US006873886B1

a2 United States Patent

Mullen et al.

US 6,873,886 B1
*Mar. 29, 2005

(10) Patent No.:
5) Date of Patent:

(54

(75)

(73)

*)

@D
(22

G
(52)

(58)

MODULAR MISSION PAYLOAD CONTROL
SOFTWARE

Inventors: Robert E. Mullen, Bedford, IN (US);
Keith D. Milhouse, Bloomington, IN
(US); Paul L. Schmidt, Bloomfield, IN
(US)

The United States of America as
represented by the Secretary of the
Navy, Washington, DC (US)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 43 days.

Notice:

This patent is subject to a terminal dis-
claimer.

Appl. No.: 10/307,534

Filed: Nov. 27, 2002

Int. CL7 oo GO6F 17/00
US. Clocicenececene 701/2; 701/36
Field of Search 701/2, 3, 33, 36;

2447189, 190; 709/203, 217, 219

(56) References Cited
U.S. PATENT DOCUMENTS
6,175,783 B1 * 1/2001 Strength et al. 701/13
6,377,860 B1 * 4/2002 Gray et al.cccoeennne 700/83
6,429,773 B1 * 8/2002 Schuyler 340/425.5
6,487,717 B1 * 11/2002 Brunemann et al. 717/173
6,665,594 B1 * 12/2003 Armstrong 701/13
FOREIGN PATENT DOCUMENTS
JP 2002-46554 * 0 2/2002

* cited by examiner

Primary Examiner—Michael J. Zanelli
(74) Attorney, Agent, or Firm—Mark Homer

(7) ABSTRACT

The present application discloses an open system architec-
ture and software system for plug and play modular mission
payloads in aerial vehicles. The improved software moves
the control function of mission payloads away from the
ground station and into the aerial vehicle. The plug & play
web-based payload interface software resides in a payload
interface controller in the vehicle, and this is networked via
a uniform resource locator (URL) address to a ground
control station. Consequently, when new payloads are added
to the system, integration issues and costs are minimized.

8 Claims, 6 Drawing Sheets

Unmanned Aerial Vehicle
(UAY)
5

Tactical Control Data
Link Air Data Terminal
(TCDL ADT)

35

Modular Mission
Payload (MMP)
30

]

Payload Computer
(PIC)
10

I

Mission Computer
(VMS) '
20

___________________________ U

Ground Control

Station (GCS) Tactical.Control Data
80 Link Ground Data
Terminal

(TCDL GDT) 60

!

Human Computer
Interface (HCI)

N e mm e e

U.S. Patent Mar. 29, 2005 Sheet 1 of 6

T T T e N e e e e E e r . - e - —————— - — - —

US 6,873,886 B1

--

Unmanned Aerial Vehicle
(UAV)
5

Modular Mission
Payload (MMP)

30

Tactical Control Data

Payload Computer

(PIC)
10

Link Air Data Terminal
(TCDL ADT)

A

Y

35 >

Mission Computer

(VMS)
20

- ,
e . = = = = - - - = > " o = ——— o —————

T e e -y Y g Ny = W WP N S R R R WP ¢ S v T T G SR A SR SN R S R AR G S S e W AR e W W

~

PR R i T T —

--

Ground Control

Station (GCS) Tactical.Control Data
80 Link Ground Data
Terminal
(TCDL GDT) 60
y

2

Human Computer
Interface (HCI)

~————_—————————_————————————————.——{

Tt U . - T " = Y = - = = = e = e e e e W G W W W

US 6,873,886 B1

Sheet 2 of 6

Mar. 29, 2005

U.S. Patent

¢ OId
\WOoO— _ _ _____

. — JOW__;zoo TOHLNOD ﬁ 109

| IOH waysAsgng| W &UDA I\ R glaelt

| 5 awi] [eay| !

— —

(L f— @ won || 57

J _— 73 <!

| N [E1eQ ¥ IPAUOD AN g

! ~_ sur-Bnid ® |

" _ ~ 2JEMYOS JISMOJE G9M | (siosuaS B SODIYaA) Bleq HUUMOQ

= _ ® s joau00 g puewwod uidn 3 (| { SOV
Tt OSNGS AT VAV
' Ho "0]@ 'SWWO0D , JoIndwod| 1o41INOD '
| 09 wajsAg Buipue onewoiny UOISSIN A _
'|S10SUSS % SI0JENOY |01UOD S|OIYBA JIY 5= >~ _
“ waysAg AVN z av |
. < 1Qol | !
_ dAN dAN @) 53 (LaNIHL) | .
. - -~ .
_ %Sa qm%a 7 ~ 25 HOMINOD __
: i i 0¢ "L 03aA ¥3LNdNOD dNN s
” “sngeledpseds BH = Qvomvel T _

21N109}1Y0Jy

[euoieloN dud paseg - ga

U.S. Patent Mar. 29,2005 Sheet 3 of 6 US 6,873,886 B1

Maintenance
MS27656T15B35S

170

FIG. 3

100

US 6,873,886 B1

Sheet 4 of 6

Mar. 29, 2005

U.S. Patent

81-¢03dH

TOH1INOD AYO1AVd

JusID XNUIT JeH pay

i1
speojied Aoeba J =

didOL
joJu0D peojhey

d/adNn

SL¢O3dIN

002
\
- |‘ ILV lllllll Oom/[
0¢ 8ESSL QLS MW L3INXIHLT 'Sng|pect 3331 W
=| {uonesunwwon
zez sy | |G $s8901d-19)U)
2 pue
P
Sng zzv SY b ™\ _oAIN29x3
dpngzbadw
01 SY

