US006961887B1

a2 United States Patent
Coldiron, Sr.

(10) Patent No.:
5) Date of Patent:

US 6,961,887 Bl
Nov. 1, 2005

(549) STREAMLINED LASAR-TO-L200
POST-PROCESSING FOR CASS
(75) Inventor: Gary L. Coldiron, Sr., Bloomington,
IN (US)
(73) Assignee: The United States of America as
represented by the Secretary of the
Navy, Washington, DC (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 650 days.
(21) Appl. No.: 09/971,907
(22) Filed: Oct. 9, 2001
(51) Int. CL7 oo, GO1R 31/28; GOG6F 11/00
(52) US. Cl oot 714/741
(58) Field of Search 714/724, 734-739,
714/741, 745; 324/158
(56) References Cited
U.S. PATENT DOCUMENTS
4,348,760 A * 9/1982 Rice et al.cccceeeeee.. 714/734
4,727,545 A * 2/1988 Glackemeyer et al. 714/33
4,996,688 A 2/1991 Byers et al. 371/16.5
5,184,308 A 2/1993 Nagai et al. ... 364/489
5189365 A 2/1993 Ikeda etal. 324/158
5,371,851 A * 12/1994 Pieper et al. 345/501
5475624 A 12/1995 WeSL «ovovevveeeereeeeennn. 364/578
5,596,587 A 1/1997 Douglas et al. 371/27
5,633,812 A 5/1997 Allen et al. 364/578
5,663,967 A 9/1997 Lindberg et al. 371/26
5,802,348 A 9/1998 Stewart et al. 395/500
6,141,630 A 10/2000 McNamara et al. 704/14
6,202,044 B1 3/2001 Tzori ..ooovvevvviviiinininns 703/28

OTHER PUBLICATIONS

Steven D. Millman, Edward J. MxCluskey, John M. Acken;
Diagnosing CMOS Bridging Faults with Stuck-at Fault
Dictionaries; 1990 IEEE; 1990 International Test Confer-
ence; pp. 860-870.*

West C. M., Next Generation Test Generator (NGTG)
Interface to Automatic Test Equipment (ATE) for Digital
Circuits, Sep. 22-25, 1997, 1997 IEEE Autotestcon Proceed-
ings , pp. 126-128.*

Pestana, P.A., Making the Bridge Between Two Worlds-
Post-Processing LASAR Data Into a Test Language, Sep.
16-19, 1996, IEEE , pp. 223-230.*

Wedge, G., Using Boundary scan With a Fault Dictionary to
Test and Diagnose Clusters of Non-Scan Logic, Sep. 16-19,
1996, IEEE, pp. 400-404.*

* cited by examiner

Primary Examiner—Guy Lamarre
Assistant Examiner—John J. Tabone, Ir.
(74) Attorney, Agent, or Firm—Mark Homer

(7) ABSTRACT

A technique of generation of a job for a digital testing unit
for a test station from a circuit simulation unit includes
completing fault simulation on electronic circuitry, then
executing a first program without a fault dictionary, gener-
ating a pin map of the electronic circuitry and appending any
pin groups, generating test vectors using the pin groups by
the first program, generating additional pin groups to accom-
modate any orphan pins, converting the pin maps and pattern
files to pin maps and pattern files, executing the first
program to generate the fault dictionary, inputting a mini-
mum scope level of analysis of the circuitry, generating the
fault dictionary in fault dictionary data files according to the
minimum scope level, generating a fault retriever file from
the first program; and transporting the fault dictionary data
files, test vectors, new pin maps, and fault retriever file to a
second program for run-time fault analysis on the electronic
circuitry testing unit. Wire path files and test vectors are
generated. The scoring of a mismatch between predicted test
responses and actual tester responses can be done by assign-
ing a partial credit for primary output patterns being
detected.

16 Claims, 12 Drawing Sheets

DIGITAL BOARD(S) TEST PROGRAM DEVELOPMENT

P
/ LASAR ouput ™,
L eTapgies ¢

~

-~ PINMAP .
R —

ittt

P —
i

(ENGINEERING)
40

WORKSTATION i

+ FAULT_DICTIONARY |
'LSR_POST_L' [, + NEW PINMAR
| & WIREPATHS

10

+L200 TEST VECTORS |
20

‘p\/

|

|

|

| o PavtrRETRIBVER

e

EXECUTE TEST PROGRAM
FOR DIGITAL BOARD(S)

1

T30

TECHNICIAN) e
(TEST TECHNICIAN} >
o

.- " DiamaL e,
, " UNDER-TSST

110 =}~ CASS TEST STATION

e
i H (L |
e

200~ comrume |

vy basegr

100 ~ars_mre ; -

I}

U.S. Patent Nov. 1, 2005 Sheet 1 of 12 US 6,961,887 B1

Y7 basia vw Bellection foi Raisib Seaphing: | S e . e R e e e e e e e
Fie Edt Locomchues Selup Sompt MWwelt hel
DR @ 2@ +R% D EETE S22 W $5B L8

*% | SR_POST L COMPLETED. BYE. **

GARY-BASSA> run lsr_post 1

<<< {SR_POST L »>>»

< 32-BIT VERSIGH >

| |
| LASAR-TO-CASS LASAR POSTPROCESSOR |
! f
I81-25-01 <GG> |

{1} Bulld FAULY DICTIOHARY
12] Build PATTS.SYH Files
[3] Build ATGPOP.SYH File
{4} Build HIRE PTH.DAT File
5] Duit

Enter multiple nos. (delimit w/ space or comma):

547

BxI ST 5T ~ batea s TELHET Hum

Fig. 1

U.S. Patent

Nov. 1, 2005

Sheet 2 of 12

US 6,961,887 Bl

Complct:on of successful fault f/" S10

{

| creates PATTS.SYM', 'PATTS_001.SYM’,

simulation in LASAR job S30 S4O
S20 /
— -
r 4 —[J LSRTAP produces: l [Submit 200
! LASAR Post-Processor: | -STIMULUS.TAP | SPINMAP file as: i
LSRYAP with or without > -RESPONSETAP |[—— i 'PINMARTXY
Fault_Bict ’ - PINAMES.TAP | (kas user’s own pin
-PONAMES.TAP ! ' groupsj
]
\l/ S30
'LSR_POST L * !"J
Seleet from Menu -
‘Build PATTERNS.SYM File’ |
~860

