more second functions
contained in test system software 60 of FIG. 2 are identified
and associated with each first function of test code 50. In
particular, the intended test operation of the first function
identified at block 72 is examined. One or more second func-
tions of software 60 are selected that are configured to apply
the intended test operation of the first function to the opera-
tional test of circuit card assembly 20 using test system 30. In

Mar. 6, 2014

the illustrated embodiment, the second functions of test sys-
tem software 60 comprise the instrument file containing soft-
ware code configured to control the testing instruments and
hardware of test system 30. For example, if a first function of
test code 50 sets a pin of circuit card assembly 20 to a “high”
state, a second function of software 60 that is configured to
cause test system 30 to set a pin of circuit card assembly 20 to
the “high” state is selected at block 74. In one embodiment, a
second function of test system software 60 is selected at block
74 that is configured to cause the testing instruments of test
system 30 to perform only a portion of the intended test
operation of the first function of test code 50 on circuit card
assembly 20.

[0049] At block 76, a hybrid function is created based on
the first function oftest code 50 identified at block 72. See, for
example, exemplary hybrid functions 62 and 64 of FIG. 2C.
The hybrid function is written in a second language readable
by computer 34 of test system 30 (e.g. C language) and is
configured to perform the same task or to produce the same
result as the first function of test code 50. For example, if the
first function of test code 50 provides a test pattern to the
operational test of circuit card assembly 20, a hybrid function
is created at block 76 that is configured to provide that same
test pattern. The hybrid function created in block 76 also
includes an interface to the one or more second functions of
software 60 identified in block 74. In the illustrated embodi-
ment, the hybrid function contains a function call to the one or
more second functions of software 60 identified in block 74.
See, for example, function call 65 in hybrid function 62 of
FIG. 2C that interfaces second function “terM9_setChannel-
PinOpcode” of software 60 with hybrid function 62. The
complete testing operation or test pattern as defined by the
first function of test code 50 is performed at test system 30
using the hybrid function. As represented by block 78, the
hybrid function is stored in a program file. In the illustrated
embodiment, a plurality of hybrid functions, each corre-
sponding to a first function of first test code 50 and calling one
or more appropriate second functions of software 60 (as
determined at block 74), are stored in a single program file,
such as functions file 147 of FIG. 5. In one embodiment,
functions file 147 is received by translator 52 and is included
in second test code 54 generated by translator 52.

[0050] In one embodiment, the steps in blocks 72, 74, 76,
and 78 are performed by a programmer manually before
proceeding with the automatic translation process using
translator 52 at block 80. For example, the hybrid function
may be written manually by a programmer upon analysis of
the intended result of the first function of first test code 50, the
operation of the second function of test system software 60,
and the additional code in the hybrid function needed to
achieve the intended result of the first function upon execu-
tion of the hybrid function at test system 30. Alternatively, the
hybrid function may be created automatically using an algo-
rithm stored in translator 52.

[0051] As represented by block 80, second test code 54 is
generated in a second language (e.g. C language) based on a
translation of first test code 50. The translation of first test
code 50 to second test code 54 at block 80 is described herein
with reference to FIGS. 5-16. The generation of second test
code 54 includes the creation of a case statement correspond-
ing to the first function of first test code 50 identified in block
72, as represented by block 82. The case statement associates
the first function of test code 50 with the hybrid function of
test code 54, as represented by block 84. The case statement

US 2014/0068570 Al

also provides the data associated with the first function of test
code 50 to the corresponding hybrid function of test code 54,
as represented by block 86. As such, the case statement pro-
vides a function call to the hybrid function, and the hybrid
function is executed using the data provided by the case
statement. For example, a case statement 61 of the exemplary
portion of test code 54 in FIG. 2B associates the “L.O” func-
tion 57 of exemplary test code 50 of FIG. 2A with the hybrid
function 64 of FIG. 2C. Further, case statement 61 provides
the data “125” associated with the “LO” function 57 to hybrid
function 64. At block 88, the case statement is stored in a
program file of test code 54, such as patterns file 145 of FI1G.
5. In the illustrated embodiment, a plurality of case state-
ments each corresponding to a first function of test code 50
are created and stored in a program file of test code 54.
[0052] Referring to FIG. 4, an exemplary method of map-
ping pins of circuit card assembly 20 is illustrated. In the
illustrated embodiment, first test code 50, second test code 54,
and test system software 60 all reference the pins of circuit
card assembly 20 using a different identification format or
nomenclature. In one embodiment, at least one of first test
code 50, second test code 54, and test system software 60
references the pins of circuit card assembly 20 using a differ-
ent computer language. In the illustrated embodiment, one or
more pinmap documents are created to cross-reference the
pin references in each software code.

