Press Release

NAVSEA Warfare Center Engineers, Scientists Recognized for Excellence
From Naval Sea Systems Command Office of Corporate Communications

WASHINGTON — Four Naval Sea System Command (NAVSEA) warfare center scientists and engineers were among those recognized, July 23, at the annual Top Navy Scientists and Engineers of the Year award ceremony at the Pentagon.

As NAVSEA field activities, Naval Surface Warfare Center (NSWC) and Naval Undersea Warfare Center (NUWC) are the Navy's principal research, development, test and evaluation (RDT&E), analysis and assessment activities for ship and submarine platform, including machinery technology for surface combat systems, ordnance, mines, and strategic systems products and support.

“Our men and women do some truly incredible, important work,” said Vice Adm. Kevin McCoy, commander NAVSEA. “These awards reflect the invaluable contributions provided by our warfare center scientists, researchers and engineers – not only to NAVSEA, the Navy and Department of Defense, but also to our global community.”

The award was named in honor of Dr. Delores M. Etter who previously served as Assistant Secretary of the Navy for Research, Development and Acquisition. Etter initiated the award during her tenure in recognition of those who have reached superior technical achievements and promoted scientific and engineering excellence.

NAVSEA AWARD RECIPIENT / COMMAND / ACHIEVEMENT:

Dr. Christine Michienzi and Christine Knott, NSWC Indian Head Division, Navy Gun Propellant team, were recognized for development of the Navy In-sensitive Low Erosion (NILE) gun propellant, which improves safety, increases shelf life and reduces total ownership costs of the Navy’s 5-inch gun, as well as the Special Operations Command’s (SOCOM) 105mm and 40mm gun systems. In addition, the propellant has been tested in the Navy’s new 155mm Advanced Gun System (AGS) for the Guided Missile Destroyer DDG 1000. The team’s breakthrough accomplishment is significant as the NILE is more stable and safer from a handling standpoint. Additionally, NILE is less damaging to gun barrels, allowing barrels to remain in service longer, significantly reducing the cost to operate the guns. The insensitivity of NILE provides benefit for the Navy and DoD. It has been implemented in research and development.
Press Release

for insensitive primer systems for Navy and Army gun systems, as well as propellants for Cartridge Actuated Devices (CADs) for both the Navy and Air Force aircraft.

David Moretti, NUWC Newport, Marine Mammal R&D lead, was recognized for his efforts in the development and application of passive acoustic methods and technologies for the study of behavior of marine mammals exposed to anthropogenic sound. Moretti’s team of researchers in the Marine Mammal Monitoring on the Navy Ranges program developed and implemented prototype tools at both the Atlantic Undersea Test and Evaluation Center (AUTEC) in the Bahamas and the Southern California Offshore Range (SCORE) to detect and monitor mammals. The team’s work provides the Navy with a cost-effective method for monitoring the behavior of beaked whales in ranges where the Navy tests and operates active acoustic devices. Gathered information is being used to update National knowledge of how mammals react to acoustic stresses. Most notably, the team documented beaked whale movement in response to actual Navy sonar, the first time such avoidance behaviors have been measured. These findings are causing scientists and regulators to reevaluate current mammal behavioral theories.

Dr. Brian J. Hankla, NSWC Carderock, High Energy Laser programs technical area director, was recognized for his leadership of a multi-disciplinary team that evaluated threats to Navy ships that could be addressed by a high-energy laser capability. The team designed, built and demonstrated a prototype based on solid-state fiber laser technologies. This technology has demonstrated the capability to shoot down a threat representative Unmanned Aerial Vehicle at a tactically significant range with a solid-state fiber-based laser where previous efforts focused on the physically larger chemical-based laser technologies.

— NAVSEA—