S80
~

{ L20¢ Environmeat -

-

APATTS_001.SYM'

t
[

Creates new piamap file ‘PINMAP.NEW'

b _9; PATTIS_002.SYM,. . . (stimVresp patierns) 1
to the current subdirectory. T_; Convert (XEC>): '
5. APINMAP,PMP
"PATTSSYM

*PATTS_002.SYM'

f
in the current subdivectory, ‘

1 [Change ext. to " PMP] J'
l ~S70
Fig. 2
o S10 ,
mpletion of suocesstul fault <120
simulation in LASAR jeb /._/
S110 -
" LSRTAP produces:
- HEADER.
LASAR Post-Processer:) FDPRI‘IE\?T."I\I'AAII’J
LSRTAP/DIA=FAULT_DICT N . FDFLTSIG.TAP
- FDPOPATS.TAP
- PONAMES.TAP \
S150
: - /
S130
Vol creates 'FAULT_D.DAT 1
'LSR_POST_L * B (fault_dictionary) in the i
———— Select frem Menu ; current subdirectory.
'BULLD FAULT_DICTIONARY’ ! [Place in TPS ran-time sub-
r I dlreciory "TPSSEXE".]
1 Enter Minimum Scope Level ‘
ImL’
~S140

Fig. 3

U.S. Patent

Nov. 1, 2005

Sheet 3 of 12

US 6,961,887 B1

S10
Completion of successful fault iﬁ/
simulation in LASAR job %
20
[$110 S1
v ~ ~
[LASAR Post-Processor:] LSRTAP produces L
i LSRTAP/DIA=FAULT_DICT B | -HEADERTAP | _‘T
g L }
]
=
'LSR_POST_L "’ creates "ATGPOP.SYM’ l L200 Eavironmen -
. > Select from Menu : (Fault Retriever) in the -] Cenvert
‘Build ATGPOP.SYM File' | curent subdirectory "ATGPOP.SYM
L5220 L $230 L 5240
Fig. 4
S10

e

r Completion of successtul fault
simulation in LASAR job

S3
i | ;

Submit '"WIRE_PTH.TXT’

{ User-generated file
contaimng /O wire-path
j- data }

LSR_POST_L' l

Select from Menu ¢
'Build WIRE_PTH.DAT FRite’ i

!

Ussio0

creates "WIRE_PTH.DAT’
{opt. wire-path data file} in
the current subdirectory. /

{ Place in TPS run-time sub-
directory 'TPS$EXE".]

~

N S320

Fig. 5

U.S. Patent Nov. 1, 2005 Sheet 4 of 12 US 6,961,887 B1

! WIRE-PATH FILE FOR UEU IDST LASAR RUN
! JULY 14, 1989

{ CREATED BY: GARY COLDIRON

1

PAGE SECTION:

t Format - PIN NAME: [PAGE NO. STRING, 28 CHARS MAX]/.
! (no brackets)

P1:2,7/92:2 ~ 7/P3:2,7/P4:2,7/P5:3,10/P6:3,10/P7:1,4/P8:1 - 4/P9:2,7/
P10:2,7/P11:2,8/P12:2,8/P13:3,10/P14:3,10/P15:1,4/P16:1,4,6/517:1,4/
P18:1,4/P16:3,10/P20:3,10/921:1,5,6/P22:1,5,6/P23:3,10/P24:3,10/
P25:35,36/p26:35,36/D27:35,36/P28:35,36/029:35,36/
P30:35,36/P31:35,36/P32:35,36/P33:35,36/P34:35,36/P35:38,50/
P36:38,50/P37:14,46/P38:14,46/P39:14,46/
PA0:14,46/P41:14,46/P42:14,46/P43:14,46/P44:14,46/P45:14,46/
P46:14,46/P47:14,46/P48:14,46/P49:14,46/
P50:14,46/P51:14,46/P52:14,46/P53:17,46/P54:17,46/P55:17,46/

WIRE SECTION:

} Format - <Pin ID> must use angle brackets
t Conn/wire info line 1 (40 chars max)
! Conn/wire info line 2

t Etc.

<P15>

Alal:pla-11

<Plé>

AlAl:PI1A-12

<P21>

Alal:plA-13

<P22>

AlAl:PlA-14

<P7>

Alal:pPlcC-11

<PB>

AlIAl:piC-12

<P17>

Alal:pic-13

Fig. 6

U.S. Patent Nov. 1, 2005 Sheet 5 of 12

US 6,961,887 B1

00010C BEGIN, ATLAS PROGRAM 'IDST' $
00020C INCLUDE, NON-ATLAS MODULE 'L2_INIT'
10 INCLUDS, NON-ATLAS MODULE 'L2 EXECUTE'
20 INCLUDE, NON-ATLAS MODULE 'L2_GO_AWAY'
30 INCLUDE, NON-ATZAS MODULE 'ATG_FLT L'

W W o Wn

VARIABLE DECLARATIONE |

- P

-

002000 DECLARE, INTEGER, LIST, 'RESULT~DATA’ (100}, "EX-DATA’(20},
'HOLD_QTY' (5), YHOLD_SCR'(5), 'FAULTSETS' (100}

'REQ-CONTEXT'
30 DECLARE, MSGCHAR, STCRE, 'TESTNUM', 'PCRF', 4 CHAR

40 CHAR

05 DTCLARE, INTEGER, LIST, 'QTY' (5}, 'SCORE'(5), 'FLTSETS®(100)
10 DECLARE, MSGCHRR, STORE, 'ED_NAME', 'WP_NAME', 18 CHAR
15 DECIARE, MSGCHAR, LIST, 'PRNTSTR'(200), 'NEWS'(5),
"PATHS’ (50}, 40 CHAR
90 END, 'ATG_FLT_L' $