[0053] In the illustrated embodiment, software 60 refer-
ences a pin of circuit card assembly 20 by identifying the
corresponding channel or pin of adaptor 38 that is in commu-
nication with that pin of circuit card assembly 20. The chan-
nels of adapter 38 of test system 30 do not always correspond
to the pin numbers of circuit card assembly 20 on a one-to-one
basis. For example, pin five on circuit card assembly 20 may
match up with pin twenty-five on adaptor 38 of test system 30
when circuit card assembly 20 is inserted into an adaptor 38 of
test system 30. As such, a pinmap document is created to map
each pin of circuit card assembly 20 to a corresponding chan-
nel of adaptor 38. See, for example, second pinmap document
116 illustrated in FIG. 4 and described herein. The pinmap
document is utilized by test system 30 to accurately display
the status of each pin on circuit card assembly 20 to user
interface 32. For example, test system 30 uses a pinmap
document to report the status of pin five of circuit card assem-
bly 20 to user interface 32 rather than erroneously reporting
the status of the pin on circuit card assembly 20 that is in
communication with the fifth pin or channel of adaptor 38.
[0054] Referring to block 100 of FIG. 4, translator 52
receives the pin configuration of the circuit card assembly 20
to be tested by test system 30. The pin configuration identifies
the number of pins on circuit card assembly 20 and may
provide additional pin information such as the locations of the
input pins, the output pins, the power pins, the clock pin, and
the tri-state pins. In the illustrated embodiment, the pin con-
figuration is included in input settings 58 illustrated in FIG. 2.
An exemplary method of receiving the pin configuration is
illustrated in FIG. 6 and described herein.

[0055] At block 102, first test code 50 is received by trans-
lator 52. First test code 50 contains references to the pins of
circuit card assembly 20 in a first identification format. In the
illustrated embodiment, the pins of circuit card assembly 20
are referenced in first test code 50 using numerical values.
Referring to FIG. 2A, for example, the number “125” in
function 57 of test code 50 is used to reference a specific pin
on circuit card assembly 20. As such, the location of each pin

Mar. 6, 2014

on circuit card assembly 20 is identified in first test code 50
using a corresponding number value. Alternatively, the pin
references of first test code 50 may include other suitable
letters, numbers, or characters that are consistent with and
recognizable by the programming language of first test code
50.

[0056] At block 104, translator 52 generates second test
code 54 that contains references to the pins of circuit card
assembly 20 written in a natural language identification for-
mat. The generation of second test code 54 by translator 52 is
illustrated in FIGS. 5-16 and described herein. In the illus-
trated embodiment, the natural language pin references in
second test code 54 are configured to be readable and recog-
nizable by a user but unreadable by computer 34 of test
system 30. See, for example, the pin reference “P125” of case
statement 61 of second test code 54 illustrated in FIG. 2B. In
the illustrated embodiment, test system software 60 is unable
to recognize “P125” as a pin name, but a user reviewing
second test code 54 may immediately associate “P125” with
pin 125 of circuit card assembly 20.

[0057] Software 60 contains pin references written in a
second identification format or nomenclature. At block 106, a
first pinmap document 114 is generated that associates each
pin reference of second test code 54 written in the natural
identification format with a pin reference of test system soft-
ware 60 written in the second identification format. In par-
ticular, first pinmap document 114 maps the natural language
pin references of second test code 54 to the pin references of
test system software 60 written in the second identification
format. See, for example, exemplary portion 90 of first pin-
map document 114 illustrated in FIG. 4A. Referring to line
91, the “P3” reference utilized by second test code 54 is
mapped to the pin reference “TERM9_SCOPE_CHAN(3)”
utilized by test system software 60. In the illustrated embodi-
ment, the pin references utilized by test system software 60
identify the corresponding channels of adaptor 38 that are in
communication with the pins of circuit card assembly 20.
Based on the pin configuration input at block 100, first pin-
map document 114 maps the locations of the input pins, the
output pins, the power pins, etc. of circuit card assembly 20 to
the pin references of test system software 60. In one embodi-
ment, first pinmap document 114 is a program header file of
second test code 54 that is loaded into test system 30. As
represented by block 108, second test code 54 is interfaced
with software 60 using first pinmap document 114.

[0058] User interface 32 of test system 30 identifies and
displays the pins of circuit card assembly 20 using a third
identification format or nomenclature. Atblock 110 of FIG. 4,
a second pinmap document 116 is generated that associates
each channel of test system 30 with a pin reference written in
the third identification format utilized by user interface 32. As
described above, second pinmap document 116 is utilized by
computer 34 to accurately report and display the status of
each pin on circuit card assembly 20 to user interface 32, as
represented by block 112 of FIG. 4. Second pinmap docu-
ment 116 may also define the data buses associated with the
channels of test system 30. In the illustrated embodiment,
second pinmap document 116 is a comma separated value
(.csv) file that contains all the pin names and bus definitions
for second test code 54 that runs on test system 30. Referring
to exemplary portion 92 of second pinmap document 116
illustrated in FIG. 4B, Channel 68 oftest system 30 is mapped
to pin reference “C64_P198” and bus “XFRMSN2”. Upon
loading second pinmap document 116 into test system 30, pin

US 2014/0068570 Al

reference “C64_P198”, rather than “Channel 687, is dis-
played by user interface 32 when reporting the status of pin
198 of circuit card assembly 20 to a user.