8]0} 4
L~

JANLIFLIHOEY FHVYMLH40S INTLSAS

!
0l

U.S. Patent

Mar. 29, 2005

Sheet 5 of 6

US 6,873,886 Bl

Netscape: Payload Control [)ig)[x]

File Edit View Go Communicator Help
g 8 ¢ D 2 W S B @ [N
Back Forward Reload Home Search Netscaape Print Security Shop

ﬂ;lnstant Message &£ WebMail £Radio 2People &£ Yellow Pages 2 DownloadACalanderChan

] ﬁ-Bookmarks J‘Locationl file:/misc/proj/pnP/PnP/distribution/payload

| @What's Related

' {Wescam][TDrop]
Setup (Status
| oLTV 1| [System Initializing
[Video OF] Network Socket Failure
[STOW - Hold for 2 seconds |
[Setup Menu }
—Control ~Joystick
(DLTV|FLIRI(MENU f r)
-180 -90 0 90 180
7 - 90 0
2 (|- 45 f \
1X 10X
- JLe / \ Rlght
-0 N
| ZoomIn || Zoom Out |
~-45
Focus) own
[I Focus In l lFocus Outl
U _ 90

[Payload Controller Loaded

=il

100% ||

Hw o o0 @

FIG. 5

U.S. Patent Mar. 29,2005 Sheet 6 of 6 US 6,873,886 B1

Netscape: Payload Control (EEx]
File Edit View Go Communicator Help
g B8 9 N e S & @
3| Back Forward Reload Home Search Netscaape Print Security Shop
E:illlnstant Message 2 WebMail #£Radio 2£People £ Yellow Pages 2 Dowuload;CalanderChan
vIcé ~ Bookmarks & Locationl file:/misc/proj/pnP/PnP/distribution/Payload] @@ What's Related

Wescam| [TDrop | |
TDrop Dispenser System -Arm/Fire

Legend : @@HMM@@H@@ Select Payload
Type 1 Type 2 v

Arm

Type 2 i
Tz;: 3 @@W@@(%WD I[System Init;:i:irz?ng 7|

&0

@ OOOOO® s ™=
O vt DOOO@®

Dispensed :
SAFETY PIN STATUS UNKNOWN

A]
]

Misfire

[Vaisala Data

{Raw GPS Data |

[Raw NOVA Data | ' Safety Pin Status

Latitude Longitude |GPS Time/Date]
1l | |

[LOAD_READY unable to send message to PIC]

LOAD-OUT

S 100% [| Qe 33 op @ |

FIG. 6

US 6,873,886 B1

1

MODULAR MISSION PAYLOAD CONTROL
SOFTWARE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application relates to software for use in
hardware described in U.S. patent application Ser. No.
10/012,613, now U.S. Pat. No. 6,665,594, entitled Plug and
Play Modular Mission Payloads.

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and
used by or for the Government of the United States of
America for governmental purposes without payment of any
royalties thereon or therefor.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the computer control of
mission payloads in unmanned aerial vehicles and, more
particularly, to server-side and web-based payload interface
control software that resides in a payload interface controller
(PIC) in the vehicle and which is networked via a uniform
resource locator (URL) address to the control station.

2. Description of the Background

Unmanned vehicles (UVs) in operation today are
designed around a single mission payload. The payload is
located in the UV and is controlled remotely using a Human
Computer Interface (HCI) connected at a Tactical Control
Station (TCS). Other control components include the air-
craft’s Vehicle Management System (VMS), aircraft Air
Data Terminal (ADT), Ground Control Station (GCS)
Ground Data Terminal (GDT), UAV Data Control Processor
(DCP), and finally, a TCS Non-Real Time Processor. Given
the current configuration and architecture, implementing a
new payload in the UV is exceedingly difficult and requires
changing software in the VMS, DCP and TCS along with
designing a new HCI. This is costly, time consuming and
requires a complete flight re-certification process for each
new payload introduced to the UAV. Over the lifetime of
UAYV, this could amount to more than 10 payloads and many
wasted hours. In addition to the traditional Electro-Optic
Payloads, users are now looking at Synthetic Aperture Radar
payloads, Signal Intelligence payloads, Data Relay and
Networking payloads, Meteorological payloads, Hyperspec-
tral payloads, and other mission payloads. Each of these
payloads has significantly different command and control
functions, different human-computer interfaces, different
data processing requirements, and they provide complex and
differing data products and images to the UV operators.
Current UV system designs do not incorporate the com-
mands to manipulate these payloads and are not capable of
processing and exploiting the data types. Thus, each time a
UV is modified to accommodate a payload, physical changes
must be made to either the payload or vehicle, and software
must be changed in the vehicle and the control station, and
in the ground station communication datalink. These soft-
ware changes to the vehicle, and control station, and datalink
also require costly air safety recertification.