10 DECLARE, LONG-INTEGER, STORE, 'QTY-RET', 'QTY-PINS', 'QTY-PATTS',

20 DECLARE, BOOLEAN, STORE, 'ASYNCFLAG', 'TEST-FAILED', *DTU_INIT®

40 DECLARE, MSGCHAR, LIST, 'PRNT_STR' (200), 'NEWS'(5}, 'PATHS’ (50},

004000 DEFINE, 'ATG_FLT_L', EXTERNAL, PROCEDURE ('FD NAME', 'WP_NAME')
RESULT{'QTY', *SCORE’, 'PRNTSTR', 'NEWS', 'FLISETS', 'PATHS')

$
$

A

Fig. 7(a)

U.S. Patent Nov. 1, 2005 Sheet 6 of 12

US 6,961,887 Bl

008200 DEFINE, 'SHOW_ATG_FAIL', PRCCEDURE {'P-0', 'WP') $
10 DECLARE, MSGCHRR, STCRE, 'HOLD', 40 CHAR S
15 DECLARE, INTEGER, STORE, 'I', 'J', 'K', 'L', 'P-C', 'MAX-SCR',
'LAST-GRP', 'WE® 3
20 OUTPUT, USING 'CRT',
((5X})
((SX, ' rmm=m" —+')
((3%,'| < Af TEST PROG HAS FAILED >',24X,'|'}}
({5X, "1',53%, "'
({5%,'| TEST SECTION: BATG <LASAR>',25%,'|'})
({5%,'| TEST NUMBER: 0511',33X,'|"')}
(15%,'| DEVICE TESTED: BOARDS RIRl & AlA2',17X,'I'})
{(5%,"1',33%,"1"))
((5%,'| FAULT SEARCE RESULT:',31X,'!")})
((S%, "1 *,B40,6%, ") TNEWS' (1)) $
3¢ IF, 'HOLD SCR'{i} EQ 0, THEN 3
32 CALCULATE, 'MAX-SCR' = 50 $
34 ELSE $
36 CALCULATE, 'MAX~SCR' = BO s
38 END, IF s
40 FOR, 'I' = > THRU 4, THEN $
42 IF, "HOLD_SCR'{'I')} GT 'MRX-SCR' j THEN §
44 CALCULATE, 'LAST-GRP' = "I' -1 5
48 LEARVE, FOR $
48 END, IF $
50 END, FOR $
60 IF, 'HOLD SCR'(1} GE 0, THEN 5
€5 FOR, 'J' = 1 THRU 'HOLD_QTY® (1), THEX 5
70 OUTPUT, USING 'CRT',
([5%, '], 4%,AL0, 9%, | ") "PRNT_STR' (*J'}} $
75 END, FCR, ‘I’ $
80 END, IF S
85 OUTPUT, USING 'CRT',
({5%, "1',83%, " "))
{{5%,'|',3%, "NISMATCH = ',I3,36X,'|") 'HOLD_SCR' (1}}
{{3%, "+~ - - - - +1)
{ 5%, '<<< HIT THE CTU ICON TO SHOW NEXT FAULTSET >>>'})
$
90 WAIT FOR, MANURL INTERVEKNTION $
95 CALCULATE, 'L' = "HOLD_QTY'(l; s
009300 FOR, 'I' = 2 THRU 'LAST-GRP', THEN $
s IF, 'HOLD_SCR'('I') GE O, THEN s
10 OUTPUT, USING 'CRT',
{{3%)}
({5%, '+ - - - B T e +7Y)
((5%,'| FAULTSET NO. ',IL,37X,'1")'I")
({9, "17,53%, 1) $
15 FOR, 'J’ = } THRU 'HOLD QTY¥'('I'), THEN $
20 CARLCULATE, 'L' = 'L' + 1 S
25 QUTPUT, USING "CRT',
((5%,' *,4%,Ad40,9%, | "} "BRXT_STR' ('L'}} S
30 END, FOR, 'J° $
35 OUTPBUT, USING 'CRT®,
(5%, "1 ",53%,"1"))
((5%,'1',3%, 'MISMATCH = *,T3,36X,'|') HOLD_SCR'('I"})
{{5X, '+ -- - alade +1))
{{5%,'<<< HIT THE CTU ICON TO SHOW NEXT FAGLTSET >>>'}))
5
40 WAIT FOR, MANUAL INTERVZNTION $
45 ELSE s
50 LERVE, FOR $
55 EXp, IF 3
60 END, FOR, 'I' 3

Fig. 7(b)

U.S. Pate

nt Nov. 1, 2005 Sheet 7 of 12

US 6,961,887 Bl

65
70
75

80
8%

90
95

204400
05
10
13
20

85
90

050000
10

20
30
40
50

60
050100
10

20
30

40C

50
60
70

80
5599900

10

IF, 'WP' GT 0, THEN $
IF, 'HOLD_QTY'{5) GT 0, THEN $
OUTPUT, USING 'CRT',
{(5%))
[o e e +))
((3%,"! ** SUPPLEMENTARY I/0 DATA FOR ATG **',13X,'!'))
((5%,""*,583%,'1")) $
FOR, 'I' = 1 THRU 'HOLD _QTY'(S}, TEEN $
OUTPUT, USING 'CRT',
((5%, "17,4%,A40, 9%, "1 ") YPATHS ' ('17)) 3
END, FOR, 'I’ $
OUTPUT, USING 'CRT',
((5%,'}',83%,'1"))
{{BX, '4r=mmmmmmm e m o - Sm s e 1))
{{5%,'<<< HIT THE CTU ICON TO CONTINUE >>>'}}
$
WAIT FOR, MANUAL INTERVENTION $
END, IF $
END, IF $
ZF, 'P-0’ GT 0, THEN §
OUTPUT, USING 'PRT’,
s
END, IF 3
END, 'SHOW ATG_FATL® S
PERFORM, ‘'CLR_DSPLY’ $
OUTPUT, USING 'CRT’,

l * UUT ID COMPLETE LASAR/L200 TEST *
]
|

Fo— ——— s U +
s
CALCULATE, 'TESTNUM'=C'0500" 5
CBLCULATE, 'L200-PROC' = C’'<id.lasar>atg_patts' $
IF, NOT 'DTU_INIT', THEN 3§
PERFGRM, 'L2_INIT',C'TP5_EXE', C'ID', C'LASAR', 0, FALSE,
"REQ-CONTEXT' B
CALCULATE, 'DTU_INIT' = TRUE S
END, IF $
PERFORM, 'L2_EXECUTE’, C'atg_patts’, FALSE, 0, TRUE, 'BEX-TATA',
'REQ-CONTEXT®, 'TEST-FAILED', 'RESULT-DATA' $
1F, 'TEST~FAILED', THEN 5