[0059] Referring to FIGS. 5-16, an exemplary method of
translating a program source code from one language to
another is provided. The translation method of FIGS. 5-16 is
illustratively employed by translator 52 of FIG. 2. In the
illustrated embodiment of FIGS. 5-16, second test code 54,
written in C language, is generated based on a translation of
first test code 50, written in Raytheon Test Language
(“RTL”). In addition, documentation 56 of FIG. 2 is gener-
ated according to the translation method illustrated in FIGS.
5-16.

[0060] As represented by block 130 of FIG. 5, translator 52
first receives input settings and parameters from a user to aid
in the translation. FIG. 6 provides a detailed flowchart illus-
trating an exemplary process of receiving input settings. In
blocks 180-182 of FIG. 6, the user enters a project name and
indicates the storage directory for where the program files of
test code 54 are to be created. At block 184, the user retrieves
the source code file that is to be translated by translator 52. In
particular, the user selects a first test code 50 that corresponds
to the circuit card assembly 20 of interest from a memory
source (e.g. computer memory or a removable memory
device) and loads the selected first test code 50 into translator
52. In blocks 186-206, the pin configuration of the selected
circuit card assembly 20 is entered into translator 52. Each pin
of circuit card assembly 20 has a corresponding pin number
that serves to identify the location of the pins. At block 186,
the total number of pins on circuit card assembly 20 is entered
into translator 52. At block 188, a clock pin of circuit card
assembly 20 is identified and the corresponding pin number is
entered into translator 52. At block 190, if circuit card assem-
bly 20 includes tri-state pins, these tri-state pins are identified
and the corresponding pin numbers are entered into translator
52. A tri-state pin is an output pin that may have a high output,
a low output, or an output somewhere in between high and
low. At block 192, one or more disabled pins of circuit card
assembly 20 are identified and the corresponding pin num-
bers are entered into translator 52.

[0061] Inoneembodiment, 120-pin circuit card assemblies
20 may have varying power and ground pin locations, while
circuit card assemblies with 201 pins may have standard
power and ground pin locations. At block 194, if circuit card
assembly 20 does not have 120 pins (i.e., if circuit card
assembly 20 has 201 pins), translator 52 automatically iden-
tifies and enters the standard power and ground pins of circuit
card assembly 20, as represented by block 198. If circuit card
assembly 20 has 120 pins, the location of the power and
ground pins are identified, as represented by block 196. If
circuit card assembly 20 has special power and ground pins
that are not in the standard locations, the location of the power
and ground pins are entered into translator 52, as illustrated
by blocks 200 and 202. Certain circuit card assemblies 20
may be inserted into adaptors 38 of test system 30 in an
inverted orientation, causing the pins of circuit card assembly
20 to appear to test system 30 as inverted. If circuit card
assembly 20 is inserted into test system 30 in an inverted
orientation, the pins of circuit card assembly 20 are set in
translator 52 as inverted, as represented by blocks 204 and
206.

[0062] In the illustrated embodiment, a user manually
enters all information and input parameters at block 130 of
FIG. 5, although translator 52 may automatically detect cer-

Mar. 6, 2014

tain pin configurations. In addition, other input settings may
be entered at block 130 of FIG. 5. For example, the user may
configure translator 52 to generate all program files associ-
ated with test code 54 or to generate only certain individual
program files. The input settings may be entered into trans-
lator 52 in any suitable order. After all input settings have
been entered at block 130, the user may initiate the translation
process, and translator 52 automatically proceeds with blocks
132-158 of FIG. 5.

[0063] Atblock1320fFIG. 5, all line numbers contained in
first test code 50 are removed by translator 52. Line numbers
are identified and deleted from the text in first test code 50 to
eliminate errors in the code translation. At block 134, trans-
lator 52 performs the translation of the first test code 50 to the
second test code 54, as described herein with reference to
FIGS. 7-16.

[0064] Referring to FIG. 7, translator 52 first retrieves the
first test code 50 that was selected at block 184 of FIG. 6. As
represented by blocks 222, 224, 226, and 228, translator 52
contains an algorithm that steps through each character of
each line of code in first test code 50 in search of special
characters. Translator 52 includes a character pointer that is
used to move through each character of first test code 50.
When translator 52 reaches the end of a line of code, translator
52 immediately moves to the next line of code. When trans-
lator 52 has reached the end of first test code 50, the transla-
tion is complete and translator 52 returns to block 136 of F1G.
5, as represented by block 222 of FIG. 7.

[0065] As illustrated in blocks 230-248, translator 52
searches for special characters that trigger additional algo-
rithms used for the translation. In an illustrated embodiment,
the special characters identified by translator 52 are as fol-
lows: “,” (comma), “(” (left parenthesis), «)” (right parenthe-
sis), “<” (open bracket), “>" (close bracket), “+” (plus sign),
“~” (minus sign), the letter “X”, “:” (colon), and *“”* (space or
tab). When one of these characters is found by translator 52,
certain translation sequences and functions are performed on
the character strings that are isolated by these special charac-
ters, as described herein.