The problem is becoming especially apparent as the
increasing capability, quantity and awareness of UAVs, and
the desire to utilize UAVs for expanded roles becomes more
prevalent. There is a great need for a common interface for
all payloads that may be carried by the UAV, and an open
systems architecture to facilitate the integration of new and

10

15

20

25

30

35

40

45

50

55

60

65

2

differing payloads, and which provides higher performance
and minimal obsolescence. The same problem has arisen in
other contexts, and there have been limited efforts to provide
a solution. For example, U.S. Pat. No. 6,175,783 to Stength
et al. confronts the problem in the context of outer space
vehicles which have payload facilities supported by a host
computer system at a space platform. The °783 patent
attempts to take application-specific payload controllers and
make them generic networked computers with payload
control software resident on a remote space vehicle.
Similarly, U.S. Pat. No. 5,271,582 to Perkins et al. discloses
a communication system for an unmanned space vehicle for
electronically communicating with various diverse customer
payloads. Multiple subsidiary small payloads can be con-
nected to standard mechanical and electrical interfaces.
However, this only partially addresses the problems of
reconfiguration, recertification and obsolescence.

Co-pending U.S. patent application Ser. No. 10/012,613
discloses a system architecture in which the air vehicle
versus payload commands are separated by taking the pay-
load interface software out of the TCS Software in the GCS
and having it reside in a payload interface controller (PIC).
The PIC interfaces with each payload according to that
payload’s unique interface.

The present application provides Modular Mission Pay-
load Control Software (MMPCS) suitable for use in the
above-referenced architecture.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide Modular
Mission Payload Control Software (MMPCS) suitable for
use in the above-referenced architecture. It is another object
to provide Modular Mission Payload Control Software
(MMPCS) resident in a payload interface controller (PIC) in
the UAV which interfaces with each payload according to
that payload’s unique interface.

It is another object to provide a Payload Operator with the
ability to control the payloads by programming the Modular
Mission Payload Control Software (MMPCS) which is
resident in a payload interface controller (PIC) in the UAV
via a web page presented in a standard web browser with
appropriate plug-ins installed.

It is another object to provide MMPCS as above which
minimizes software changes for new and different payloads
by moving the payload-specific software changes away from
all flight critical software.

According to the present invention, the above-described
and other objects are accomplished by providing Modular
Mission Payload Control Software (MMPCS) suitable for
use in the PIC and capable of controlling each payload
according to that payload’s unique interface. The MMPCS
has a program loader and executive with ability to execute
server-side control modules for each particular payload. The
server-side software has a “identify module” which com-
pares communications over the payload interface control-
ler’s common connectors against payload-specific data
parameter for each known payload and loads the server-side
control module to communicate with and control that unique
payload. The identity module also writes a properties file at
the payload interface controller’s URL, which contains a list
of currently connected payloads and which is used to load
client-side web-based plug-in modules. In this manner, an
operator can remotely control one or more payloads from the
ground station via a computer, display, and wireless com-
munication link which provides a remote human computer
interface (HCI). All server-side control software is pro-

US 6,873,886 B1

3

grammed in C and C++ and client-side ground control
software is programmed using Java and HTML. This way,
the operator is presented a standard web browser with
appropriate plug-ins installed, as required, for each new
payload. When the payload operator transmits a payload
command via the web browser screen, the payload interface
controller interprets the command and calls the payload
specific command to the proper payload via a standard
interface protocol. The benefit of this approach is that it
minimizes software changes required for full flight certifi-
cation by moving the software changes away from the flight
critical software and hardware.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the present
invention will become more apparent from the following
detailed description of the preferred embodiment and certain
modifications thereof when taken together with the accom-
panying drawings in which:

FIG. 1 is a conceptual block diagram illustrating the open
system architecture with plug & play (PnP) payload inter-
face according to the present invention.

FIG. 2 is a more detailed block diagram illustrating the
hardware and software components necessary for imple-
menting the system of FIG. 1.

FIG. 3 is a block diagram of the payload interface
controller (PIC) 10 in accordance with the above-described
architecture.

FIG. 4 is a system-level block diagram of the software
components according to the present invention.

FIG. § is a screen prints of an exemplary Payload Control
Panel for controlling a Wescam payload.

FIG. 6 is a screen prints of an exemplary Payload Control
Panel for controlling a TDROP payload.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The Modular Mission Payload Control Software
(MMPCS) according to the present invention is incorporated
in the system architecture set forth in co-pending U.S. patent
application Ser. No. 10/012,613, which discloses a high-
level restructuring of conventional payload communication
systems as repeated below.

FIG. 1 is a conceptual block diagram illustrating the
system architecture. An existing unmanned aerial vehicle §
is equipped with an existing modular mission payload
(MMP) 30 located in the aerial vehicle 5. In accordance with
the present invention, the MMP 30 is connected by high-
speed data bus to a dedicated payload interface controller
(PIC) 10 that is also located in the aerial vehicle 5. Payload
interface controller (PIC) 10 is a substantially conventional
PC networked to the existing mission computer 20 that is
also resident on the unmanned aerial vehicle 5. Both the
mission computer 20 and payload interface controller (PIC)
10 are provided with a common communication interface in
the aerial vehicle 5, and this may be the existing tactical
common data link air data terminal (TCDL ADT) 35. With
this configuration, the communication interface 35 provides
a wireless communication uplink for remote control of the
aerial vehicle 5 via mission computer 20, as well as for
remote control of the modular mission payload (MMP) 30
via payload interface controller (PIC) 10. The communica-
tion interface 35 also provides a communication downlink
for transmitting vehicle and sensor data to the control station
80. The ground control station 80 and associated control

10

15

20

25

30

35

40

45

50

55

60

65

4

equipment (to be described) is equipped with Human Com-
puter Interface (HCI) 86 by which an operator can interac-
tively control both the mission payload 30 functions as well
as the control functions of the aerial vehicle 5. To fully
implement the plug & play goal of the software of the
present invention, the payload interface controller (PIC) 10
is configured as a network server and the Human Computer
Interfaces (HCI) 86 as a network client. The payload inter-
face controller (PIC) 10 is pre-loaded with the present
control software, which is capable of executing commands
required to control all established payloads. In addition,
existing software is provided at the Human Computer Inter-
face (HCI) 86 that provides a standard graphical interface
used to control all established payloads.