OUTPUT, USING 'CRT',
- e +
| <<< UUT FAILURE >>>
i |
| LASAR PROGRAM 'atg_patts’ HAS DETECTED A FAULT. f
- —_— —— -+
$
PERFORM, 'ATG_FLT_L’, C'FAULT _D.DAT', C'WIRE_PTH.DAT', ‘HOLD QTY',
'HOLD_SCR', 'PRNT_STR', 'NEWS', fFAULTSETS', 'PATHS' - $
FSREFCRM, 'SHOW AT¢ FAIL', 1, % s
ELSE 5
OUTPUT, USING 'CRT',
LASAR & L200 TESTING PASSED.
5 .
END, IF $
FINISH $

TERMINATE, ATLAS PROGRAM 'IDST' 5

Fig. 7(c)

U.S. Patent Nov. 1, 2005 Sheet 8 of 12 US 6,961,887 B1

i A1 <MAIN NET>
'DIS_NET
Al VEC
- I [RES_NET
P10 12 | 1, 4 31 cCa
S - | {
Pil 15 | 1 § é ? i
*] 20 19| 18!
l “T7 }+—is2]
i _U .
- V53] . ‘QUTBUFF’
P95 27 | . OUT!
| vl s
P96) L > 96 P177
b |
"AGE_NET 2 > = 178
AZ o
|
Py 18 }
P,
— 14 w| [~ in P195
.. 14
_ E 1
un ? 2 \/ 72 P196
\ —d
] o 1
E
Fig. 8

Component Section;

AlAl = DIS_NET;
ALlAZ = AGE_NET;
CCA = RES_NET;
QUT = QUIBUFF;

End_Component;

Fig. 9

U.S. Patent

Nov. 1, 2005

Sheet 9 of 12

DIGITAL BOARD(S) TEST PROGRAM DEVELOPMENT

US 6,961,887 Bl

200 ~_! computER

100 —~J)4rc_rFLT L'

e
|
i
i

I [Run-ume Faul

Analyzer
stays m background, runs
when failure 15 Beiected]

(ENGINEERING)
T 40 10 L
7 'LASAR output ",
' *TAP files VAX/ALPHA - .
e . WORKSTATION { # L200 TEST VECTORS !
-~ PINMAP Al + FAULT DICTIONARY L _/20
{ (deveél?:}:s pin- 3! 'LSR POST L' [~ « NEW PINMAP |
[e | o WIRE-PATHS ‘
e | o FAULT RETRIEVER |
/ WIRE-PATHS \ J
5 text file / D i -
‘___//’ |
"
Py
| i
Iy
EXECUTE TEST PROGRAM -
FOR DIGITAL BOARD(S)
(TEST TECHNICIAN) T -
P -
o .~ DIGITAL UNIT-
P . ~ UNDER-TEST
] CASS TEST STATION i o
ATLASTEST | R :*“{-T_"'R?‘ \
| PROGRAM i L200 | / 300 ’ | UUTFAULTY
| i DIGITAL iv ? | REPLACEUZ2, |
: | TESTER | L 1
- I
|

Fig. 10

U.S. Patent Nov. 1, 2005 Sheet 10 of 12 US 6,961,887 B1

Tie [t Cowwchon Sepp Sorgt Wndew e :
Dl & aE o6& »D BETE &% W FFESE

! «< FAULTR »>>

|
| LASAR/L200 RUN-TIHE FAULT ANALYZER

SELECT:

[1] SIHULATE FAULTS FROE LASAR
[2] TAKE FAULTS FROH TESTER
(3] QUIT

FAAEEEERRERFRFETRAAE AT R A xR AT RIATLE

HISHATCH = @

AfAZ. U214
“Pi3160
A1AR. U4

Num Held

647,12 V14007 -=abb wia TELNET

Fig. 11

U.S. Patent

DEVELCOPMENT

’LSR_POST_L’

« 32-bit (allows over
2 billion vectors?)

s Generaies test vectors

for L200
z10

Nov. 1, 2005 Sheet 11 of 12

400

~

FAULT _DICTIONAR Y\A

US 6,961,887 Bl

(Very large)

L.200 TEST VECTORS
(Muluple files)

LSOO

160

'ATG_FLT_L’
(32-bit)

L200 (DTY)
Dugital Tester

TEST-TIME

TEST-TIME

—™-300

U.S. Patent Nov. 1, 2005 Sheet 12 of 12 US 6,961,887 B1

44 /40
-
CPU A2
|/
/

MEMORY 10

i

LSR.POST.L

D o e o e e o tan = e

! 204 |
: y 200 ;
: - / 300
CPU ’/202 /
| 1200 |
| il DIGTAL TESTER | |
; MEMORY 100 ;
| ATGATL H—— |

US 6,961,887 B1

1

STREAMLINED LASAR-TO-1.200
POST-PROCESSING FOR CASS

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and
used by or for the Government of the United States of
America for governmental purposes without payment of any
royalties thereon or therefor.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a technique for the
interfacing of a circuit simulation unit and a circuit testing
unit, and more particularly, to streamlining circuit simula-
tion output into data for an automated circuit testing pro-
gram of a circuit testing device.

2. Description of the Background Art

Currently there is a use of automatic test stations (ie.,
CASS for consolidated automatic support system test sta-
tions) to test electronic circuitry found in many different
devices such as avionic devices. The test station hosts a
digital test instrument such as the 1.200 by TERADYNE to
handle all of the digital device testing. Digital test develop-
ers must use a high-level program (ie., LASAR) to create
generic test vectors for very complex digital circuits.
LASAR is a digital circuit simulator (program) with fault
simulation capability. A test engineer will develop models of
a digital circuit using LASAR, provide it with stimulus
which he wants to inject into the board, then debug and
analyze the circuit using LASAR’s screen output capability.
Once the test stimuli are performing correctly, the developer
will use LASAR to simulate real world fault conditions.
LASAR will then create “snapshots” of these fault condi-
tions which can be compared to fault-free output following
a real world test. These snap-shots are to be collected into a
file, much like a database, called a fault dictionary. The fault
dictionary must be tailored for the particular tester that will
be used to test the digital board.