[0066] Several different status flags may be set throughout
the translation process to control the outcome of various
operations. For example, a “function” flag indicates that the
translation algorithm is in the middle of a function call. An
“other software” flag indicates that additional software (e.g.
Fortran) not translatable by translator 52 has been detected
and template files must be created for this software, as
described herein. A “run pattern” (rp) flag stops the RP()
function that is to be printed after a function is complete. The
RP() function instructs test system 30 to set updated pins
without testing the outputs. The RP() function allows many
testing steps to be completed prior to verifying the outputs of
circuit card assembly 20 with the function “TPV”, or test
pattern verify, which is described herein. A “high speed” flag
is used to flag certain functions, and a “test” flag indicates that
a test routine is currently active.

[0067] When translator 52 identifies a comma *)’, the
“comma identification” routine illustrated in FIG. 8 is run by
translator 52, as represented by blocks 230 and 250 of F1G. 7.
Commas may be used in first test code 50 to separate pin
names or to separate statements of code. When used to sepa-

US 2014/0068570 Al

rate pin names, the commas are located in the argument
portion of a function statement. At block 280 of FIG. 8,
translator 52 first determines if the “function” flag is currently
set. The “function” flag indicates that the translation algo-
rithm is in the middle of a function call, i.e., that the identified
comma is contained within the argument portion of a function
statement. The “function” flag may be set by other sequences
throughout the translation process, as described herein. If the
“function” flag is set at block 280, all characters preceding the
identified comma but following the last identified special
character are stored in a list for later use during the translation
process, as represented by block 282. For example, in the
following exemplary line (1) of first test code 50, the function
HI has been called and inside the brackets is a list of pins
separated by commas.

HI<P1,P2,P3> 1)

As the translation algorithm steps through each character in
line (1), the pin names “P1”, “P2”, and “P3” are separately
added to the list, allowing translator 52 to generate the corre-
sponding line of second test code 54 in the proper format.
After adding the pin names to the list at block 282, the
“comma identification” routine proceeds to block 284. Alter-
natively, the “comma identification” routine may end and
return to the translation sequence of FIG. 7 following block
282.

[0068] At block 284, translator 52 searches for the charac-
ter “V” immediately preceding the comma to identify the
function “TPV”, or test pattern verify, contained in first test
code 50. The TPV function instructs the test system to verify
that the proper outputs are detected at the output pins of
circuit card assembly 20 following the execution of a test
pattern. If the previous character is a “V” at block 284, trans-
lator 52 initiates the “check function” routine (block 286)
illustrated in FIG. 9, as described herein. Upon completion of
the “check function” routine, translator 52 returns to block
288 of FIG. 8 to close the function. In particular, the “check
function” routine of block 286 starts a function by translating
the identified function in first test code 50. At block 288, the
contents of the identified function (e.g., the list of pin names
created in blocks 280 and 282) are added to the translated
function, and the translated function is closed (e.g. a close
parenthesis)’ is added to the translated function). For
example, using exemplary line (1) of first test code 50 above,
translator 52 creates “HI(” at block 286 and “P1,P2,P3)” at
block 288, resulting in a complete function “HI(P1,P2,P3)”
for second test code 54. If the previous character is nota “V”
at block 284, the translation algorithm immediately returns to
the translation sequence of FIG. 7 to analyze the next char-
acter in first test code 50.

[0069] In the “check function” routine of FIG. 9, translator
52 searches for the functions defined in first test code 50 and
translates them into functions to be written into second test
code 54. At block 290, if the group of characters between the
previous special character and the current special character
identified by translator 52 matches one of the functions of first
test code 50, which are provided under “Keyword” in Table 1
below, translator 52 translates the function at block 292. In
addition, translator 52 returns the corresponding return value
provided in Table 1 at block 294. Otherwise, the translation
algorithm returns an error at block 296 indicating that a func-
tion was not found in the “check function” routine.

Mar. 6, 2014

TABLE 1

Function Names and Return Values

Keyword: Return:
TITLE Complete
PROG Complete
END Done
DISP Complete
PAUSE Complete
STOP Complete
EQU Complete
INPUT Complete
OUTPUT Complete
TEST Test
DONE Done
RTN Continue
CALL Continue
LINK Continue
GOTO Continue
DO Loop

IF Loop

HI Function
LO Function
NV Function
XX Function
SEQ Function
CNT Function
CLK Continue
TOG Function
TPV TPV
DELAY Continue
DASH Continue
SYNC Continue
HSDLY Continue
HSA Continue
HSB Continue
HSL Continue
HSR Continue

[0070] The return values in Table 1 direct translator 52 on
how to proceed with the translation. The return values are
obtained whenever translator 52 runs the “check function”
routine of FIG. 9. Translator 52 may handle the return values
by running the “switch” routine illustrated in FIGS. 13 and
13A. The “switch” routine directs the translation algorithm
based on the return value obtained from the “check function”
routine of FIG. 9. Referring to FIG. 13, when the return value
is Error (block 350), a function was not found in the “check
function” routine and translator 52 is directed to proceed with
the translation sequence of FIG. 7. The Continue return value
indicates that the handling of the function is complete and
directs translator 52 to proceed to the next character in first
test code 50, as represented by blocks 352 and 353. In first test
code 50, two or more functions are sometimes contained in
the same line of code. These functions may return Continue so
that translator 52 continues to check the same line of code for
additional special characters before proceeding to the next
line of first test code 50. The Complete return value directs
translator 52 to proceed to the next line of first test code 50 to
continue the translation, as represented by blocks 354 and
366. Functions that stand alone on a single line of first test
code 50 may return Complete to direct translator 52 to con-
tinue searching for special characters on the next line of first
test code 50.