FIG. 2 is a more detailed block diagram illustrating the
hardware components necessary for implementing the soft-
ware of the present invention. For exemplary purposes, the
system is disclosed in the context of a vertical take-off and
landing tactical unmanned aerial vehicle 5 (VTUAV) such as
the Firescout. One or more modular mission payloads
(MMPs) 30, 40, 50 may be located in the aerial vehicle 5 and
all are connected by high-speed data bus for control by an
on-board payload interface controller (PIC) 10 (MMP 30 is
herein shown to be a traditional Electro-Optic Payload).
Payload interface controller (PIC) 10 is networked to the
mission computer 20 that is also resident on the unmanned
aerial vehicle 5 via standard RS-422 link or the like. The
mission computer 20 effectively controls the aerial vehicle
in a known manner via connections to the vehicle control
actuators, landing system, sensors, actuators, etc. Both the
mission computer 20 and payload interface controller (PIC)
10 are linked to and provided with a common communica-
tion interface 30 at the aerial vehicle 5, this being designated
as the tactical common data link air data terminal (TCDL
ADT). The communication interface 35 provides a commu-
nication uplink for remote control of the aerial vehicle 5 via
mission computer 20, as well as for remote control of the
modular mission payloads (MMPs) 30, 40, 50 via payload
interface controller (PIC) 10. The communication interface
35 also provides a communication downlink for transmitting
vehicle and sensor data to the ground control station 80.
Uploading/downloading is accomplished through a tactical
common data link ground data terminal 60 (TCDL GDT)
that is connected via an existing Datalink Control Processor
(DCP) 70 to the tactical control station (TCS) core ground
control station 80. The tactical control station 80 further
comprises a Non-Real-Time Processor 82 networked by
LAN connection C4I to one or more Human Computer
Interfaces (HCIs) 86, 88. In this manner, an operator can
interactively control both the mission payload 30-50 func-
tions as well as the control functions of the aerial vehicle §
from any of the Human Computer Interfaces (HCIs) 86, 88.
It can be seen that implementing a new payload in the aerial
vehicle 5 using the above-described system configuration
does not necessarily require changing software in the mis-
sion computer (VMS) 20 or the Datalink Control Processor
(DCP) 70, and as will be seen it does not require any
reprogramming of the Non-Real-Time Processor 82 nor any
new Human Computer Interfaces (HCIs) 86, 88.

FIG. 3 is an assembly diagram of the payload interface
controller (PIC) 10, which comprises a variety of commer-
cially available components procured and assembled with
the following configuration:

MPEG-2 Transport Stream Encoder 100

Processor Board 110

Power Supply 160 coupled to power input port 162

US 6,873,886 B1

5

4 Port Serial Board 130 coupled to the payload connectors
121 with an integrated 10 Base-T ethernet adapter 122.

Serial Interface Board 120 coupled to two RS-422 inter-
faces.

Hard Disk Drive 140
VGA Board 150 (optional)

Enclosure 170

All of the foregoing boards may be Industry Standard
PC-104 boards.

The Processor Board 110 is preferably at least a Pentium
central processor with RAM and standard supporting
chipset. Sufficient RAM is required to fully load all interface
modules, and 256 MB will suffice.

The Hard Disk Drive 140 is preloaded with an operating
system (OS) which is preferably Red Hat Linux 6.2, with
TimeSys Linux/RT real-time extensions. This OS was
selected due to the availability of drivers for a wide range of
devices, and the fact that virtually all device drivers are
provided with source code and can be modified without
restrictions. The real-time extensions are not used for task
scheduling or resource allocations, but they do provide the
capability of conveniently scheduling serial control mes-
sages to certain payloads such as a Wescam 12DS Daylight
Television (DLTV) and Forward Looking Infra-Red (FLIR)
imager. In addition, sufficient hard disk space or other
non-volatile memory is required for web page storage.

The Power Supply Module 160 may be a conventional
regulated AC/DC power supply.

The RS-422 Interface Board 120, Serial Interface Board
130 and Hard Disk Drive 140 are all industry standard
components.

The MPEG-2 Transport Stream Encoder 100 is a MPEG-2
TS video frame grabber for MPEG-2 TS encoding of video
data.

VGA Board 150 is a conventional VGA output board
which is optional and was used for development purposes
only. VGA Board 150 may be included to provides complete
VGA and NTSC/PAL TV-OUT output for monitoring pur-
poses.

The two payload connectors 121 are physically wired
identically and are the interfaces to the actual payloads. The
power connector 162 is the input power source to the
payload interface controller (PIC) 10. The ethernet connec-
tor 122 provides datalink connectivity. The maintenance
connector provides keyboard and VGA access to the system
for a development environment.