The CASS test station is equipped with an instrument
called the DTU (Digital Test Unit). It is the instrument which
tests digital circuitry. While the CASS, in general, uses
ATLAS, the DTU has its own unique language called 1.200.
Digital test code must be written in the .200 language to be
used at run-time by the CASS test station. Some method is
needed to convert LASAR output to 1.200 test code.

The standard method to generate a complete 1.200 test job
for CASS using LASAR output is cumbersome, unwieldy,
and is a path fraught with error. Test vectors generated are
anything but readable, even on jobs with a small number of
patterns, because only pin state changes are shown. The
method does not work very well with hierarchical model
design such as one would employ to test a box, an Interface
Device (ID), for example. Often the test engineer needs to
build two or more nets and combine them into one large
model. LASAR permits this feature but post-processing into
L.200 is difficult if not prohibitive. The [.200 post-processor
does not allow names of chips to exceed four characters
which precludes the use of scoping type fault callouts
required by hierarchical modeling.

Furthermore, the standard 9-9-1 mismatch scoring algo-
rithm is simply not adequate in some situations. The 9-9-1
weighting factor method of mismatch scoring sometimes
punishes the real fault signature too severely by overlooking
valid matches. A typical 9-9-1 mismatch scoring fault ana-
lyzer had much difficulty producing accurate fault callouts

10

15

20

25

30

35

40

45

50

55

60

65

2

for the signatures represented in the fault dictionary. Some
of the faults were totally erroneous and directed the techni-
cian to replace many good components while never touching
the actual faulty one. Apparently, the correct fault signature
was scored for mismatch too punitively. Analysis revealed
that the correct POPATs (primary output patterns) found
were not given adequate credit. Furthermore, the 9-9-1
method has great difficulty handling anomalies such as
multiple faults or poor initialization.

SUMMARY OF THE INVENTION

It is therefore an object to increase the efficiency of
converting the output of circuit simulation data into data for
automated circuit testing program of a circuit testing device.

It is another object to have programs that generate read-
able test vectors.

It is still another object to have programs that accommo-
date hierarchical model structuring.

It is still yet another object to enhance the mismatch
scoring algorithm.

To achieve the objectives of the present invention, there is
provided a technique of generation of a job for digital testing
unit for a test station from the output of a program for circuit
simulation. The present invention includes completing fault
simulation on electronic circuitry, then executing a first
program without a fault dictionary, generating a pin map of
the electronic circuitry and appending any pin groups,
generating test vectors using the pin groups by the first
program, generating additional pin groups to accommodate
any orphan pins, converting the pin maps and pattern files to
pin maps and pattern files, executing the first program to
generate the fault dictionary, inputting a minimum scope
level of analysis of the circuitry, generating the fault dictio-
nary in fault dictionary data files according to the minimum
scope level, generating a fault retriever file from the first
program; and transporting the fault dictionary data files, test
vectors, new pin maps, and fault retriever file to a second
program for run-time fault analysis on the electronic cir-
cuitry testing unit.

The present invention may also generate wire path files
for analysis.

The present invention may also include the scoring of a
mismatch between predicted test responses and actual tester
responses by assigning a partial credit for primary output
patterns being detected.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of this invention, and many
of the attendant advantages thereof, will be readily apparent
as the same becomes better understood by reference to the
following detailed description when considered in conjunc-
tion with the accompanying drawings in which like refer-
ence symbols indicate the same or similar components,
wherein:

FIG. 1 is the LSR__POST L main menu of the present
invention;

FIG. 2 is the creating of the PATTERNS files;

FIG. 3 is the creating of the fault dictionary;

FIG. 4 is the creating of the run-time fault retriever;

FIG. 5 is the creating of the optional wire-path file;

FIG. 6 is the creating of the “WIRE__ PATH.TXT” file for
the wire-path;

FIG. 7(a) is an ATLAS header code to implement
“ATG_FLT_L”;

US 6,961,887 B1

3

FIG. 7(b) is the beginning ATLAS code to implement
ATG_FLT 1,

FIG. 7(c) is the remaining ATLAS code to implement
ATG_FLT_L,;

FIG. 8 is an example of hierarchical modeling;

FIG. 9 is hierarchical modeling in LASAR;

FIG. 10 is the overall scheme of the streamlined technique
of LASAR to L200 conversion;

FIG. 11 is the output of the run-time fault analyzer;

FIG. 12 is a view of the LSR_POST_L and
ATG_FLT_L; and

FIG. 13 is another view of the LASAR to L.200 conver-
sion.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

A new system was developed in the present invention to
generate the 1200 job for CASS (110) from the LASAR (5)
output (20). This new method greatly reduces the unwieldi-
ness of the process, produces very readable test vectors,
encourages and even enhances hierarchical model structur-
ing, and offers a better mismatch scoring algorithm not
based on the 9-9-1 weighting rule. This system is imple-
mented in a duet software package containing the post-
processor ‘LSR__POST L’ and the run-time fault analyzer
‘ATG_FLT_L.

First, there is a completion of a successful fault simulation
in a LASAR job (S10). All LASAR simulation is completed
on a computer workstation such as a DEC ALPHA work-
station. The test vectors (patterns), input and output vectors
are in LASAR format. Concerning the fault circuit simula-
tion, the fault diagnostics database (fault_ dictionary) is also
in LASAR format.