[0071] The Function return value sets the “function” flag,
as represented by blocks 356 and 368. The functions of first
test code 50 that return Function each include a list of pins that
are usually handled by translator 52 and translated properly
into the language of second test code 54. The “close bracket”

US 2014/0068570 Al

routine writes this list of pins into second test code 54, as
illustrated in FIG. 14 and described herein.

[0072] Some functions of first test code 50 contain other
embedded functions. Referring to block 358 of FIG. 13, the
return value of Loop is returned by these functions. As rep-
resented by block 369, the Loop return value increments a
loop counter that tracks the number of loop functions that
have been called and that indents the next line of code in
second test code 54 according to the number of loop functions
that have been called. In addition, translator 52 sets the paren-
thesis flag to “true” if the next character is an open parenthesis
‘(’, as represented by blocks 370 and 372. Blocks 370 and 372
capture the loops of first test code 50 that are contained within
parentheses. At block 374, the loop counter stores the maxi-
mum value it reaches in amemory. The maximum value of the
loop counter is used by translator 52 to define variables
needed for the loops written to second test code 54.

[0073] The return values of Test and Done act together in
the translation algorithm. Translator 52 creates a separate test
routine in second test code 54 for each circuit card test routine
that is contained in first test code 50. See, for example, circuit
card test routine 59 of first test code 50 in FIG. 2A and test
routine 63 of second test code 54 illustrated in FIG. 2B. Each
test routine in second test code 54 may be called indepen-
dently by other code portions of second test code 54, allowing
test system 30 to run each test routine independently without
having to run all of the test routines. Referring to FIG. 13A,
the return value of Test at block 360 directs translator 52 to
start a new test routine by setting the “test” flag to true, as
represented by block 376. If the translation algorithm is cur-
rently inthe middle of a testroutine (i.e. the “test” flag already
is set to true), translator 52 ends that test routine first before
starting a new test routine, as represented by block 375. In
addition, the character pointer is adjusted to the next character
of first test code 50, as represented by block 378. The return
value of Done directs translator 52 to end the current test
routine by setting the “test” flag to false, as represented by
block 386. If a new test routine begins in first test code 50
before a function is called that returns Done to end the pre-
vious test routine, translator 52 records a note in a build log to
alertthe user. At block 388, the character pointer is adjusted to
the next character of first test code 50.

[0074] At blocks 362 and 380, the return value of TPV
directs translator 52 to determine if the next character is an
open bracket. In some instances, a TPV function in first test
code 50 is immediately followed by an argument in brackets
(e.g. TPV<P3,P4>). In other instances, the TPV function in
first test code 50 stands alone, and translator 52 ends the
“switch” routine following block 380. If a left bracket ‘<’ is
identified at block 380, translator 52 creates a TPV (test
pattern verify) function in second test code 54 which is con-
figured to verify the current test pattern at block 381. When
executed, the TPV function created in second test code 54
directs test system 30 to test the input and output pins accord-
ing to the current test pattern and to verify that the proper
states at the output pins are detected. The TPV return value
also sets the run pattern “rp” flag at block 382. As described
above, the “rp” flag is used to stop the RP() function that is to
be printed after a function is complete. At block 384, trans-
lator 52 disables the test pattern.

[0075] The return values of Table 1 are occasionally not
handled by translator 52; i.e., the “switch” routine is not run
after every “check function” routine in the translation algo-
rithm. In the illustrated embodiment, the TPV function is the

Mar. 6, 2014

only function in first test code 50 that ends with the character
‘V’. Whenever translator 52 is searching for the ‘V’ character
and then runs the “check function” routine, translator 52 will
not handle the return as it assumes that a TPV function will be
found. For example, in the “comma identification” routine of
FIG. 8, translator 52 looks for a specific function preceding
the comma in the “check function” routine but does not
handle the return value of that function by calling the
“switch” routine. However, in the “open bracket” routine of
FIG. 12 described herein, the return values are handled in the
“switch” routine immediately after the completion of the
“check function” routine.