The custom enclosure 170 preferably leaves open bays for
spare modules which may include other interface boards
such as IEEE-1394 Firewire, MIL-STD-1553B, etc.

FIG. 4 is a system-level block diagram of the software
components according to the present invention.

To effectively make the mission payload 30 and any future
payloads 40 plug & play (PnP), payload-specific software
modules are loaded into the payload interface controller
(PIC) 10 (in vehicle 5) at the time that payload 30 is
installed. Each payload interface software module serves as
a “plug-in” to existing control software 200 in payload
interface controller (PIC) 10 and thereby provides all
payload-specific data parameters to allow the payload inter-
face controller (PIC) 10 to interface with the payload 30. An
Identify program 300 runs at boot and identifies which
payload is connected to which payload connector of the
payload interface controller (PIC) 10. The existing control
software 200 includes a standardized command set as
required to control established payloads 30-50. A more
detailed description of the various modules follows.

10

15

20

25

30

35

40

45

50

55

60

65

6

Identify Program 300

The Identify program 300 executes at boot and identifies
which payload is connected to which payload connector of
the payload interface controller (PIC) 10. The program 300
performs this by looking for known data streams on each of
the data ports available on each connector (two RS-232
interfaces and two RS-422 interfaces). The Identify program
300 runs for 15 seconds or when payloads have been
identified on both payload connectors. Once the 15 seconds
are up, the Identify program 300 is responsible for writing
a configuration file, which the payload interface controller
(PIC) 10 executive program 200 reads. The executive pro-
gram 200 reads this file which contains data on the payload
daemon (process) to run, its Logical Identifiers (LID), and
the IP communication port for the daemon. A file called
‘UAVPayload.properties’ is also written which stores
payload, LID, and IP port data for the Java client.

Executive Program 200

The executive program 200 initializes the inter-process
communications structures, reads the configuration file cre-
ated by the identify program 300, then begins the execution
of the appropriate Payload Interface Software Module and
other executable programs as specified in the configuration
file.

Payload Interface Software Modules

Each client-side payload interface software module is a
web-enable plug-in module stored at the uniform resource
locator (URL) address of the payload interface controller
(PIC) 10. In this manner, both the control software 200 in
payload interface controller (PIC) 10 as well as the interface
software at the Human Computer Interface (HCI) 86 may
easily access the payload interface software modules,
thereby allowing the Human Computer Interface (HCI) 86 to
act as a web-based client to allow an operator to remotely
control the mission payload 30 via the standardized graphi-
cal interface at the Human Computer Interface (HCI) 86.
This modular and web-based configuration minimizes soft-
ware changes required for the Human Computer Interface
(HCTI) 86 because it moves the software changes away from
all flight critical software, and instead simply requires the
loading of a new software server module and client plug-in
modules in the payload interface controller (PIC) 10 each
time that a new payload is installed. Each payload software
module provides all payload-specific data communication to
allow the executable software 200 in payload interface
controller (PIC) 10 to interface directly with the payload 30.
Moreover, all physical payload connections are standard-
ized. Likewise, the control and interface software resident at
the Human Computer Interfaces (HCIs) 86, 88 is standard-
ized for all payloads. This configuration effectively makes
the mission payloads 30-50 plug & play (PnP) since the
payload interface software now resides in the payload inter-
face controller (PIC) 10 in the vehicle 5, and all that is
needed to exchange payloads is to swap in a new one and
load a new server module and client payload interface
software. Presently, the payload control software must be
installed at both the payload interface controller (PIC) 10,
the datalink control processor (DCP) 70 and the Human
Computer Interfaces (HCIs) 86, 88, albeit it is equally
possible to accomplish this with a single load at one end and
a download to the other. In either case, loading and subse-
quent accessing is further simplified by making the payload
interface software at both the payload interface controller
(PIC) 10 and at the Human Computer Interfaces (HCIs) 86,
88 modular and web-based. In other words, each new
payload is associated with a new payload server-side control
module and client-side web-base plug-in which allows soft-

US 6,873,886 B1

7

ware to control the payload and display the status informa-
tion and data from the sensors. This way, as new payloads
are developed, new server-side payload control modules and
client-side Java control panel or group of panels are added.
These comprise a specifically developed interface for the
control of specific payloads. Thus, when the new payload is
introduced, it is physically installed and a new server-side
payload control module and new Java control panel or group
of panels are installed on the payload interface controller
(PIC) 10. Upon installation each Java panel is accessed from
a single unique uniform resource locator (URL) address.
Each panel is designed using the web compatible software of
Java which is loaded from HTML so that it can be presented
to the operator at the Human Computer Interfaces (HCIs) 86,
88 via a standard web browser with appropriate plug-ins
installed, as required. This way, when the payload operator
activates a payload command via the web browser screen at
a Human Computer Interface (HCIs) 86, 88, the payload
interface controller (PIC) 10 on vehicle 5 interprets the
command and calls the payload specific command to the
proper payload 30-50 via a standard URL interface protocol.
The benefit of the foregoing configuration is that it mini-
mizes software changes required for the VMS 20, DCP 70,
or Non-Real-Time Processor 82, nor any new Human Com-
puter Interfaces (HCIs) 86, 88. This in turn should alleviate
the requirement for full flight certification by moving the
software changes away from the flight critical software. It
also allows independent development and layout of a stan-
dard web-browser for the Human Computer Interface
(HCIs) 86, 88 HCI, regardless of the specific mission of a
given payload. Appropriate web development software is
readily available such as Java and HTML, and the software
is easily upgradeable, thereby minimizing the likelihood of
becoming obsolete for the life of the vehicle 5. Each payload
interface software module is developed specifically for each
payload. For example, a Java web panel developed for a
daylight Electro-Optic (EO) camera interface comprises all
controls required to manipulate the camera in the EO mode
including: Iris, field-of-view, focus, auto iris, cage, stow,
gyro modes, in addition to stewing the gimbal and viewing
the video.