In the next set of steps, a test job is built on the same
workstation where the simulation is completed. Referring to
FIG. 2, the LSR__POST__L program is used to create L200
style pattern files. In LASAR, after all Good Machine
Response (GMR) simulation results are satisfactory (S10),
simply post-process using LASAR’s ‘LSRTAP’ without
fault_ dictionary (S20). The LSRTAP generates .TAP files
(S30). The TAP files are text file database of 1’s and 0’s
input stream representing the states of each pin. The .TAP
files are not easily readable by a user. Now the developer
creates the L.200 SPINMAP file and appends any pin groups
that he or she wishes to see (S40). The SPINMAP file has the
pin map of the simulated circuit used to perform LASAR
simulation. ‘LSR__POST L’ will generate test vectors using
these pin groups. If no pin groups are supplied, it will create
them automatically. Then a copy of the ‘LSR_POST_ 1
program will be brought into the directory where the TAP
files from the LASAR job reside. Then, bring in the $PIN-
MAP, copy as ‘PINMAP.TXT’ and run ‘LSR__POST 1. At
the menu options (see FIGS. 1 and 2), select the “Build
PATTS.SYM Files” option (S50) to build the pattern files.
‘LSR_POST_ I will create a new pinmap file, ‘PINMAP-
NEW?’ (S70), which has additional pin groups to accom-
modate any orphan pins. Basically the pin map file is
appended with the added information. The LSR__POST_L
program also creates the new (stimulus and response) pat-
tern files (‘PATTS.SYM’, ‘PATTS 001.SYM’,
‘PATTS__002.SYM’, etc.) in the current subdirectory (S60).
All pattern (vector) files are created by LSR_POST L for
the 1.200 tester. The pattern files are now enhanced as they
are now readable to the developer. In L.200, simply do a
“convert-in” to bring the new pin map (must change name
to *.PMP’, of course) and new pattern files (‘PATTS.SYM’,

10

15

20

25

30

35

40

45

50

55

60

65

4

‘PATTS_001.SYM’, ‘PATTS_002.SYM’, etc.) into XEC
(L200’s test operating system) (S80).

Creating the fault dictionary is just as streamlined as seen
in FIG. 3. All fault simulations are completed in LASAR
(S10) and then post-process again using ‘LSRTAP’, this
time with the /DIA=FAULT_DICT option where “/DIA”
stands for diagnostics and FAULT _DICT refers to the fault
dictionary (S110). The LSRTAP produces a plurality of TAP
files (8120). Then, again, run the program ‘LSR_POST I’
and use the option “Build FAULT DICTIONARY” from
the main menu (see FIG. 3) (S130). The user is asked to
enter the Minimum Scope Level (MSL) he or she wishes to
see (S140); this guarantees that the fault analyzer will
always show the correct hierarchical fault call-out at run-
time. The special fault dictionary file ‘FAULT _D.DAT’ is
created (S150). This fault dictionary file will be used at
run-time on the L.200. This fault dictionary is not converted
into the 1.200 environment. Instead, the fault dictionary
resides in the run-time test program directory.

Next, referring to FIG. 4, a user creates the fault retriever
file ‘ATGPOP.SYM’ file (S230) for the L.200 by running that
option (“Build ATGPOP.SYM”) from the main menu
(S220). This file, too, must be converted into XEC (5240).

Finally, referring to FIG. 5, the optional “wire paths file,”
is created if desired. The “wire paths file” is a text file called
‘WIRE_PTH.TXT’ and is created using any text word
editor. The “WIRE_PTH.TXT” file is submitted (S300).
This file associates main net pin I/O (input/output) with
cable or connector or both cable and connector information;
it also offers the feature to associate a page number of a
schematic to the main net I/O pins. Then, run
‘LSR_POST_1I again and select the main menu option
“Build WIRE_PTH.DAT File” (as seen in FIG. 5) (S310).
LSR_POST__L creates the WIRE_ PTH.DAT file which is
the wire path data file in the current subdirectory (S320). The
file resides in the test program run-time directory and not in
the L.200. The LSR_POST__L compiles the file to a run-
time file for the tester (CASS workstation). FIG. 6 discloses
the format of this wire path text file.

All of these main menu options may be run at once, if the
test engineer wishes to do the whole job at once. For
example, at the main menu, simply type in each option
number delimited by commas. ‘LSR__POST__ I’ will run the
options selected in the order they are input.

The output files ‘FAULT_D.DAT’ and
‘WIRE__PTH.DAT” 20 are transported 30 to the TPS (test
program set) run-time directory. The test program set con-
tains all of the software and hardware excluding the tester
(i.e., interface device, miscellaneous cables, etc.). The files
for the L.200 test vectors, fault dictionary, new pinmap, wire
paths, and fault retriever can be transported through a data
line or an optical disc that is carried from one system to
another. At this point, all files created by LSR__POST_L
must now reside on the tester (CASS workstation), either in
the run-time directory or in the 1200 (XEC) environment as
described above. Then the run-time fault analyzer
‘ATG_FLT_1” 100 is brought in. One must be sure to
convert the new pinmap file, all of the newly generated
pattern files, and ‘ATGPOP.SYM’ into XEC as described
above. The test engineer must supply all L.200 timing and
levels parameters as well as the other L.200 files such as the
cross reference and debug files.

There is an unlimited numbers of vectors in the creation
of the fault dictionary. Further, there is test vector generation
capability. The LSR_POST can accept very large jobs
(32-bits will handle virtually unlimited size jobs) and create
the test vectors needed for the 1.200 job at the CASS test

US 6,961,887 B1

5

station. The tester (CASS Workstation) houses the digital
tester 1.200 and will run the digital test using the files
generated above. It will accept the developer’s own pin
groups and create the test vector files written in the verbage
of those pin groups using the syntax of the 1.200. The
individual digital state for each pin group is shown for every
pattern. Since 1.200 can only accept a limited number of
bytes per file, the new 32-bit version monitors the size of
each file & creates the quantity of files to accommodate this
limitation.

Concerning the problems of hierarchical modeling, with
this new post-processing duet, testing IDs and other boxes
(WRAs, LRUs) is now easily implemented. The MSL vari-
able in ‘LSR_POST I’ in the “Build
FAULT _DICTIONARY” option permits the test engineer
to set the depth to which he has modeled.

For instance, there was the use of a two-card ID. A net for
each of the cards, a net for output buffering (to accommodate
LASARs insistence that wired nets never cross scope bound-
aries, a fault simulation requirement), and a net for some
pull-up resistors (see FIGS. 8 and 9) were created. These
were each pre-compiled in LASAR and then referenced as
components in the main ID net. It was desired that the fault
call-out go down to the secondary net level, ie. call out faulty
components on each of the sub-nets. So, the MSL was set to
two thus permitting fault callouts such as ‘A1A2.U17°,
where U17 is a component on the A2 board in the ID Al.