[0076] When translator 52 identifies a left parenthesis “(” at
block 232 of FIG. 7, a parenthesis counter is incremented at
block 252. The parenthesis counter keeps track of all open and
close parentheses to identify when to act on the contents
within the parentheses. When translator 52 identifies a right
parenthesis “)” at block 234, the “close parenthesis” routine
illustrated in FIG. 10 is run by translator 52, as represented by
block 254. At block 300 of FIG. 10, the parenthesis counter is
decremented by one. If the parenthesis counter is less than
zero, the parenthesis counter is reset to zero, as represented by
blocks 302 and 304. In blocks 306-312, translator 52 acts on
the contents contained within the previous set of parentheses.
At block 306, translator 52 checks if the character preceding
the special character)’ is a “V”, indicating a TPV function is
contained within the parentheses. If a “V” is identified, the
“check function” routine is again run by translator 52 at block
308, and the function is closed at block 310. At block 312, the
“check pattern” routine (see FIG. 11) is run by translator 52
before returning to the translation sequence of FIG. 7 to
analyze the next character of code.

[0077] Referring to FIG. 11, the “check pattern™ routine
places a “run pattern” function into second test code 54. Inthe
illustrated embodiment, the run pattern function is entered
into second test code 54 (written in C language) as “RP()”.
When executed, the run pattern function instructs test system
30 to set the input pins according to the test pattern. However,
the run pattern function does not instruct test system 30 to test
the output pins for correctness (i.e., for the proper output
signal) based on the set input pins. The run pattern function,
when executed by test system 30, allows multiple signal
combinations to be introduced at the inputs and allows these
various signals to propagate through the circuitry of circuit
card assembly 20 before the output pins are tested by test
system 30.

[0078] The “check pattern” routine first verifies three con-
ditions: 1) the translation algorithm is currently not within
any parentheses according to the parenthesis counter (block
320); 2) the current circuit card test is not a high speed test
(block 322); and 3) the run pattern “rp” flag is enabled (block
324). Test system 30 is configured to run both normal speed
tests and high speed tests on circuit card assembly 20. During
a high speed test, the run pattern RP() functions are not used.
If all three conditions in blocks 320-324 are true, translator 52
places a run pattern RP() function in second test code 54, as
represented by block 326. If any of the three conditions in
blocks 320-324 are not true, translator 52 will enable the run
pattern “rp” flag and will not place a run pattern RP() function
in second test code 54.

[0079] When translator 52 identifies an open bracket “<” at
block 236 of FIG. 7, the “open bracket” routine illustrated in
FIG. 12 is performed by translator 52, as represented by block
256. At block 340, the “bracket” flag is set to indicate to

US 2014/0068570 Al

translator 52 that the translation algorithm is currently in the
midst of a bracket argument. At block 342, the translation
algorithm jumps to the “check function” routine of FIG. 9 to
identify the function preceding the open bracket and to return
the corresponding return value. At block 344, translator 52
runs the “switch” routine to handle the return value of the
“check function” routine, as described above with reference
to FIGS. 13 and 13A.

[0080] An open bracket is often followed closely by aclose
bracket in first test code 50. When translator 52 identifies a
close bracket “>" at block 238 of FIG. 7, the “close bracket”
routine illustrated in FIG. 14 is performed by translator 52, as
represented by block 258. The “close bracket” routine actu-
ally writes code to second test code 54. At block 400 of FIG.
14, translator 52 first checks the function flag. If the function
flag is set, the values (i.e. pin names) from the list compiled in
the “comma” routine of FIG. 8 are written to second test code
54, as represented by block 402. Translator 52 closes the
function (block 404), clears the list of values (block 406), and
clears the function flag (block 408). At block 410, translator
52 jumps to the “check pattern” routine of FIG. 11 to place the
run pattern RP() function in second test code 54 before
returning to the translation sequence of FIG. 7.

[0081] At block 412, if the loop counter is zero, translator
52 ends the “close bracket” routine. At blocks 412, 414, and
416, if the loop counter is not zero and the previous character
is a “V” (indicating a TPV function), translator 52 runs the
“check function” routine of FIG. 9 to check the previous
characters before the last open bracket for a function. At block
418, if the “check function” sequence returns “TPV”, the
function loop is closed at block 420 and the return value is not
handled by translator 52 (i.e. a “switch” routine is not run). At
block 422, the bracket “}” is written to second test code 54 to
indicate the end of the loop. Finally, at block 424, the algo-
rithm decrements the loop counter.

[0082] When translator 52 identifies a plus sign “+”, a
minus sign “~”, or the letter “X”, the “set” routine illustrated
in FIG. 15 is run by translator 52, as represented by blocks
240,242,244,260,262 and 264 of FIG. 7. In first test code 50,
a plus sign or a minus sign typically follows each pin value.
The plus and minus signs are used to set the corresponding pin
ofcircuit card assembly 20 to a high or low state, respectively.
See, for example, the following exemplary line (2) of first test
code 50.

(128+,190+,193-,194—,197-,40— TPV 2

In line (2), pins 128 and 190 are set high and pins 193, 194,
197, and 40 are set low. In first test code 50, the ‘X’ value
indicates that the corresponding pin(s) is a tri-state pin and
can have a value ranging from low to high without causing an
error in the test.