Initial Payload Drivers

The current configuration supports (but is not limited to)
the Wescam Model 12DS Daylight TV (DLTV)/Forward
Looking Infrared (FLIR) and the Neptune Science’s TDROP
Dispenser designed for releasing and monitoring of
temperature, pressure, and humidity atmospheric dispensers.
The initial configuration was designed to support payload
communication over the two RS422/RS232 serial ports, but
the PC104 hardware and PIC software was designed to
support adding of communication to payload devices over
Ethernet, 1553, 1394, etc.

Driver for Wescam®

The Wescam Model 12DS DLTV/FLIR is a small light-
weight stabilized gimbal maritime surveillance module for
observation and tracking from small aircraft. The dual
sensor system features a high sensitivity, 3-5 um, 3 field-
of-view FLIR, with Indium Antimonide staring array, and a
low-light color daylight CCD camera with 20x zoom lens.
The system’s specifications state that the control stream
going into the camera should be at a 30 Hz rate, and consists
of frames of 20 bytes of 19200 bit per second, 8 bit, no
parity, asynchronous serial data. The message then requires
approximately 10.4 milliseconds to send, at a rate of one
message every 33.333 mSec.

The Wescam’s serial control is designed for a hand
controller, which continuously sends a data stream with

10

15

20

25

30

35

40

45

50

55

60

65

8

particular bits representing the position of buttons, etc. on
the controller. In addition, the Wescam transmits a continu-
ous data stream that provides status and positioning infor-
mation. It would be undesirable to send this data stream
down a radio link in its raw form, as most of the data over
a given period of time would be redundant. For purposes of
the present invention, the Wescam driver converts between
the Wescam’s protocol of using continuous data streams,
and the Java client’s protocol of reporting and displaying
changes in status. Data structures are provided within the
Wescam driver that keep status information from the
camera, as well as emulate actuation of buttons on a hand
controller. Incoming messages from the Java client provide
information from the operator such as “Zoom out pressed”,
“Zoom in pressed”, etc. When these messages are received,
they are translated into the appropriate changes in status
variables. These status variables are read at 30 Hz serial
processing to create the control messages to send to the
Wescam payload.

Likewise, when messages are received from the Wescam
payload, changes are forwarded to the Java client. Each
message contains status bits that do not need to be sent to the
client: the client only needs to be notified of changes. For
example, when the Wescam payload is in FLIR mode, the
client needs to know the field of view, a value from 1 to 3.
This value is encoded in the data frame sent to the payload
interface controller (PIC) 10 by the Wescam payload, but
certainly does not need to be transmitted to the client 30
times per second. The payload interface controller (PIC) 10
informs the Java client any time a change occurs in status
from the Wescam payload, as well as periodically updating
even if there is no change. In order to further conserve
downlink bandwidth, the analog information reporting fre-
quency is reduced from 30 times per second to 5 times per
second.

Driver for TDROP

Bae Systems® aircraft-deployed Tactical DropSondes
(TDrop) provide real-time battlefield environmental data.
The Tactical DropSondes Dispenser developed by Neptune
Science, are deployed from UAVs using existing inventory
chaft/flare dispenser sets. This capability is accomplished
without requiring any modifications to the aircraft or to the
chaft/flare dispenser set. Tactical DropSondes can be con-
figured with an array of sensor packages to include meteo-
rological sensors, chemical agent detection sensors, biologi-
cal agent detection sensors, acoustic sensors, ASW sensors,
and electronic warfare payloads. Each Tactical Sensor con-
tains a 12 channel GPS receiver, a Motorola Power PC
processor, VHF or UHF transmitter (can support all 99
sono-buoy channels), batteries, parachute, and the mission
specific sensor package. As the Tactical DropSonde is
ejected into the air stream, a parachute and RF transmit
antenna deploy; and data transmission via the UHF/VHF
data link begins. Within seconds, sensor data, along with
GPS position, altitude, and wind velocity data, become
available to the user.

The TDROP driver program is responsible for receiving
commands from the Java client and converting these com-
mands into RS-232 serial words understandable by the
TDROP dispenser. The program also receives RS-232 data
and status messages from the TDROP and forwards this data
to the Java client. The TDROP sends three different data
sets, which include GPS data, Nova data, and Vaisala data.
GPS data is sent at a 1 Hz rate and originates from the
TDROP’s GPS receiver. Vaisala data includes TDROP
temperature, humidity and pressure from the Vaisala sensor
and is transmitted at a 0.2 Hz rate. NOVA data originates in

US 6,873,886 B1

9

the dispensed dispenser and is received by the TDROP’s
Nova radio. This data is then transmitted out the RS-232
interface at a 0.2 Hz rate. The TDROP dispenser has the
ability to fire 30 different DropSondes, preloaded and pre-
configured on the ground. Selection, Arm and Fire Status are
received from the TDROP and relayed to the Java client for
update on the TDROP client panel.