The standard test language ATLAS will run the L200
tests. ATLAS requests execution of the patterns in the 1.200,
and makes the 1.200 take and evaluate the response. ATLAS
checks to see if the L.200 found a fault on the circuit being
tested. If a fault is found, then ATLAS calls ATG_FLT L
which is the second program of the duet and is only callable
from ATLAS. ATG_FLT_L looks at the fault dictionary
(fault_ dictionary) that was previously created and compares
its entries to the fault “snapshot” just taken on the faulty
board being tested. ATG__FLT__L uses algorithms to decide
which entry in the database most closely resembles or
matches the real-world, run-time fault scenario just found.
ATG FLT L sends back to ATLAS all of the information
on the best four matches (best scoring are those that have the
fewest mismatches). ATLAS then prints out for the operator
the four possibilities of what it thinks actually failed in the
real world scenario, i.e. the test just performed.

All test programs executed on the CASS are written in the
standard test language of ATLAS. The ATLAS test program
calls all testing operations at run-time. The functions of
ATLAS and ATG_FLT__L are stated in more detail below.
Typically, for all digital tests, ATLLAS must interface with the
L.200 through Functional Extension Programs (FEP) which
run in the background. The special FEP, ‘L2 TL.ASAR’,
normally used to launch LASAR-type digital tests, is not
used with this new scheme. The test pattern generator of
‘LSR_POST_ I creates the working L.200 pattern files, a
quantity of which is needed to accommodate the XEC
compiler. At run-time, the first pattern file will call, in
succession, the remaining pattern files. Following the last
pattern file, it will call an L200 routine ‘get_popats’ (PO-
PAT, primary output patterns) contained in the file ‘ATG-
POP.SYM’ generated by ‘LSR__POST_ L also. If failures
were found, ‘get popats’ will create a file in the TPS
directory called ‘popats.dat’.

The ATLAS calls the first pattern file in the .200 using the
standard FEP ‘1.2 EXECUTE’. When the patterns have
been executed, control goes back to the ATLLAS. The ATLAS
then tests for failures using the variable ‘TEST-FAILED’
that is returned from the FEP. If failures occurred, ATLAS

10

15

20

25

30

35

40

45

50

55

60

65

6
then calls the new FEP ‘ATG__FLT_L’, the run-time fault
analyzer of the duet. ‘ATG_FLT I examines the ‘popats-
.dat’ file just created, matches the signature there with those
in the fault_ dictionary and returns the best matching fault-
sets with scores to the ATLAS.

As seen in FIG. 7, to use the FEP ‘ATG-FLT-L’, simply
send it the name of the fault dictionary file
(‘FAULT_D.DAT" used here) and the name of the optional
wire paths file (‘WIRE_PTH.DAT” shown here) or
‘NONE’, if not used. The FEP will send back the quantity of
faultsets (maximum of four of the best scoring) it has
compiled, the scores for each faultset, the print strings for
each faultset, a small character array containing “news”
relating the quality of the match, faultset information (not
used), and lastly, the wire path callouts. The ATLAS proce-
dure ‘SHOW __ATG FAIL is offered here to demonstrate
how the returned data is used to produce the fault callout on
the display. The first parameter in this procedure just enables
output to the printer, the second enables the wire paths to be
displayed or printed or both displayed and printed.

Often the test engineer needs to build two or more nets
and combine them into one large model, i.e. build a hierar-
chical LASAR model. LASAR permits this feature but
post-processing into L.200 is difficult if not prohibitive. The
L200 post-processor does not allow names of chips to
exceed four characters which precludes the use of scoping
type fault callouts required by hierarchical modeling. With
this new post-processing duet, testing IDs and other boxes
(WRAs, LRUs) is now easily implemented. The MSL vari-
able in ‘LSR_POST L’in the “Build
FAULT _DICTIONARY” option permits the test engineer
to set the depth to which he has modeled. As seen in FIGS.
8 and 9 an example of hierarchical modeling using LASAR
is given.

There is a need that hierarchical schemes report the wire
paths from the panel interface to the main net I/O and show
a page number of a schematic where the I/O and wire path
can be found. Rather than try to build all of this into some
clunky model scheme using pseudo components, this new
method allows the test developer to submit a wire path text
file containing sections for the page numbers and the I/O
association. ‘LSR__POST I’ then converts the data in this
file into a special wire-paths file which is accessed at
run-time by ‘ATG_FLT_I.. These wire-paths and sche-
matic page numbers are correlated by ‘ATG__FLT_ I when
a fault is discovered and appended to the fault callout which
is then printed by the ATLAS. Thus a full-bodied LASAR
test for the system of boards is implemented.

Another feature of the duet method is an enhanced
method of scoring mismatch between predicted test
responses and actual tester responses. The 9-9-1 weighting
factor method of mismatch scoring sometimes punishes the
real fault signature too severely by overlooking valid
matches. Furthermore, the 9-9-1 method has great difficulty
handling anomalies such as multiple faults or poor initial-
ization. Because of this, an alternative algorithm which is
not based upon the standard 9-9-1 weighting factors was
developed. This new algorithm instead offers partial credit
for significant Primary Output Patterns (POPAT) that are
actually detected. Rather than punishing deficiencies in the
fault signature, tester POPATS are positively valued for the
matches found. This results in a far better picture of the
needed replacement action to repair the board or box. Most
faults result in a mismatch of zero but the occasional
anomaly such as discussed above is redemptively handled.
The mismatch may be higher than ideal but, at least typically
the faulty component is shown for repair action. For

US 6,961,887 B1

7

example, an easy fault inserted was not correctly diagnosed
using prior techniques of 9-9-1 weighting factors. In fact, the
actual fault <A1A2.U21>9@0 inserted was never men-
tioned in the output. As seen in FIG. 11, however, ‘FAULTR’
of the present invention, a troubleshooting version of
‘ATG_FLT_ I caught the fault without problem.

FIG. 10 shows the roles of ‘LSR-POST I’ 10 and
‘ATG_FLT_1. 100. This duet post-processor and run-time
fault analyzer offers a streamlined method of converting
LASAR output to a run-time L200 job. Ease of use, elimi-
nating the SCHAR _LIB and other files, is but one of the
features of this duet. Very readable test vectors, both stimu-
lus and response, using the engineer’s own pin groups is
another advantage of the present invention. Additionally, the
programs facilitate the simple use of hierarchical LASAR
modeling of boxes and enhance this by offering the addition
of the wire-paths in the fault callouts as well as schematic
page numbers for the repair action.

