Systems Engineering Approach to Integrated Combat Systems Development

Mr. Bill Bray
Executive Director
Program Executive Office, Integrated Warfare Systems
January 14, 2014

Distribution Statement A: Approved for Public Release; Distribution is unlimited.
The Need for Integrated Systems

Operational Environment

Humanitarian Assistance

Sub-Sonic Anti-Air & Anti-Surface Missiles

Super-Sonic Anti-Air & Anti-Surface Missiles

Advanced Super-Sonic Anti-Air & Anti-Ship Missiles

Short and Medium Range Ballistic Missiles

Persistent ISR

Intermediate Range Ballistic Missiles

Cyber Warfare

Anti-Ship Ballistic Missiles

Complex Threats Employing Advanced Technology in Challenging Environments

Rapidly evolving requirements drive Navy Capability Advancements

Integrated AAW & Situational Awareness

Area Air Defense in Clutter Environments

High Data Rate Battle Group Networks

Over Land Defense

Improved Self-Defense

Integrated Air and Missile Defense

Space Based BMD Tracking

Enhanced Shipboard Sensors (Radar + ES/EA)

Multi-Ship Resource Coordination

Direct Energy

Cyber Defense

UAV Integration

Rail Guns

Distribution Statement A: Approved for Public Release; Distribution is unlimited.
Implementing Open Architecture: Strategy, Interfaces and Open Standards

- Treat computing environment as a commodity
 - Select commercial mainstream COTS products that conform to well-established open system interface standards
 - Bundle specific COTS products for a given timeframe and revisit selections on a regular basis

- Isolate applications from high rate-of-change COTS through selection of standard APIs
 - Upgrade H/W and S/W independently and on different refresh intervals

- Transform application development from single-platform development to multi-platform portfolio
 - Objective architecture defines key interfaces that support extensibility and reuse goals based on common data model
 - Eliminate redundant software development efforts
Evolution of Open Architecture

We are now focused here

<table>
<thead>
<tr>
<th>COTS Infrastructure</th>
<th>Component-Based Software</th>
<th>Open Business Model</th>
<th>Common Core Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics:
- Separation of Application/Infrastructure
- Commercial Standards
- Commodity Products

- Component-Based Designs
- Networked Applications
- Configurable Test Environments

- Open Business Practices
- Rapid Transition of New Capabilities to Systems
- Open Disclosure / Data Rights

- Common Objective Architecture / Interfaces
- Common Components, Frameworks, Services
- Common Precepts/Patterns/Standards

Key Engineering Activities:
- COTS Performance Characterization
- Prototypes / EDMs
- Planned Refresh Cycles

- Multi-Level Test and Evaluation
- KPP Validation
- Increased Reuse

- 3rd Party Developers
- Peer Reviews and Independent Assess
- Mentoring
- Fleet Involvement

- Align Existing Arch / Roadmaps
- Establish/Publish “Objective Arch”
- Establish/Publish Common Data Model

Benefits / Evidence:
- Increased Performance / Bandwidth
- Reduced Cost
- Decreased Dev Time
- Improved Testability
- Reduced Cost (Reuse)
- Scalability, Extensibility, Testability, ...

- Increased Number of Vendors/Opportunities
- Improved Transition of S&T to Fleet

- Improved Interoperability
- Cost Avoidance
- Reduced Training/Support

Distribution Statement A: Approved for Public Release; Distribution is unlimited.
TI 16 Enabled Consolidation

Today’s Technology Enables a 2:1 Reduction in Footprint With Remaining Margin for Processing and Storage

Distribution Statement A: Approved for Public Release; Distribution is unlimited.
TI 16 State Of The Practice Improvements

With Fewer Cabinets, TI 16 Architecture Continues the Upward Progress on Processing Margin

TI 16 Reverses Trends and Requires Less Power, Less Cooling, & Reduces Weight of the Computing Infrastructure

Distribution Statement A: Approved for Public Release; Distribution is unlimited.
AEGIS Common Source Library (CSL)
REUSE within Baseline configurations

“Fix Once… Use Many Times”

Key Elements of Common Development:
• Common Mission Capabilities
• Single Set of Specifications
• Common Program Plans
• Single Set of Processes & Metrics
• Integrated Team Structure
• Enterprise Products

AEGIS / MDA AB Cross Program Governance
In Place to Coordinate Multiple Programs Using CSL

Distribution Statement A: Approved for Public Release; Distribution is unlimited.
Transitioning to Objective Architecture Based Combat System

2008
- Aegis designed as an integrated combat system
- Aegis ACB 08 / TI 08 decoupled hardware from software
- SSDS designed with federated combat system network and hardware decoupled from software
- SSDS ACB 08 adds open standard middleware
- Future capability improvements planned for both programs through Advanced Capability Build (ACB)

2012
- Aegis modernization (ACB 12) component level interfaces delivered at CDR (1Qtr FY10) and with each delivered computer program build
- SSDS interfaces already documented at component level
- Small number of common components integrated both Aegis & SSDS ACB 12

2014-2022
- Number of common components will increase with each ACB moving to a common software core for all Surface Navy Combat System

Objective Architecture

Required and funded warfighting capabilities determine which components are modified.

Number of components shown is limited for illustrative purposes. Refer to ADD or top level objective architecture for additional component decomposition
The Objective Architecture provides a guide to implement new capabilities & integrate new CS elements in a manner that achieves reuse objectives and results in more flexible and extensible components.

Distribution Statement A: Approved for Public Release; Distribution is unlimited.
Combat System Objective Architecture

Distribution Statement A: Approved for Public Release; Distribution is unlimited.
Combat System of the Future (CSF)

C/S stations with standard interfaces and growth margins

- CS Infrastructure
 - Modular stations
 - Standard Interface
 - Multiple UV's
 - Mission Bay

Flexible Infrastructure (FI)

Weapon Module

- Swapable Payloads
- Scalable Arrays
- Data and Comms Plant
- Sensor & Comms

C/S computer program for multiple ships from a single library of components

Common computing, data and communications infrastructure for C/S

Robust development and test tools & sites to allow for decoupled payload - platform development

Common Source Library

“Fix Once... Use Many Times”

Key Elements of Common Development:
- Common Mission Capabilities
- Single Set of Specifications
- Common Program Plans
- Single Set of Processes & Metrics
- Integrated Team Structure
- Enterprise Products

Distribution Statement A: Approved for Public Release; Distribution is unlimited.
Summary

• IWS has been proactive in implementing Open Architecture precepts and concepts to the Surface Navy
• Open Architecture implementation has introduced opportunities to drive down costs and be more effective in the acquisition and deployment of combat capability
• BUT, Open Architecture implementation is a long term effort with much left to accomplish
• Our focus going forward will be to:
 – Transition S&T into Programs of Records more effectively
 – Continue hardware footprint consolidation
 – Identify efficient and effective strategies and opportunities for software, component reuse
 – Mature systems engineering and business processes to support combat system development, reduce costs, and enable rapid deployment
 – Identify opportunities for Better Buying Power savings
QUESTIONS?