Inter-Process Communication

Each payload connected to the payload interface control-
ler (PIC) 10 is controlled by a separate process; Unique
Logical ID’s (LID’s) are assigned to each process and for its
peer, the Java client executing in the workstation which is to
control the payload. A shared library (libpnputils.so) was
created to provide for fast, data/event-driven interprocess
communications within the payload interface controller
(PIC) 10. Inter-Process Communications (IPC) is accom-
plished through the use of shared memory buffers with
pointers passed through First-In First-Out (FIFO) pipes,
eliminating unnecessary copying of data passed between
processes.

Mpeg2udp 400

The mpeg2udp program is designed to be responsible for
reading the MPEG2 Transport Stream from the serial port of
the MPEG-2 encoder card and sending it to the client in
UDP/IP packets. There are two parts to this process: the
device driver and the mpeg2udp program itself.

The device driver provides the interface between the
operating system and the RS-422 serial card. The incoming
data stream from the MPEG-2 encoder card is formatted a
synchronous data stream of MPEG-2 Transport Stream
packets; each containing 188 octets formatted as 32-bit
words, most significant bit first. The device driver synchro-
nizes the hardware in the serial card to the incoming data
stream, and makes the resulting incoming data available to
the mpeg2udp program. Because the RS-422 card adheres to
the data communications convention of least-significant-bit
first, the bit order of each byte passed to the mpeg2udp
program is reversed.

The mpeg2udp program continually loads buffers from
the device driver, checks for the TS header byte every 188
bytes, reverses the order of the bits in every byte received,
and sends frames of complete TS packets to the client via
UDP/IP.

Client Software Description at the Human Computer
Interface (HCT) 86

The Human Computer Interface (HCI) 86 is equipped
with a NetStream 2000 card due to its ability to handle
streaming MPEG-2 Transport Streams and the availability of
Mircosoft Windows and Linux drivers. Version 0.2.042.2 of
NetStream’s Linux drivers are suitable.

The Human Computer Interface (HCI) 86 operating sys-
tem (OS) is RedHat (RH) Linux 7.1. RedHat Linux is the
most common of the Linux distributions available. Gnome
Desktop can be used as an X Windows window manager
(this is part of the RH 7.1 distribution disks). Other installed
client software is provided with the RedHat 7.1 distribution
with the exception of:

Netscape 4.77.

Sun Microsystem’s Java Runtime Environment (JRE)
version 1.3.1 for Linux.

NetStream2000 drivers and examples.

Microsoft Windows Client

The Windows 98 system had these software applications
installed:

Netscape Navigator Version 4.7x,

Microsoft Internet Explorer Version 5.x,

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Sun Microsystems Java 2 Runtime Environment, Stan-
dard Edition, including Java Plug-in Version 1.3.x.,

StreamRider 3.5 from 2NetFX.

HTML and Java Client Interfaces

The Executive program 200 downloads payload interface
software from the payload interface controller (PIC) 10 on
the Unmanned Aerial Vehicle (UAV) via a standard web
server. There are four types of software interfaces in the
client software; the HTML interface, the UAV payloads
properties file, payload panel classes, and the network
message handlers. This is a modular design that allows for
rapid integration of new payloads in the future.

a. HTML Interface

The payload interface controller (PIC) 10 has installed a
standard web server (Apache). The Java client software is
downloaded from the Payload interface controller (PIC) 10
web server via a Hyper Text Markup Language (HTML)
web page using HTML’s standard APPLET tag. The web
page was run through Sun Microsystems Java Plug-in
HTML Converter Version 1.3. This converter re-writes the
standard HTML page so that it uses the Java Plug-in Version
1.3.x. from Sun Microsystems in the client’s web-browser.
Both Netscape 4.7x and Microsoft Internet Explorer 5.x are
supported.

When the client’s web-browser connects to the Payload
interface controller (PIC) 10 HTTP web address it down-
loads the ‘PayloadControl.jar’ (containing all the Java class
files), the PayloadControl.properties’ file, the UAV Payloads
property file, and a unique property file for each Java
payload panel (optional). Then the PayloadControl Java
applet is started in the client’s web-browser.

b. AV Payloads Properties File
Once the PayloadControl Java applet is started, it immedi-
ately reads the ‘PayloadControl.properties’ file and the
‘UAVPayloads.properties’ file. The ‘PayloadControl.proper-
ties’ file reads in the host name or IP address of the Payload
interface controller (PIC) 10. The ‘UAVPayloads.properties’
file contains all the information defining which payloads and
TCP socket connections are available on the Payload inter-
face controller (PIC) 10. The following is an example of the
‘UAVPayloads.properties’ file that is written by the Payload
interface controller (PIC) 10’s server software.

payload.controller=0,1,60671

payload.echo=0,1

payload.count=2

payload.1=4,5,60673,WescamPanel, Wescam

payload.2=2,3,60672,TDropPanel, TDrop

where,

payload.controller=this entry defines the logical ID of the
Payload interface controller (PIC) 10, the logical ID of
the PayloadControl applet, and the TCP socket used for
communication with PIC 10.

payload.number=this entry defines number of payloads
connected to the PIC. payload.#=there is one entry for
each active payload. This entry defines the logical ID of
the PIC for this unique payload, the logical ID of the
payload, the TCP socket used for communication, the
Java Panel class name for the payload, and the text
label to be on the payload’s tab pane.

c. Payload Panel Classes

Once the PayloadControl applet has read the ‘UAVPay-
loads.propertie’ file, it will use the Java Panel class name and
load the Java panel classes using Reflection methods to load
classes on the fly. If the payload.number=0 no payload
panels will be loaded at runtime.