FIGS. 10 and 13 show the LSR_POST L 10 running on
the memory 42 of a computer 40 with LASAR having a
central processing unit 44. The computer 40 with LASAR
may be connected to a computer 200 of the CASS test
station 110 having a program ATG_FLT L 100 on the
memory 202 and including a central processing unit 204.
The computer 200 may be connected to an L200 digital
tester 300. As seen in FIG. 12, a fault dictionary 400 and
L2200 test vector files 500 can be generated.

As shown above, the present invention provides a multi-
featured program duet for streamlining LASAR output into
L.200 test code and fault dictionary for digital program on
CASS. The efficiency of converting the output of circuit
simulation data into data for automated circuit testing pro-
gram of a circuit testing device has been increased by the
present invention. The programs generate readable test vec-
tors and accommodate hierarchical model structuring. The
mismatch scoring algorithm has also been enhanced.

While the invention has been particularly shown and
described with reference to the preferred embodiments
thereof, it will be understood by those skilled in the art that
the foregoing and other changes in form and details may be
made therein without departing from the spirit and scope of
the invention.

What is claimed is:

1. A method, comprising the steps of:

completing a LASAR fault simulation on electronic cir-
cuitry resulting in output, including a fault dictionary
and pattern files, being in a first computer language;

converting the output into a second computer language,
readable by an 1.200 electronic circuitry tester system,
by:

processing the output without the fault dictionary to
generate files representing pin states for each pin of the
electronic circuitry;

generating a pin map of the electronic circuitry and
appending any pin groups;

running a program to generate new pattern files and a new
pin map, from the pin map, pattern files, and files
representing pin states, that are readable in the second
computer language;

processing the fault dictionary from the fault simulation to
reside in a run-time test program directory;

inputting a minimum scope level of analysis of the
circuitry into the processed fault dictionary;

generating a fault retriever file usable by the L.200 elec-
tronic circuitry tester system; and

10

15

20

25

30

35

40

45

50

55

60

8

transporting the processed fault dictionary, new pattern
files, new pin maps, and fault retriever file to the 1.200
electronic circuitry tester system, accommodating run-
time fault analysis.

2. The method of claim 1, further comprising the steps of:

generating wire paths in a text file; and

processing the wire paths in a text file to generate wire

paths in a data file; and,

transporting the wire paths data file into a run-time test

program directory.

3. The method of claim 2, wherein the wire path data file
associates net pin input and output with cable and connector
information and associating page numbers of a schematic to
main net input and output pins.

4. The method of claim 3, further comprising the step of:

processing the new pattern files.

5. The method of claim 4, further comprising the steps of:

testing for failures;

calling a run-time fault analyzer when there is a failure;

and,

creating a failure storage file.

6. The method of claim 5, further comprising the steps of:

examining the failure storage file according to a signature

in the processed fault dictionary; and

returning best matching faultsets with scores.

7. The method of claim 2, further comprising the steps of:

sending the name of the processed fault dictionary and the

name of the wire paths file or a signal of no wire paths
file to be processed; and

generating faultsets, the scores for each faultset, the print

strings for each faultset, an array including information
of the quality of the match, and wire path callouts when
wire paths have been selected.

8. A method, comprising the steps of:

completing fault simulation on electronic circuitry result-

ing in output, including a fault dictionary and pattern
files, being in a first computer language;
converting the output into a second computer language,
readable by an electronic circuitry tester system, by:

processing the output without the fault dictionary to
generate files representing pin states for each pin of the
electronic circuitry;

generating a pin map of the electronic circuitry and

appending any pin groups;

running a program to generate new pattern files and a new

pin map, from the pin map, pattern files, and files
representing pin states, that are readable in the second
computer language;

processing the fault dictionary from the fault simulation to

reside in a run-time test program directory;

inputting a minimum scope level of analysis of the

circuitry into the processed fault dictionary;
generating a fault retriever file useable by the electronic
circuitry tester system;

transporting the processed fault dictionary, new pattern

files, new pin maps, and fault retriever file to the
electronic circuitry tester system, accommodating run-
time fault analysis; and,

scoring a mismatch between predicted test responses and

actual tester responses by assigning a partial credit for
primary output patterns being detected.

9. An apparatus using output from a LASAR simulation
of digital circuitry, including test vectors and a fault dictio-
nary, in a first computer language, comprising:

an 1200 testing unit for the digital circuitry accommo-

dating run-time fault analysis of the digital circuitry
using a second computer language;

US 6,961,887 B1

9

a pin map generated for the 1.200 testing unit; and,

a computer program to convert the test vectors into new
test vectors in the second computer language, to pro-
cess the fault dictionary, inputting a minimum scope
level, to reside in a run-time test program directory, and
to generate a fault retriever file wherein the new test
vectors, processed fault dictionary, and fault retriever
file are used by the 1.200 testing unit for run-time fault
analysis on the digital circuitry.

10. The apparatus of claim 9, further comprising the
computer program generating wire paths in a data file from
a manually generated text file.

11. The apparatus of claim 10, further comprised of the
wire path data file associating net pin input and output with
cable and connector information and associating page num-
bers of a schematic to the main net input and output pins.

12. The apparatus of claim 11, further comprised of the
computer program generating a file including failures by
generating pattern files by a test pattern generator of the
computer program and getting primary output patterns from
the fault retriever file after the last pattern file is generated.

5

10

15

20

10

13. The apparatus of claim 12, further comprising the
testing unit testing for failures and calling a second com-
puter program when there is a failure.

14. The apparatus of claim 13, further comprising the
second computer program examining the primary output
pattern files according to a signature in the processed fault
dictionary and returning best matching faultsets with scores
to the second computer program.

15. The apparatus of claim 14, further comprised of the
second computer program executing when the name of the
processed fault dictionary and the name of the wire paths file
or a signal of no wire paths file is received.

16. The apparatus of claim 15, further comprising of
scoring a mismatch between predicted test responses and
actual tester responses from the testing unit through the
second computer program by assigning a partial credit for
primary output patterns being detected.