[0083] Referring to block 440 of FIG. 15, translator 52
checks the previous characters of first test code 50 for the
word “ALL”. If the word “ALL” is identified, translator 52
writes corresponding code in second test code 54 configured
to setall the pins of circuit card assembly 20 to the appropriate
state (as determined by the ‘+’, ‘=’, or ‘X’ character), as
represented by block 442. If the word “ALL” is not identified,
translator 52 writes corresponding code in second test code
54 configured to set only certain pins (specified in first test
code 50) to the appropriate state in second test code 54, as
represented by block 444. At block 446, translator 52 runs the
“check pattern” routine of FIG. 11 before continuing with the
translation.

<,

Mar. 6, 2014

[0084] When translator 52 identifies a colon “:” at block
246 of F1G. 7, translator 52 starts a new function in second test
code 54, as represented by block 266. Translator 52 also
increments the test number associated with the test routine. In
one embodiment, translator 52 may print comments above the
new test routine. [fthe “test” flag is set at block 246, translator
52 closes all loops and the current test routine before starting
a new test routine.

[0085] When translator 52 identifies a space or tab ““ 7, the
“space or tab” routine illustrated in FIG. 16 is run by trans-
lator 52, as represented by blocks 248 and 268 of FIG. 7. At
block 460 of FIG. 16, translator 52 runs the “check function”
routine of FIG. 9. Translator 52 runs the “switch” routine of
FIG. 13 at block 462 to handle the return value from the
“check function” routine. At block 464, translator 52 deter-
mines if the next characters of first test code 50 include more
spaces or tabs. Translator 52 skips any multiple spaces or tabs
that occur in a row in first test code 50, as represented by block
466.

[0086] Upon completion of the translation in block 134 of
FIG. 5, translator 52 generates all program files associated
with second test code 54 as well as documentation utilized by
test system 30. At blocks 136 and 138, translator 52 generates
a project file 137 and a workspace file 139. Project file 137
and workspace file 139 may be run at computer 34 of test
system 30 to open, edit, and/or compile the program files
associated with second test code 54. In one embodiment,
project file 137 and workspace file 139 are Labview files
configured to run in a Labview program stored at computer
34. At blocks 140 and 142, a main file 141 and a main header
file 143 are generated by translator 52. Main file 141 contains
all of the setup and user interface code required to run a test on
test system 30. Main header file 143 contains all the declara-
tions. In particular, all functions and global variables are
defined in main header file 143. In the illustrated embodi-
ment, main file 141 and main header file 143 are C files having
a .c extension and a .h extension, respectively.

[0087] Atblock 144, a patterns file 145 is created by trans-
lator 52. Patterns file 145 contains the main translation from
first test code 50. In particular, patterns file 145 contains the
actual test code and test routines run by test system 30 on
circuit card assembly 20. For example, FIG. 2B contains an
exemplary portion (e.g. test routine 63) of patterns file 145. At
block 146, a functions file 147 is created by translator 52.
Functions file 147 contains the hybrid functions that are
called by patterns file 145, as described above with reference
to FIG. 3. In the illustrated embodiment, patterns file 145 and
functions file 147 are C files having .c extensions.

[0088] Atblock 148, first pinmap document 114, described
above with reference to FIG. 4, is created by translator 52. In
the illustrated embodiment, first pinmap document 114 is a
header file in C language having a .h extension. First pinmap
document 114 contains the definitions of the pinmap includ-
ing which pins of circuit card assembly 20 are power or
ground pins and which pins of circuit card assembly 20 are
normal input and output pins.

[0089] At block 150, translator 52 determines if an addi-
tional software test code was utilized by the legacy test sys-
tem. If yes, translator 52 creates template files 153 and 155 at
blocks 152 and 154, respectively. As discussed above with
reference to FIG. 2, template files 153 and 155 are software
code templates configured to receive program code manually
input by a user or automatically input by another program or
system following the translation by translator 52. For

US 2014/0068570 Al

example, if first test code 50 references software functions
written in Fortran language, template files 153 and 155 define
these Fortran functions. In one embodiment, template file 153
is a main file with a .c extension that contains the translated
Fortran functions called by first test code 50. In one embodi-
ment, template file 155 is a header file with a .h extension that
contains the translated Fortran function prototypes needed by
the compiler of second test code 54. If translator 52 is not
configured to translate Fortran language code, the user pro-
vides the translations of the Fortran software code to template
files 153 and 155.
[0090] At block 156, translator 52 generates second pin-
map document 116, as described above with reference to FI1G.
4. In the illustrated embodiment, second pinmap document
116 is a spreadsheet document, such as a comma separated
value (.csv) file for example, that contains all the pin names
and bus definitions for second test code 54 that runs on test
system 30. This file is imported into computer 34 to interface
with software 60 so that software 60 displays the proper pin
names of circuit card assembly 20 to user interface 32.
[0091] At block 158, translator 52 generates a readme file
159 that contains a description of the files created by transla-
tor 52. In particular, readme file 159 may be a text file con-
taining various instructions, notes, and comments regarding
the program files created by translator 52.
[0092] In one embodiment, once second test code 54 has
been created by translator 52, the user may open and compile
second test code 54 at computer 34 of test system 30. In
another embodiment, computer 34 generates an output file
that contains the compiled test program. The user runs the
compiled test program to perform the test on circuit card
assembly 20 at test system 30.
[0093] While this invention has been described as having
an exemplary design, the present invention may be further
modified within the spirit and scope of this disclosure. This
application is therefore intended to cover any variations, uses,
or adaptations of the invention using its general principles.
Further, this application is intended to cover such departures
from the present disclosure as come within known or custom-
ary practice in the art to which this invention pertains.
1. A software translation method comprising the steps of:
receiving a first software code containing a first function
command and data associated with the first function
command, the first function command being configured
to produce a first result;
associating at least one second function command in a
second software code with the first function command;
and
generating a third software code based on the first software
code, the generating step including:
creating a hybrid function command based on the first
function command, the hybrid function command
including an interface to the at least one second func-
tion command of the second software code; and
creating a case statement configured to associate the first
function command of the first software code with the
hybrid function command and to provide the data
associated with the first function command to the
hybrid function command, the hybrid function com-
mand being configured to produce the same first result
as the first function command upon execution of the
hybrid function command using the data associated
with the first function command of the first software
code provided by the case statement;