To enforce a standard framework for panel design and
loading using Reflection, all payload panels must be

US 6,873,886 B1

11

extended from Java’s JPanel class, implement a ChangeLis-
tener class (to send and receive network messages), and
implement a standard fixed (pre-defined) class constructor.
Here is the class declaration and constructor for adding a
new payload: public class PayloadNamePanel extends
JPanel implements ChangelListener public
PayloadNamePanel(String host, int port, int lid, int pid,
AppletContext context).

The constructor has five arguments in its argument list as
follows:

host—this is the host name of the system operating as the
PIC 10, read from the ‘PayloadControl.properties’ file.
The same host name is passed into all panels.

port—this is the payload’s unique TCP port used to
communicate with the Payload interface controller
(PIC) 10, read from the ‘UAVPayloads.properties’ file.

lid—this is the payload’s logical ID read from the
‘UAVPayloads.properties’ file.

pid—this is the Payload interface controller (PIC) 10’s
logical ID read from the ‘UAVPayloads.properties’ file.

context—this is the Java AppletContext of the Payload-
Control applet. The same context is passed into all
panels.

All other properties that are unique to a specific payload
are loaded from the payload’s own property file.

Network Message Handlers

The individual payload client plug-in 30 communicate
with the payload interface controller (PIC) 10, over a unique
TCP socket, via two reusable network classes, the
PICRecvMessage and PICSendMessage classes. Each new
payload must instantiate each class, start each class in a
thread, and add each as a PropertyChangeListener in order
to send and receive messages to and from the payload
interface controller (PIC) 10.

Message Management

Messages are managed by writing a Java ChangeListener
for the network communication classes. Network events
have 3 properties: the properties old value, the properties
name, and the properties new value. The properties old value
is always set to 999 for a valid network message, to get the
event’s old value call the PropertyChangeEvent’s
getOld Value() method. The send socket has a property name
of “SEND”, the receive socket has a property name of
“RECV?”, to get the properties’ name call the PropertyChan-
geEvent’s getPropertyName() method. The new value
stores the network message status, —1 is a socket error, 0 is
status only, and 1 is a valid message. To get event’s new
value call the PropertyChangeEvent’s getNewValue()
method.

FIGS. § and 6 are screen prints of exemplary Payload
Control Panels, graphical Java interfaces used to control the
payloads 30-50. Specifically, FIG. 5 is used for controlling
a Wescam 12DS payload, and FIG. 6 is used for controlling
a TDROP payload.

The foregoing open systems architecture increases the
ability to integrate and field new mission payloads quickly
and effectively by minimizing software modifications and
safety of flight concerns. The shift of payload specific

10

15

20

25

30

35

40

45

50

55

12

software away from the flight critical software reduces and
may eliminate the flight certification process for new pay-
load integration efforts. While the forgoing open systems
architecture has been described in the context of unmanned
serial vehicles (and their control systems), it has definite
application to all manned and unmanned platforms that may
require modularity and integration of mission payloads in
the future. The design and implementation will not preclude
it from being incorporated into ground vehicles, space
vehicles, and underwater vehicles.

Having now fully set forth the preferred embodiment and
certain modifications of the concept underlying the present
invention, various other embodiments as well as certain
variations and modifications of the embodiments herein
shown and described will obviously occur to those skilled in
the art upon becoming familiar with said underlying con-
cept. It is to be understood, therefore, that the invention may
be practiced otherwise than as specifically set forth herein.

We claim:

1. A software system for remote control of any of a variety
of different payloads in a vehicle, comprising:

a software module resident on a dedicated payload inter-
face controller in said vehicle and containing payload-
specific data parameters;

a software application resident on said payload interface
controller and including a standardized command set as
required to control multiple different payloads, said
software application incorporating the data parameters
of the software module into said command set for
issuing payload-specific commands to said payloads.

2. The software system according to claim 1, wherein said
software module resident on said dedicated payload inter-
face controller serves as a plug-in to said software applica-
tion to allow the payload interface controller to interface
with a payload.

3. The software system according to claim 1, further
comprising an identify program that runs at boot-up to
identify a payload connected to the payload interface con-
troller and to populate a configuration file in accordance
therewith.

4. The software system according to claim 3, wherein said
software application boots to initialize the standardized
command set, reads the configuration file created by the
identify program, and then executes the appropriate
payload-specific software module.

5. The software system according to claim 1, wherein said
payload-specific software module is a web-enabled plug-in
module.

6. The software system according to claim 5, wherein said
payload-specific software module is a web-enabled plug-in
module stored at a uniform resource locator (URL) address
of said payload interface controller.

7. The software system according to claim 1, further
comprising a Java client interface coupled to a server by the
standardized command set through a TCP socket.

8. The software system according to claim 7, wherein the
server interfaces with the payloads.

#* #* #* #* #*