Mar. 6, 2014

wherein said first function command and said hybrid
function command comprises a function name
description and parameter list, wherein said first func-
tion command’s function name description and said
hybrid command’s function name description are
comprised of identical function name descriptions;

wherein the third software code includes a first program
file containing the case statement and a second pro-
gram file containing the hybrid function command.
2. (canceled)
3. The software translation method of claim 1, wherein the
first software code is in a first computer language and the
second software code and the third software code are in a
second computer language.
4. The software translation method of claim 1, wherein the
first software code is a test code utilized by a first test system
for performing an operational test on a circuit card assembly
and the second and third software codes are test codes utilized
by a second test system for performing the operational test on
the circuit card assembly, wherein the first result produced by
the first function command and the hybrid function command
includes at least one test operation of the operational test on
the circuit card assembly.
5. The software translation method of claim 4, wherein the
second software code is an instrument code file configured to
interact with testing instruments of the second test system to
execute the at least one test operation on the circuit card
assembly.
6. The software translation method of claim 5, wherein the
associating step includes identifying at least one second func-
tion command in the second software code that is configured
to cause the testing instruments of the second test system to
perform at least a portion of the at least one test operation on
the circuit card assembly.
7. The software translation method of claim 6, wherein the
data associated with the first function includes the identifica-
tion of at least one pin of the circuit card assembly, the at least
one test operation being performed on the at least one pin of
the circuit card assembly.
8-16. (canceled)
17. A software translation system comprising:
a first non-transitory machine readable medium section
comprising a plurality of machine readable instructions
comprising first software code containing a first function
command and data associated with the first function
command, the first function command being configured
to produce a first result;
a second non-transitory machine readable medium section
comprising a plurality of machine readable instructions
comprising second software code containing at least one
second function command; and
a third non-transitory machine readable medium section
comprising a plurality of machine readable instructions
comprising translator configured to receive the first soft-
ware code and to generate a fourth non-transitory
machine readable medium section comprising a plural-
ity of machine readable instructions including a third
software code based on the first software code, the third
software code including
ahybrid function command including an interface to the
at least one second function command of the second
software code and

a case statement associating the first function command
of the first software code with the hybrid function

US 2014/0068570 Al

command and being configured to provide the data
associated with the first function command to the
hybrid function command, the hybrid function com-
mand being configured to produce the same first result
as the first function command upon execution of the
hybrid function command using the data associated
with the first function command of the first software
code provided by the case statement;

wherein said first function command and said hybrid
function command comprises a function name and
parameter list, wherein said first function command’s
function name and said hybrid command’s function
name are comprised of identical function name
descriptions;

wherein the third software code includes a first program
file containing the case statement and a second pro-
gram file containing the hybrid function command.

18. (canceled)

19. The software translation system of claim 17, wherein
the translator is an executable computer program.

20. The software translation system of claim 17, wherein
the first software code is a test code written in a first computer
language utilized by a first test system for performing an
operational test on a circuit card assembly and the second and
third software codes are test codes written in a second com-

Mar. 6, 2014

puter language utilized by a second test system for perform-
ing the operational test on the circuit card assembly, wherein
the first result produced by the first function command and the
hybrid function command includes at least one test operation
of the operational test on the circuit card assembly.

21. The software translation system of claim 20, wherein
the second software code is an instrument code file configured
to interact with testing instruments of the second test system
to execute the at least one test operation on the circuit card
assembly.

22. The software translation system of claim 21, wherein
the second software code is stored in a memory of a computer
of'the second test system.

23. The software translation system of claim 21, wherein
the at least one second function command in the second
software code is configured to cause the testing instruments of
the second test system to perform at least a portion of the at
least one test operation on the circuit card assembly.

24. The software translation system of claim 23, wherein
the data associated with the first function includes the iden-
tification of at least one pin of the circuit card assembly, the at
least one test operation being performed on the atleast one pin
of'the circuit card assembly.

25-31. (canceled)

